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Spin-triplet paired phases inside a ferromagnet induced by Hund’s rule coupling and electronic
correlations: Application to UGe2
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We discuss a mechanism of real-space spin-triplet pairing, which is an alternative to the one due to quantum
paramagnon excitations, and demonstrate its applicability to UGe2. Both the Hund’s rule ferromagnetic exchange
and interelectronic correlations contribute to the same extent to the equal-spin pairing, particularly in the regime
where the weak-coupling solution does not provide any. The theoretical results, obtained within the orbitally
degenerate Anderson lattice model, excellently match the observed phase diagram for UGe2 with the coexistent
ferromagnetic (FM1) and superconducting (A1-type) phases. Additionally, weak A2- and A-type paired phases
appear in very narrow regions near the metamaganetic (FM2 → FM1) and FM1 to paramagnetic first-order
phase-transition borders, respectively. The values of magnetic moments in the FM2 and FM1 states are also
reproduced correctly in a semiquantitative manner. The Hund’s metal regime is also singled out as appearing near
the FM1-FM2 boundary.
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I. INTRODUCTION

The discovery of superconductivity (SC) in uranium com-
pounds UGe2 [1–4], URhGe [5], UCoGe [6], and UIr [7]
that appears inside the ferromagnetic (FM) phase but close
to magnetic instabilities has reinvoked the principal question
concerning the mechanism of the spin-triplet pairing. The
latter is particularly intriguing since the spin-triplet SC [8–11]
occurs relatively seldom in correlated systems compared to
its spin-singlet analog. More importantly, the case where the
paired state in both UGe2 and UIr is absent on the paramag-
netic (PM) side of the FM1 → PM discontinuous transition
suggests a specific mechanism providing, on the same footing,
both the magnetic and SC orderings. Moreover, SC is well
established in one particular (FM1) magnetic phase but not
in the FM2 and PM phases, where the magnetic moment is
either almost saturated or vanishes, respectively. These circum-
stances pose a stringent test on any pairing mechanism which
should be tightly connected to the onset/disappearance of
ferromagnetism.

The spin-triplet SC mediated by quantum spin fluctuations
has been invoked [12,13] and tested for UCoGe [14–16],
which represents systems with very low magnetic moments
[14,17] (m ∼ 0.039μB/U) and thus is particularly amenable
to the fluctuations in both the weakly ordered FM and PM
regimes. From this perspective, UGe2 possesses a large mag-
netic moment in the FM1 phase (m ∼ 1μB/U), and in the
low-pressure FM2 phase it is even larger (m ∼ 1.5μB/U) [3].
In such a situation, a natural idea arises that in this case local
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correlation effects should become much more pronounced in
UGe2, particularly because the dominant SC phase appears in
between two metamagnetic transitions, one of which (FM2 →
FM1) can be associated with the transition from the almost
localized FM2 phase of 5f electrons. Closely related to this
is the question of the applicability of real-space spin-triplet
pairing, considered before as being relevant to the orbitally
degenerate correlated narrow-band systems [18–26], which
in turn is analogous to the spin-singlet pairing proposed
for the high-temperature [27–32] and heavy-fermion [33–36]
superconductors. Essentially, we explore the regime of large
and weakly fluctuating moments. The relevance of this idea is
supported by the recent experimental evidence that the ratio of
spontaneous moment m to its fluctuating counterpart m0 is ∼1,
whereas for UCoGe, m0 � m, so the two systems are located
on opposite sides of the Rhodes-Wohlfarth plot [37].

Explicitly, we put forward the idea of correlation-induced
pairing and test it for the case of UGe2. To implement that
program we generalize our approach, applied earlier [38–40] to
explain the magnetic properties of UGe2, and incorporate this
specific type of coexistent SC into that picture. Specifically, we
extend the spin-triplet pairing concepts, originally introduced
for the case of multiorbital narrow-band systems [18–24], by
including the Hund’s rule coupling combined with intra-atomic
correlations within the orbitally degenerate Anderson lattice
model (ALM) and treat it within the statistically consistent
version of the renormalized mean-field theory (the statistically
consistent Gutzwiller approximation, SGA) [38–40]. In this
manner, we demonstrate, in quantitative terms, the applica-
bility of the concept of even-parity, spin-triplet pairing to
UGe2. Furthermore, we also provide a detailed analysis of
the two very narrow border regions, FM2-FM1 and FM1-PM,
in which a weak A2-type SC transforms to A1 and from
A1 to the practically marginal A phase, respectively, before
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SC disappears altogether (the notation of the SC phases is
analogous [41] to that used for superfluid 3He).

The present mechanism may be regarded as complementary
to the reciprocal-space pairing by long-wavelength quantum
spin fluctuations, which was very successful in explaining the
properties of the superfluid 3He [42,43]. The latter mechanism
was also applied to ferromagnets with magnetic-moment
fluctuations on both the weakly FM and PM sides [44,45].
Specifically, the role of their longitudinal component was em-
phasized. However, all those considerations have been limited
to a single-band situation, and therefore, SC is unavoidably of
p-wave character. The multiband structure, considered here,
allows for an even-parity SC state which can take the form of
an s wave.

