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Josephson currents in chaotic quantum dots
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We study theoretically the Josephson current-phase relationship in a chaotic quantum dot coupled to
superconductors by ballistic contacts. In this regime, strong proximity effect induces superconductivity in the
quantum dot that leads to a significant modification in the electron density of states and formation of multiple
subgaps. The magnitude of the resulting supercurrent depends on the phase difference of the superconducting
order parameter in the leads and shows strongly anharmonic skewed behavior. We find that when the Thouless
energy on the dot exceeds the superconducting energy gap, the second harmonic of the supercurrent becomes
comparable in magnitude to the first harmonic. To address these effects on the technical level, we use the nonlinear
σ -model Keldysh formalism in the framework of the circuit theory to compute dependence of the density of states,
Josephson energy, and current on the superconducting phases in the leads. We analyze how these quantities change
as a function of the Thouless energy and the superconducting gap. Finally, we briefly discuss subgap tail states,
mesoscopic supercurrent fluctuations, weak localization correction, and also touch on anharmonicity of gatemon
qubits with quantum dot Josephson junctions.
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I. INTRODUCTION

The most profound fundamental properties and practical
applications of superconductors are associated with their
behavior in the presence of spatial inhomogeneities on a
mesoscopic scale. One example is given by the Josephson
effect, which requires a normal or insulating barrier between
two superconducting terminals [1,2]. Among different possible
kinds of Josephson weak links, the superconductor-normal
metal-superconductor (SNS) junction is perhaps the most
comprehensively studied system which reveals incredibly rich
physics [3,4]. A particular model in this context is that of a
chaotic cavity quantum dot (QD) where a piece of metallic
grain is connected to the superconductors by means of point
contacts that dominate the resistance of the structure in the
normal state. It is well understood that the superconducting
proximity effect in such a structure is governed by the processes
of Andreev reflections of the normal electrons from the two
NS boundaries. An elegant way to describe this physics in
technical terms is by means of random matrix and scattering
matrix circuit theories [5,6]. In this language one is able
to relate the properties of the same structure in the normal
and superconducting states, while circumventing the need for
microscopic description of the structure in either of the two
states. For that reason certain universal aspects of the proximity
effect related to the single-particle density of states (DOS) and
the Josephson current-phase relationship (CPR) are known for
such mesoscopic structures [5–8].

A. Overview

In general, the properties of the S-QD-S junction are
determined by the types of contacts, and also by the rela-
tionship between the superconducting energy gap � and the
Thouless energy ETh = GT δ/GQ. Here δ denotes the mean
level spacing of the normal metal grain and GT � GQ is

the total conductance of the structure which is assumed to be
large compared to the conductance quantum GQ = 2e2/h. For
simplicity we will discuss only the case of symmetric junctions
both in terms of superconducting leads with identical energy
gaps and properties of contacts.

In the case of a large grain, ETh � �, superconducting
proximity effect is known to induce a minigap in the spectrum
of the normal region [9]. Up to a numerical coefficient of
the order of unity this gap is of the order of Thouless energy
Eg1 � ETh [10]. At energies just above that gap, E − Eg1 �
Eg1, the single-particle density of states ν(E) has a universal
square-root singularity ν(E) ∝ √

E/Eg1 − 1 [11,12]. At finite
superconducting phase difference φ across the junction this gap
feature closes at φ = π in accordance with the approximate
formula Eg1 � ETh| cos(φ/2)|. At low temperatures, T �
ETh, the resulting Josephson current as carried by Andreev
subgap states is almost perfectly harmonic [13]:

I (φ) = GT ETh

e
sin(φ) ln

(
2�/ETh

|cos(φ/2)|
)

, (1)

with weak logarithmic nonanalyticity stemming from the mini-
gap feature. This formula remains valid even in the intermedi-
ate temperature regime ETh � T � �, with the only change
that Thouless energy under the logarithm should be replaced
by the temperature T . This anomalously weak temperature
dependence should be contrasted to conventional long SNS
Josephson junctions, where raising the temperature above the
excitation gap typically leads to an exponential suppression
of the supercurrent I (φ) � (GT T/e) sin(φ)f (T/ETh) with
f (z) = √

ze−√
z for z � 1 [14,15].

In the opposite limit, ETh � �, when superconducting
proximity effect on the grain is strong and the induced
spectral gap in the density of states reaches the value of �,
Josephson current was studied for several different models of
NS interfaces. (i) In the case of dirty tunneling barriers the
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FIG. 1. Josephson current-phase relationships of various SNS
junctions. Current is normalized in the units of I0 = GT �/e. The low-
est in magnitude dotted line represents Eq. (1) plotted at ETh = �. The
middle three solid lines correspond to Eqs. (2)–(4). The dashed lines
serve as a reference to the conventional sinusoidal CPR of the tunnel
junction as given by the Ambegaokar-Baratoff formula [18] I (φ) =
(πGT �/2e) sin(φ) (lower dashed curve), and CPR of the fully
ballistic constriction with I (φ) = (πGT �/e) sin(φ/2)sgn[cos(φ/2)]
(uppermost dashed curve), which is known as Kulik-Omelyanchuk
formula [17].

zero-temperature Josephson CPR is found to be [13,16]

I (φ) = GT �

e
sin(φ)K[sin(φ/2)], (2)

where K(x) is the full elliptic integral of the first kind. The
maximal critical current Ic � 1.92GT �/e is achieved at the
phase difference of φc � 1.18(π/2). (ii) In the case of disor-
dered point contacts the supercurrent should be averaged over
the distribution of transmission eigenvalues of the junction.
This yields the Josephson current in the form [7,17,19]

I (φ) = πGT �

e
cos(φ/2) arctanh[sin(φ/2)], (3)

with only slightly higher critical current Ic � 2.07GT �/e. (iii)
In a chaotic cavity Josephson junction with identical ballistic
contacts the supercurrents differ from Eq. (3) because the
distribution of transmission eigenvalues is different. One finds
corresponding CPR in the form [13]

I (φ) = 4GT �

e
cot(φ/2){K[sin(φ/2)] − E[sin(φ/2)]}, (4)

where E(x) is the complete elliptic integral of the second kind.
All these types of Josephson junctions support parametrically
the same critical current and their corresponding CPRs are
plotted in Fig. 1 for the illustration. It is worth mentioning that
Eqs. (1)–(3) were originally derived based on the semiclassical
theory of superconductivity from the Usadel equations; see
review [4] for the detailed discussion and references therein.

B. Motivation

It should be noted that Josephson currents as given by
Eqs. (2)–(4) were essentially calculated in the quantum point
contact limit of the junction, namely �/ETh → 0. Naively
one would expect that retaining �/ETh as a small, yet

finite, parameter would not change these results considerably
and give only subleading corrections to the current. This is
indeed the case for the magnitude of the critical current,
which acquires a correction δIc/Ic � −(�/ETh) ln(ETh/�)
[20]. There exists, however, a much more subtle effect that
so far has received only very limited attention. Indeed, at
finite ETh the density of states in the metallic grain exhibits
a nontrivial nonmonotonic behavior [21]. Remarkably, there
exists a secondary gap Eg2 that opens near the upper edge of
the subgap spectrum close to � provided that Thouless energy
is bigger than a certain threshold [22–24]. This double-gap
feature in the proximity-induced DOS leads to a redistribution
of the spectral current as carried by subgap Andreev states and
ultimately renders the change in the shape of the Josephson
CPR. We find a substantial skewed bending of the current at
phases φ < π/2 and a steeper fall-off of the current near the
gap closing φ → π .

Josephson junctions are being used as inductive elements
for qubits. This motivated us to perform a detailed under-
standing of their CPRs, which is crucial in modeling of qubit
nonlinearity. In light of the recent nanofabrication advances
and development of gatemon qubits [25–27] we focus our
study on quantum dot Josephson junctions with multimode
transparent interfaces. Coincidently, in this regime the effect
of the secondary gap is the most pronounced. We also briefly
discuss possible implications of our results for π -periodic
Josephson circuits that support coherent transport of pairs of
Cooper pairs (the “4e” transport) and enable realization of
protected qubits in rhombi chains [28,29].

II. FORMALISM

We consider the normal diffusive grain/chaotic quantum dot
with mean level spacing δ connected to two superconducting
leads by quantum point contacts. We assume that the left
(right) contacts are symmetric and have a large number of
channels, N1(2) � 1. We use the zero-dimensional version of
the nonlinear σ model to describe this system [30,31]. The
corresponding Keldysh action reads

S = −1

2

∑
k=1,2

Nk Tr ln

(
1 + Tk

4
({Ĝk,Ĝ} − 2)

)

+ iδ−1 Tr(Eτ̂3Ĝ). (5)

The QD is described by the Green’s function Ĝ which is a 4×4
matrix in the combined Keldysh and Nambu representation.
We use two sets of Pauli matrices σ̂ and τ̂ to distinguish these
spaces, respectively. The symbol of trace Tr(· · · ) implies all
matrix summations and energy integration, while curly brack-
ets {Ĝk,Ĝ} under the trace denote matrix anticommutator. The
action is nonlinear because of the constraint Ĝ2 = 1. The first
two terms in the sum of Eq. (5) represent coupling of the dot to
the leads. The two superconducting reservoirs are assumed to
have the same energy gap � and symmetric phase bias ±φ/2,
so that the corresponding retarded/advanced Green’s functions
read