II. MODEL AND METHOD

We start with doubly degenerate f states and assume a
two-dimensional structure of the compound [46,47]. Within
our model, the total number of electrons per formula unit
ntot ≡ nf + nc, with nf and nc being the f and conduction
(c) electron occupancies, must exceed that on the 5f level for
a U3+ ion [8,48,49], i.e., n > 3. The best comparison with
experiment is achieved here for ntot � 3.25. This presumption
brings into mind the idea of an orbitally selective delocalization
of one out of the three 5f electrons under pressure (see below).

Explicitly, we employ a four-orbital ALM defined by
the Hamiltonian (with the chemical potential term −μN̂e

included)
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(l)
jσ + V

∑
ilσ

(
f̂

(l)†
iσ ĉ
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involving two f orbitals (with creation operators f̂
(l)†
iσ , with

l = 1,2 at lattice site i and spin σ =↑ , ↓), hybridized with two
species of conduction electrons created by ĉ

(l)†
iσ (minimally, two

c bands are needed because, otherwise, one of the f orbitals
decouples and does not participate in the resultant quasiparticle
states [50]). Out of general hopping matrix tij we retain
nearest- and next-nearest-neighbor hoppings (t , t ′) and assume
a local character of f -c hybridization V . Correlations in the
f -electron sector are governed by intraorbital f -f repulsion
U , interorbital repulsion U ′, and Hund’s coupling J . Here n̂

f (l)
i

and Ŝf (l)
i denote the f -electron number and spin operators on

site i for orbital l, whereas N̂e is the total particle number.
Hereafter, we restrict ourselves to the case of U ′ = U − 2J ,
U/|t | = 3.5, and t ′/|t | = 0.25. The values of parameters have
been selected to reproduce correctly the observed values of
magnetic moments, the magnetic critical points [39], and the
maximal value of the SC transition temperature TSC � 1 K, all
at the same time. Also, we neglect the interorbital pair-hopping
term ∼J as it contributes only to the spin-singlet pairing
channel.

The SGA approach is based on optimization of the ground-
state energy within the class of wave functions with partially
projected out double-f -orbital occupancies and can be formu-
lated in terms of the effective one-body Hamiltonian
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∑
k,σ
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derived from the model of Eq. (1) (see Appendix A). In
Eq. (2) �

†
kσ ≡ (ĉ(1)†

kσ ,ĉ
(2)
−kσ ,f̂

(1)†
kσ ,f̂

(2)
−kσ ), εk denotes the bare

c-electron dispersion relation, εf
σ is an effective f level, �ff

σσ ≡
Vσ 〈f̂ (1)

iσ f̂
(2)
iσ 〉 is the f -f equal-spin SC gap parameter, Vσ ≡

−U ′g1σ + (J − U ′)g2σ denotes the effective pairing coupling,
and E0 is a constant. The renormalization factors qσ , g1σ , and
g2σ account for the correlation effects and originate from the
projection of the trial wave functions (see Appendix A for
explicit expressions).

The basic quantity determined from the diagonalization of
Heff (see Appendix A) is the quasiparticle gap �k. For wave
vectors lying on the Fermi surface of the normal state, one
obtains

�2
k = ε2

k(
εk + ε

f
σ

)2

(
�ff

σσ

)2 + o
[(

�ff
σσ

)2]
, (3)

so �k is expressed in terms �
ff
σσ and a weakly k dependent

factor. Therefore, in the remaining discussion we use the latter
gap, underlining in this manner the dominant role of the f -f
pairing.

The quantity particularly relevant to the present discussion
is the equal-spin coupling constant Vσ . If positive, this term
favors equal-spin-triplet SC. We also define the Hartree-Fock
(HF/BCS) coupling constant VHF = J − U ′, independent of
the spin direction. In the latter approximation the interatomic
interaction is attractive when J − U ′ = 3J − U > 0 (this con-
dition defines the BCS limit). One of the principal signatures
of correlation importance is that pairing persists even when the
coupling VHF becomes repulsive (VHF < 0), as shown below.
The conditions VHF < 0 and Vσ > 0 define the regime of
correlation-driven SC.