Ĝ
R/A

1,2 = c
R/A

E τ̂3 + is
R/A

E [τ̂1 cos(φ/2) ± τ̂2 sin(φ/2)], (6)
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where

c
R/A

E = −iE√
�2 − (E ± i0)2

, s
R/A

E = �√
�2 − (E ± i0)2

(7)

for E < �. To find the Green function Ĝ inside the grain one
should solve the matrix saddle point equation for the action
(5) which is given by the following commutator [Q̂,Ĝ] = 0,
where Q̂ = Ĵ1 + Ĵ2 − iδ−1Eτ̂3 and

Ĵk = NkTk

4 + Tk({Ĝk,Ĝ} − 2)
Ĝk. (8)

In this language, the single-particle density of states is given
by ν(E,φ) = (ν0/2)Re[tr(τ̂3Ĝ)], where ν0 is the density of
states in the normal state and tr(· · · ) is the matrix trace
without energy integration, whereas the current is given by
I (φ) = (e/2h̄) Tr(τ̂3σ̂3[Ĵk,Ĝ]). The theory defined by the ac-
tion in Eq. (5) is equivalent to a more standard Keldysh-
Green function formalism of Usadel equations commonly
used in applications to SNS interferometers and double-barrier
Josephson junctions [32,33].

This formulation of the theory enables one to reproduce
all the known special cases of Josephson junctions that we
mentioned above. Indeed, the model of weakly transparent
tunneling contacts follows from Eq. (5) by expanding the action
at small transmissions Tk � 1 and retaining only the linear
term. Furthermore, neglecting the proximity effect on the
normal region, thus replacing {Ĝk,Ĝ} → {Ĝ1,Ĝ2}, one recov-
ers the limit of superconductor-insulator-superconductor (SIS)
junction with CPR I (φ) = (πGT �/2e) sin(φ) tanh(�/2T ) as
originally derived by Ambegaokar and Baratoff within the
tunneling Hamiltonian approach [18]. At temperatures close
to the critical when superconducting energy gap is small, � �
T , this result further reduces to Aslamazov-Larkin formula
[34]: I (φ) = (πGT �2/4eT ) sin(φ) that was obtained earlier
from the Ginzburg-Landau phenomenology. Accounting for
the proximity effect on the normal region, but still working
in the limit of poorly transparent interfaces, namely retaining
only the linear in Tk term of the action (5), ∝ Tk{Ĝk,Ĝ}, one
recovers CPR in the form of Eq. (1) for small Thouless energy.
In order to derive Eqs. (2)–(4) from Eq. (5) one has to keep
arbitrary transmissions Tk ∈ [0,1], and average the current∫ 1

0 I (φ)ρ(Tk)dTk over the continuous distribution density of
transmission eigenvalues ρ(Tk). The latter takes a generic
form [35,36]: ρ(Tk) ∝ (T p

k

√
1 − Tk)−1 with normalization via

the Landauer-Buttiker conductance GT = GQ

∫ 1
0 Tkρ(Tk)dTk .

The power exponent p takes different values depending on
the type of the contacts. For p = 3/2, which corresponds to
symmetric dirty interfaces with a high density of randomly
distributed scatterers, namely SINIS type junction, one recov-
ers Eq. (2). The case with p = 1 corresponds to the Dorokhov
function valid for a diffusive SNS connector and leads to CPR
in the form of Eq. (3). Lastly, the scenario with the power
exponent p = 1/2 corresponds to two ballistic connectors with
equal conductances in series that translates to the current in the
form of Eq. (4). Having in mind recently developed epitaxial
Josephson junction devices, in this work we concentrate on
the limit of fully transmitting channels Tk = 1, and allow for
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FIG. 2. Normalized proximity-induced density of states
ν(E,φ)/ν0 in the quantum dot showing the usual gap Eg1 centered
at E = 0 and an additional secondary minigap Eg2 just below the
gap edge E = �. Different panels correspond to different phases
across the junction φ = (0,π/8,π/4,π/2) while different lines on
each panel correspond to different ratios between Thouless energy
and superconducting gap: from the top line to the bottom one
ETh = (2�,1.5�,�,0.75�,0.5�).

the arbitrary relationship between the Thouless energy and
superconducting energy gap.