III. RESULTS

The complete phase diagram encompassing both the FM
and SC states for selection of Hund’s coupling J/|t | = 1.1
is shown in Fig. 1 (see Appendixes B and C for technical
aspects of the analysis). In Fig. 1(a) we illustrate the system
evolution from the large-moment FM2 phase through the
FM1 state with a magnetization plateau at ∼0.8μB (compared
to ∼1μB measured for UGe2 [3]) to the PM phase as the
hybridization magnitude |V | increases. Here changing |V |
mimics its pressure variation. Both the FM2 → FM1 and
FM1 → PM transitions are of the first order, as is observed for
UGe2 below the critical end point, although the FM2 → FM1
transition is of weak first order due to the proximity to the
quantum tricritical point [39] [see Fig. 1(d)]. Notably, our
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FIG. 1. Calculated zero-temperature phase diagram of UGe2 for
Hund’s coupling J/|t | = 1.1 versus f -c hybridization V . The remain-
ing parameters read t ′/|t | = 0.25, U/|t | = 3.5, εf /|t | = −4, and
ntot = 3.25. (a) Total magnetic moment mtot per formula unit (black
solid line) and the corresponding f and c electron magnetizations,
mf and mc (blue and red lines, respectively). mc represents a residual
Kondo compensating cloud. (b) Triplet f -f SC gap component
�

ff

↑↑ (purple shading) and �
ff

↓↓ (green shading). Three distinct SC
phases, A2, A1, and A, are marked. The A-phase gaps (∼10−9|t |)
are not visible. The inset shows experimental magnetization for
UGe2 [3] and the specific-heat jump at the SC transition temperature
TSC (normalized by TSC and the linear specific-heat coefficient γn)
[51]. (c) Effective coupling constant Vσ for spin-up (purple) and
spin-down (green) triplet pairing. Note that the value of coupling
is largest near the A2 → A1 transition. (d) Total magnetic moment
near the FM2 → FM1 metamagnetic transition. (e) and (f) SC gap
components near the FM2 → FM1 and FM1 → PM transition points,
respectively.

model also provides the value of magnetic moment m ∼ 1.6μB

in the FM2 phase, close to the experimental m ≈ 1.45μB [3].
The unique feature, inherent to the degenerate ALM and

the principal result of the present paper, is the emergence of
distinct even-parity spin-triplet SC phases around the magnetic
transition points, characterized by nonzero SC gap parameters
�

ff
σσ ≡ Vσ 〈f̂ (1)

iσ f̂
(2)
iσ 〉0, as depicted in Fig. 1(b). The A1-type

SC (i.e., the majority-spin gap �
ff

↑↑ = 0 and �
ff

↓↓ = 0) sets
in inside the FM1 phase and transforms to either the A2

phase (�ff

↓↓ > �
ff

↑↑ = 0) at the FM2-FM1 border or to the
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FIG. 2. Spin- and orbital-resolved density of states for J/|t | =
1.1 in the (a) FM2 (V/t = 1.1), (b) FM1 (V/t = 1.625), and (c) PM
(V/t = 3.25) phases. Orbital contributions are marked in blue and
red, whereas the total density of states is plotted by the black solid
line. Dirac δ functions have been smeared out by ε = 10−3|t | for
numerical purposes.

A state (�ff

↑↑ = �
ff

↓↓ = 0) close to the FM1 → PM transition
point. The latter two states appear in very narrow regions,
as illustrated in Figs. 1(e) and 1(f). The A2-phase gap is,
by an order of magnitude, smaller than its A1 counterpart,
whereas the A-phase gap is, by four orders of magnitude,
even smaller. Hence, one can safely say that the A1 phase is
so far the only one observable for UGe2; the A2 state could
be detectable in applied magnetic field [52]. Note also that
the pairing potential V↓ is maximal near the corresponding
metamagnetic transition [see Fig. 1(c)]. Remarkably, this
situation appears without any additional spin-fluctuation effect
involved, which distinguishes the present mechanism from
those invoked previously for the U compounds [13–15]. In the
inset of Fig. 1(b), we plot the specific-heat discontinuity (the
shaded area) and the related magnetization jumps observed
experimentally. The peaks identify the regime of bulk SC;
these sharp features are reproduced by our calculation [see
Fig. 1(b)] and should be contrasted with the first resistivity
data [1]. Note also that we obtain small, but clear, SC gap
discontinuities at both the A2 → A1 and A1 → A transitions
[see Fig. 1(e) and 1(f), respectively]. We emphasize that all
the singularities are physically meaningful and well within the
numerical accuracy (error bars are shown explicitly for the A

phase with the smallest gap magnitude).
The nature of the FM2 and FM1 phases can be understood

by inspecting the corresponding spin- and orbital-resolved
densities of states shown in Fig. 2. In the FM2 state [Fig. 2(a)]
f electrons are close to localization and well below the Fermi
energy εF as they carry out nearly saturated magnetic moments,
whereas in the FM1 phase [Fig. 2(b)] εF is placed in the
region of spin-down electrons, stabilizing the magnetization
plateau (and illustrating the half-metallic character); hence,
only �

ff

↓↓ = 0. A similar evolution of magnetism was observed
previously for the orbitally nondegenerate model [38–40].
Figure 2(c) illustrates the paramagnetic behavior.

Next, we discuss the fundamental role of the effective
pairing potential. Explicitly, in Fig. 3(a) we plot renormalized
and bare coupling constants as a function of J for V/t =
1.32. The dominant component V↓ remains positive down
to J/|t | ≈ 0.76, whereas the HF/BCS coupling changes sign
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FIG. 3. (a) Dependence ofVσ on the Hund’s coupling J for V/t =
1.32 (solid blue and dashed red lines). For comparison, the value
of the Hartree-Fock (HF/BCS) coupling constant VHF is also shown
by the green dash-dotted line. Black dashed vertical lines split the
plot into three regions: non-SC, correlation-driven (where SC is not
supported at the HF/BCS level yet appears due to correlation effects),
and BCS (where the SC phase emerges in the HF/BCS approximation)
regimes. Note that the value J/|t | = 1.1, considered above, falls into
the correlation-driven regime. (b) Hybridization dependence of the SC
gap component �

ff

↓↓ for various J near the FM2 → FM1 transition.
Values of J/|t | (from top to bottom) are 1.4, 1.35, 1.3, 1.25, 1.2, 1.15,
and 1.1. (c) Scaling of �

ff

↓↓ with the dimensionless effective coupling
ρεF

V↓. Here ρεF
denotes the total density of states per f orbital per

spin, evaluated at the Fermi energy in the normal phase. The gap
follows renormalized BCS scaling�

ff

↓↓ ∝ V↓ × exp[−(ρεF
V↓)−1]. (d)

The same as in (c), but with HF/BCS coupling VHF used instead of V↓.
Breakdown of BCS scaling implies the relevance of the correlation-
driven coupling renormalization.

already for J/|t | = 3.5/3 ≈ 1.17. Electronic correlations are
thus the crucial factor stabilizing the triplet SC close to the
FM2-FM1 boundary. Figure 3(b) shows the dominant gap
component for selected values of J . The gap increases very
rapidly with the increasing Hund’s rule coupling, as detailed
in Fig. 3(c), where we plot the logarithm of the normalized gap
ln(�ff

↓↓/V↓) vs (ρεF
V↓)−1 for fixed hybridization V/t = 1.32,

which corresponds to the A1 phase (ρεF
is the total density

of states per f orbital per spin at εF ). A good linear scaling
is observed with the coefficient ≈−1.08, not too far from
the BCS value of −1. The binding of f electrons into local
triplet pairs is provided partly by the Hund’s rule exchange that
yields the HF/BCS potential VHF = 3J − U . Figure 3(d) is the
same as Fig. 3(c), but VHF has been taken in place of Vσ . The
breakdown of the scaling implies a significant effect of local
correlations on the Hund’s-rule-induced pairing. The relevance
of the local Coulomb interactions combined with the Hund’s
rule physics can also be seen by comparing the contributions
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FIG. 4. Comparison of the intraorbital Coulomb and Hund’s rule
coupling contributions to the total system energy as a function of the
hybridization magnitude V/t . These two quantities are defined as
2U〈n̂f (1)

i↑ n̂
f (1)
i↓ 〉

G
and 2J 〈(Ŝf (1)

i · Ŝf (2)
i + 1

4 n̂
f (1)
i n̂

f (2)
i )〉

G
, respectively.

The two energies are comparable near the FM2 → FM1 borderline,
which is hence called the Hund’s metal regime (see the main text).

of the intraorbital Coulomb repulsion and interorbital Hund’s
rule coupling to the total ground-state energy (Fig. 4). Close
to the metamagnetic FM2 → FM1 transition, where the SC
amplitude is the largest, those two scales are comparable and
of the order of the kinetic term |t |. This places the system in
the correlated Hund’s metal regime, previously coined in the
context of Fe-based SC [53].

IV. DISCUSSION AND CONCLUSIONS

To underline the quantitative aspect of our analysis of the
SC phase we have determined the temperature dependence
of the gap in the combined FM1 + A1 state for J/|t | = 1.1
and V/t = 1.3, i.e., near the gap-maximum point depicted in
Fig. 1(b). Selecting the value of |t | = 0.5 eV, we obtained the
SC critical temperature TSC ≈ 0.92 K (see Appendix D), very
close to the experimental value TSC ∼ 0.75 K in the highest-
quality samples [54]. Note that for J � 1.17|t | we do not
expect any SC in the HF/BCS approximation. It is gratifying
that the value of J = 1.1|t | = 0.55 eV can lead to such a subtle
SC temperature scale TSC < 1 K in the situation where the FM
transition temperature Tc is larger by two orders of magnitude
or even higher. Equally important is the obtained value of
the specific-heat jump �C/(γnTSC) � 1.44 (see Fig. 8), i.e.,
very close to the BCS value of 1.43. Parenthetically, this is
not too far from experimental �C/(γn − γ0)/TSC � 0.97 for
a pressure of 1.22 GPa [51] (corresponding closely to our
choice of parameters) if we subtract the residual Sommerfeld
coefficient γ0.

The U3+ ionic configuration is 5f 3. Some experimental
evidence points to the value close to U4+ (5f 2) [8,48]. Here
the good values of magnetic moments in both the FM2 and FM1
phases were obtained for the approximate 5f 2 configuration
and nc ≈ 1.25 conduction electrons, as shown in Fig. 5(a).
Namely, the results in Fig. 5(b) point clearly to the valuenf ≈ 2
in the FM2 phase, and it diminishes almost linearly in the FM1
state. Such a behavior explains that the two f electrons are
practically localized in the FM2 phase, and therefore, no SC
state induced by the Hund’s rule and f -f correlations can be
expected. On the other hand, the correlations are weaker on

224519-4



SPIN-TRIPLET PAIRED PHASES INSIDE A … PHYSICAL REVIEW B 97, 224519 (2018)

FIG. 5. (a) Occupancies of the f and c orbitals as a function of
hybridization. (b) Close-up of the FM2 → FM1 transition.

the PM side due to substantially larger hybridization, and once
again, SC disappears. These results suggest that here the third
f electron may have become selectively itinerant and thus is
weakly correlated with the remaining two. It is tempting to ask
about its connection to the residual value of γ0 at T → 0 and
to m0 for T > Tc.

In summary, our theoretical phase diagram reproduces
the fundamental features observed experimentally in a semi-
quantitative manner. Within the doubly degenerate Anderson
lattice model in the statistically consistent renormalized mean-
field approximation (SGA), we have analyzed in detail the
coexisting FM1 and spin-triplet A1 SC phase, keeping in mind
the experimental results for UGe2. We also obtained indirect
evidence for an orbital-selective Mott-type delocalization of
one of the 5f electrons at low temperature, which may be
followed by its gradual localization in the high-temperature
(Curie-Weiss) regime, leading to the U3+ magnetic configu-
ration as exhibited by static magnetic susceptibility. Further
specific material properties of UGe2 and related systems can
be drawn by incorporating the angular dependence of the
hybridization, more realistic multiorbital structure, and the
third dimension.

It would be interesting to incorporate, renormalized in
this situation, quantum spin fluctuations into our SGA
(renormalized-mean-field-theory-type picture). Such an ap-
proach would start from the effective Landau functional for
fermions F (see Appendix A) and the subsequent derivation
of the corresponding functional involving magnetic-moment
fluctuations as an intermediate step, which would allow us to
include their contribution to the resultant free energy. Such a
step, if executed successfully, would represent a decisive step
beyond either the spin-fluctuation or the real-space-correlation
approach. We should be able to see progress along these lines
in the near future.
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APPENDIX A: STATISTICALLY CONSISTENT
GUTZWILLER APPROXIMATION

Here we present technical details of the statistically consis-
tent Gutzwiller approximation (SGA), as applied to the four-
orbital model discussed in the main text. At zero temperature,

this variational technique reduces to the problem of minimiz-
ing the energy functional EG = 〈�G|H|�G〉/〈�G|�G〉 with
respect to the trial state |�G〉 = PG|�0〉 for fixed electron
density. |�0〉 is an (a priori unknown) wave function describing
the Fermi sea of free quasiparticles, whereas P̂G = ∏

il P̂
(l)
Gi

denotes the Gutzwiller correlator [55]. Local correlators P̂
(l)
Gi =∑

α λα|lα〉i i〈lα| adjust the weights of configurations α ∈
{∅,↑,↓,↑↓} on each f orbital (indexed by l) at site i by means
of coefficients λα multiplying projection operators |lα〉i i〈lα|.
This is not the most general form of P̂G [56], but general-
ization makes the results less transparent and leads only to
minor numerical corrections which may be safely disregarded.
Evaluation of the expectation values with the correlated wave
function is a nontrivial many-body problem. The latter can be
substantially simplified by setting up a formal expansion about
the limit of infinite lattice coordination, which is achieved
by imposing the constraint (P̂ (l)

Gi )
2 ≡ 1 + x�σ (n̂f (l)

iσ − n
f (l)
σ )

[57], so that all λα are now expressed in terms of a single
variational parameter, x (we have introduced the notation O ≡
〈Ô〉0 ≡ 〈�0|Ô|�0〉 for the general operator Ô). This approach
was discussed in detail previously for the orbitally degenerate
Hubbard and nondegenerate Anderson models [22,23,38,40].

We now focus on the four-orbital model, discussed in the
main text, and calculate EG by means of the Wick theorem, al-
lowing for nonzero equal-spin pairing amplitudes 〈f̂ (1)

iσ f̂
(2)
iσ 〉0,

orienting the magnetization direction along the z axis, and
resorting to the Gutzwiller approximation by discarding the
contributions irrelevant for infinite lattice coordination. In
effect, we obtain

EG �
∑
ij lσ

tij
〈
ĉ

(l)†
iσ ĉ

(l)
jσ

〉
0 + V

∑
ilσ

qσ

(〈
f̂

(l)†
iσ ĉ

(l)
iσ

〉
0 + c.c.

)

+
∑
iσ

[U ′g1σ + (U ′ − J )g2σ ]
∣∣〈f̂ (1)

iσ f̂
(2)
iσ

〉
0

∣∣2

+
∑

i

[
−2JS

zf (1)
i S

zf (2)
i +

(
U ′ − J

2

)
n

f (1)
i n

f (2)
i

]

+ εf
∑
il

n
f (l)
i + U

∑
il

λ2
↑↓n

f (l)
i↑ n

f (l)
i↓ , (A1)

where the renormalization factors are defined as

qσ = λ∅λσ + (λ↑↓λσ̄ − λ∅λσ )nf (l)
σ̄ ,

g1σ = 2
(
λ2

↑↓ − λ2
σ̄

)[
λ2

σ + (
λ2

↑↓ − λ2
σ

)
n

f (l)
σ̄

]
n

f (l)
σ̄ , (A2)

g2σ = (
λ2

↑↓ − λ2
σ̄

)2(
n

f (l)
σ̄

)2 + [
λ2

σ + (
λ2

↑↓ − λ2
σ

)
n

f (l)
σ̄

]2
.

The SGA method maps the original many-body problem
onto the task of calculating an effective Landau functionalF =
−β−1 ln Tr exp(−βHeff ) evaluated with the effective one-body
Hamiltonian Heff = EG({Pγ ,x}) − μNe + ∑

γ λγ (P̂γ − Pγ ),
where Ne is the total number of electrons in the system, γ

runs over bilinear P̂γ composed of creation and annihilation
operators, and λγ are Lagrange multipliers ensuring that
Pγ obtained from optimization of F and the Bogolubov–
de Gennes equations coincide. The values of parameters
are determined from the equations ∂Pγ

F = 0, ∂xF = 0, and
∂λγ

F = 0. Additionally, the value of the chemical potential μ
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is fixed by electron density. Note that the original variational
problem is well posed at T = 0, whereas the SGA formulation
is applicable also for T > 0. One can argue (for the general
coordination number) that for T → 0 optimization of F with
Heff yields the variational minimum of EG within the improved
Gutzwiller approximation [31], whereas for T > 0 it reflects
the thermodynamics of projected quasiparticles [58].

The explicit form of the effective Hamiltonian reads

Heff =
∑
k,σ

�
†
kσ

⎛
⎜⎜⎝

εk 0 qσV 0
0 −εk 0 −qσ V

qσV 0 ε
f
σ �

ff
σσ

0 −qσ V �
ff
σσ −ε

f
σ

⎞
⎟⎟⎠�kσ + E0,

(A3)

where �
†
kσ = (ĉ(1)†

kσ ,ĉ
(2)
−kσ ,f̂

(1)†
kσ ,f̂

(2)
−kσ ), εk = 2t[cos(kx) +

cos(ky)] + 4t ′ cos(kx) cos(ky) − μ is the conduction band
dispersion,

�ff
σσ = [g1σU ′ + g2σ (U ′ − J )]

〈
f̂

(1)
iσ f̂

(2)
iσ

〉
0 (A4)

denotes the f -f superconducting gap parameter,

εf
σ = ∂EG

∂n
f (1)
iσ

= εf + Uλ2
↑↓n

f (1)
iσ̄ + (U ′ − J )nf (2)

iσ + U ′nf (2)
iσ̄

+
(

∂qσ̄

∂n
f (1)
iσ

V
∑

l

〈
f̂

(l)†
iσ̄ ĉ

(l)
iσ̄

〉
0 + c.c.

)

+
(

∂g1σ̄

∂n
f (1)
iσ

U ′ + ∂g2σ̄

∂n
f (1)
iσ

(U ′ − J )

)∣∣〈f̂ (1)
iσ̄ f̂

(2)
iσ̄

〉
0

∣∣2 − μ

(A5)

is the renormalized f -orbital energy, and E0 ≡ EG({Pγ ,x}) −
μNe − ∑

γ λγ Pγ is a remainder proportional to unity. Note
that the entries forHeff have been obtained from one condition,
∂Pγ

F = 0, and are given in an explicit form.
Since the effective Hamiltonian (A3) can be diagonalized

analytically, with the eigenvalues

E
(λ)
kσ = ±

√
q2

σV 2 + 1

2

[(
�

ff
σσ

)2 + (
ε

f
σ

)2 + ε2
k

] ± 1

2

√[(
�

ff
σσ

)2 + (
ε

f
σ

)2 − ε2
k

]2 + 4q2
σ V 2

[(
�

ff
σσ

)2 + (
εk + ε

f
σ

)2]
, (A6)

one can express the gap �k in the projected quasiparticle
spectrum in terms of the gap parameter �

ff
σσ . We get the

formula

�2
k = ε2

k(
εk + ε

f
σ

)2

(
�ff

σσ

)2 + o
[(

�ff
σσ

)2]
, (A7)

valid for wave vectors located on the Fermi surface calculated
in the normal state. Note that the gap is expressed solely in
terms of the f -f pairing amplitude (even though f -c and c-c
amplitudes are, in general, nonzero due to the hybridization
effects) and scaled by the k-dependent factor. This justifies
using �

ff
σσ as the quantity characterizing the overall SC

properties of the system.

APPENDIX B: NUMERICAL PROCEDURE

The system of equations ∂Pγ
F = 0, ∂xF = 0, and ∂λγ

F =
0 has been solved by means of GNU Scientific Library.
Numerical accuracy for the dimensionless density matrix
elements was chosen in the range 10−8–10−9, depending on the
model parameters. We work in the thermodynamic limit with
number of lattice sites N → ∞ by performing Brillouin-zone
integration in all equations. Technically, keeping N finite but
large speeds up the calculations in a highly parallel setup.
However, the calculated superconducting gap parameters range
from ∼10−4|t | down to ∼10−9|t |, which raises the question
of the impact of the finite-size effects on the SC state. We
can estimate the latter by referring to the Anderson criterion
[59] �

ff
σσ ∼ d, where d ∼ W/N is the typical spacing between

discrete energy levels (W approximately equal to several |t |
denotes bandwidth scale, and N is the number of lattice sites).
To achieve the desired accuracy, one would thus need to
consider lattices with >1010 sites. This rationalizes our choice

to use adaptive integration and work directly with an infinite
system.

The convergence properties of our computational scheme
for the parameters corresponding to the A, A1, and A2 phases
are summarized in Figs. 6(a)–6(c). Only the SC amplitudes are
displayed (connected points); the dashed lines mark the target
numerical accuracy set in our code (note that the accuracy
varies at the initial stage of the procedure due to drift of the
renormalization factors). In each case, we performed a few
warm-up iterations with imposed nonzero values of the SC
gap parameters, symmetry-breaking external magnetic field,
and finite temperature. This initial phase is seen in Fig. 6
as a plateau for fewer than ten iterations. Subsequently, the
auxiliary fields were turned off, and the system was allowed
to relax. For the A phase (zero total magnetization and �

ff

↑↑ =
�

ff

↓↓) and for the smallest gap amplitudes, we have executed
the iterative procedure in different setups multiple times to
verify the solutions. Two runs are marked in Fig. 6(a) by
blue and green. In Figs. 6(b) and 6(c) green and purple lines
show (now inequivalent) spin-down and spin-up amplitudes
for the A1 and A2 phases. The S-shaped iteration dependence
of �

ff

↑↑ in Fig. 6(b) may be attributed to the proximity to
the first-order FM2 + A2 → FM1 + A1 transition. The initial
upturn of �

ff

↑↑ is reminiscent of the behavior observed for the
A2 state [see Fig. 6(c)]. After the 25th iteration, however, the
system switches to another attractor, and �

ff

↑↑ is exponentially
suppressed to quickly attain the numerical zero (A1 phase).

APPENDIX C: DETERMINATION OF THE
PHASE DIAGRAM

In Fig. 7(a) we plot the energies of the FM2 + A2

and FM1 + A1 phases near the metamagnetic transition for
J/|t | = 1.1, U/|t | = 3.5, t ′/|t | = 0.25, and εf /|t | = −4 (the
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FIG. 6. Convergence properties of the solutions for the A, A1,
and A2 SC phases as a function of the iteration number. The values
of hybridization are (a) V/t ≈ 3.0982 (PM + A phase), (b) V/t ≈
1.264 (FM1 + A1 phase just above the FM2 + A2 → FM1 + A1

transition), and (c) V/t ≈ 1.254 (FM2 + A2 phase just below the
FM2 + A2 → FM1 + A1 transition). The remaining parameters are
the same as in the main text. (a) shows two independent runs for the
equivalent �ff

↑↑ = �
ff

↓↓ gap components. (b) and (c) The single run for
two (inequivalent) gap parameters. The horizontal dashed lines mark
the numerical accuracy.

same parameters used to plot Fig. 1). The solid lines are
quadratic fits to the data in the respective phases. The phase-
transition point VPT corresponds to the crossing of the lines
(marked by the vertical dashed lines). Note that the lines
cross at a nonzero angle, which is indicative of the first-order
transition. Similarly, in Fig. 7(b) the energies near the FM1 +
A1 and PM + A phase boundary are shown. In Figs. 7(c) and
7(d) we plot the difference between extrapolated energies on

FIG. 7. Crossing of the energies near (a) FM2 + A2 → FM1 +
A1 and (b) FM1 + A1 → PM + A transition for U/|t | = 3.5. (c) and
(d) The energy differences �E between extrapolated energies on both
sides of the respective phase transitions. The latter become zero at the
transition point, denoted as VPT, and are displayed in the plot. Model
parameters coincide with those used in Fig. 1.

TABLE I. Variational ground-state energies for U/|t | = 3.5 and
V/t = 1.32, t ′/|t | = 0.25, εf /|t | = −4, ntot = 3.25, and selected
values of Hund’s coupling J . Here EFM1 is the energy of the FM1
phase with SC suppressed, and EFM1+A1 refers to the FM1 phase
coexisting with the A1-type SC. The condensation energy Ec ≡
EFM1 − EFM1+A1 is also supplied. The numerical accuracy of the
energy difference is of the order of 2 × 10−8.

J/|t | EFM1/|t | EFM1+A1/|t | 104 × Ec/|t |
1.10 −11.663 459 37 −11.663 459 39 0.0003
1.15 −11.796 917 55 −11.796 917 77 0.0022
1.20 −11.934 039 49 −11.934 041 79 0.0230
1.25 −12.074 935 82 −12.074 951 80 0.1598
1.30 −12.219 724 82 −12.219 802 79 0.7797
1.35 −12.368 534 05 −12.368 822 15 2.8810
1.40 −12.521 501 70 −12.522 354 69 8.5299

both sides of the transitions. The difference becomes zero at
the transition point.

For the sake of completeness, in Table I we present
the analysis of A1-type SC phase stability for U/|t | = 3.5,
V/t = 1.32, t ′/|t | = 0.25, εf /|t | = −4, and variable Hund’s
coupling J/|t | = 1.1–1.4. Here EFM1 is the energy of the FM1
phase with SC suppressed, and EFM1+A1 refers to the FM1
phase coexisting with A1-type SC. The condensation energy
Ec ≡ EFM1 − EFM1+A1 is positive for all considered values of
hybridization, which illustrates the stable character of the SC
state.

APPENDIX D: NONZERO-TEMPERATURE PROPERTIES

Within the SGA approach, one can also determine the
finite-temperature properties of the system. In Fig. 8 we show
explicitly the evolution of the gap parameter�ff

↓↓ and electronic
specific heat across the SC transition for U/|t | = 3.5, J/|t | =
1.1, V/t = 1.3, t ′/|t | = 0.25, and εf = −4. For this set of
parameters the system is close to the FM2 → FM1 transition,
where SC is the most pronounced (see Fig. 1). For the specific
choice |t | = 0.5 eV we obtain the SC transition temperature
TSC � 0.92 K, which is close to the values measured for
high-quality UGe2 samples. On the other hand, we do not

FIG. 8. Temperature dependence of (a) the gap parameter �
ff

↓↓
and (b) electronic specific heat for U/|t | = 3.5, J/|t | = 1.1, V/t =
1.3, εf /|t | = −4, t ′/|t | = 0.25, and ntot = 3.25.
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FIG. 9. Phase diagram for U/|t | = 4, J/|t | = 1.6, t ′/|t | = 0.25,
temperature T/|t | = 10−8, and ntot = 3.25. (a) Total magnetic mo-
ment (black line) and f - and c-electron magnetizations (blue and red
lines, respectively). (b) Superconducting gap parameters �

ff

↓↓ (green

shading) and �
ff

↑↑ (purple shading).

get the residual C/T for T → 0 as observed for UGe2. This
is likely due to the more complex electronic structure, not
included in the minimal four-orbital model considered here,
e.g., by the third 5f electron, which provides the orbital-
selective delocalized state, as discussed in the main text. This
conjecture is substantiated by the fact that if we subtract the

residual γ0 from the measured Sommerfeld coefficient γn, then
�C/(γn − γ0)/TSC � 0.97 [51], i.e., not too far from the value
displayed in Fig. 8(b), which, in turn, is close to the BCS value
of 1.43. [60]

APPENDIX E: PHASE DIAGRAM IN THE REGIME OF
LARGE HUND’S COUPLING

For the parameters taken in the main text, the A-phase gaps
turn out to be of the order of �

ff
σσ /|t | ∼ 10−9, which sets the

critical temperature scale at the level of 0.01 mK for |t | ∼ 1 eV.
This raises a question about, limited to special situations, the
observability of the A state. Here we show that the A phase
may become substantially enhanced in the regime of strong
correlations and large Hund’s coupling. In Fig. 9 we show the
hybridization dependence of the magnetization and SC gaps
for U/|t | = 4, J/|t | = 1.6, t ′/|t | = 0.25, εf /|t | = −4, and
temperature T/|t | = 10−8. The general structure of the phase
diagram remains unchanged, but the ratio of the gap parameters
in the A and A1 phases is now enhanced by five orders of
magnitude relative to the situation considered previously in
the UGe2 case. However, this last feature suggests that an
A-like phase could emerge in systems more strongly correlated
than UGe2. Also, now the A1 phase is not concentrated in a
narrow region around the metamagnetic transition but spreads
over the entire FM1 region of the phase diagram. This is not
consistent with the low-temperature specific-heat data [51]
for UGe2 exhibiting a narrow peak around the FM2 → FM1
transition. This fact justified our choice of smaller U/|t | = 3.5
and J/|t | = 1.1.
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