III. RESULTS

For completeness we begin our discussion of main results
with a brief recap of the behavior in the proximity-induced
density of states. This analysis was exhaustively carried out
in recent studies [22,23] and served as a prerequisite for us
to address the supercurrent. For sufficiently large Thouless
energy, DOS displays rich subgap structure with the central
gap Eg1 and the second gap Eg2 near �, see Fig. 2. At
zero phase across the junction this second gap is estimated
to be Eg2 ∼ �3/E2

Th in the limit ETh � �. For ETh ∼ �
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FIG. 3. Energy-resolved spectral supercurrent of Andreev subgap
states plotted in units of I0 for several different values of the
superconducting phase across the junction at ETh = �.
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FIG. 4. Josephson current-phase relationship I (φ)/I0 for a
chaotic S-QD-S device with transparent interfaces: from the top line
to the bottom one ETh = (3�,1.5�,�,0.75�,0.5�,0.25�).

the secondary gap is parametrically of the order ETh, yet it
remains smaller than Eg1 in the same limit due to a numerical
prefactor. Gap Eg2 disappears below ETh = 0.682�. Near
the each gap edge DOS has a square-root singularity ν(E) ∝
(ETh/�)2

√|E − Eg|/Eg , while at its maximum the DOS is of
the order νmax ∼ ν0(ETh/�). At finite phase bias across the
junction, the second gap closes at the critical phase φc2 �
(�/ETh), whereas central gap closes at phase φc1 = π . The
full phase dependence of Eg2(φ) was studied numerically, and
was found to resemble the shape of a smile [22].

This complicated subgap behavior changes the spectral flow
of the supercurrent. To see this clearly, it is useful to plot the
energy-resolved current of Andreev states. This is shown in
Fig. 3 for zero temperature with several different phases, and a
choice of ETh = �. One should notice a pronounced kink in the
function that correlates with the edge of a minigap. A second
smaller kink develops close to the energy � for higher values of
ETh which is a manifestation of the second gap. By integrating
the spectral current over all states one finds the Josephson
CPR. We highlight the resulting curves in Fig. 4. The effect of
bending in the current at phases φ < π/2 that starts to develop
at ETh > � we primarily attribute to a formation of subgaps in
the density of states. To make a clear connection between the
energy gap and critical current we studied how they saturate
as a function of Thouless energy. These results are presented
in Fig. 5. To characterize the CPR curves further we introduce
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FIG. 6. Ratios of the second harmonic H2 on the left panel, and
the third harmonic H3 on the right panel, of the Josephson current to
its first harmonic H1 presented for different values of the Thouless
energy versus energy gap.

Fourier components Hn = (2/π )
∫ π

0 I (φ) sin(nφ)dφ, and plot
them for different ratios of ETh/�, see Fig. 6. We notice
that the second harmonic changes sign near ETh = 0.7�.
Perhaps more interestingly, we observe that the magnitude of
the second harmonic becomes comparable to the first harmonic
at large Thouless energy. The third harmonic changes sign near
ETh = 2.3� while its magnitude remains small compared to
the second harmonic. It is also of interest to look at the Taylor
coefficients of the current Cn = 1/(n!) limφ→0 ∂n

φ [I (φ)/Ic].
In particular, C3 controls the nonlinearity of the Josephson
device qubit that can be modified by applying gate voltages to
a junction that would change ETh. The initial almost linear
slope of C3 versus ETh/� � 1 can be readily seen from
Eq. (1), with asymptotic behavior C3 ∝ ETh/�. In the opposite
limit, C3 saturates to a constant that is numerically close to
C3 � 0.05. The general form of C3(ETh/�) is a complicated
nonmonotonic function.

IV. DISCUSSIONS

A few comments are in order in relation to results presented
in this paper. The hard gap features in the density of states
correspond only to the mean field level (saddle point) treatment
of the action Eq. (5). Fluctuations (instantons) on top of the
saddle point will give raise to the Lifshitz-type tail states
below the gap [37,38]. Mathematically it bears a close analogy
with the Tracy-Widom distribution for the DOS tail in the
random matrix theory (RMT) [11]. Indeed, in the regime of the
minigap, ETh � �, the asymptotic behavior of DOS close to
the central gap edge is ln ν(E) � −g(1 − E/Eg1)3/2 for Eg1 −
E � Eg1, where g � 1 is the dimensionless conductance of
the N region. In the deep low-energy limit, E � Eg1, the
behavior of the DOS is log-normal ln ν(E) � −g ln2(Eg1/E).
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FIG. 5. Crossover functions for the normalized energy gap Eg1/� (on the left panel), the secondary gap Eg2/� (on the central panel), and
the maximal critical current Ic/I0 (on the right panel), as a function of the ratio ETh/�. The initial rise of Eg1 is linear in ETh, and the second gap
can be fairly accurately approximated by Eg2/� ≈ (17/2 − 6

√
2)(�/ETh)2 for all values ETh/� > 1. The critical current also starts almost

linearly with the Thouless energy as expected from Eq. (1).

224515-4



JOSEPHSON CURRENTS IN CHAOTIC QUANTUM DOTS PHYSICAL REVIEW B 97, 224515 (2018)

We expect similar tail states to exist in the region of the second
gapE ∼ Eg2 although the functional form of their scaling close
to the gap edge may be different.

The calculation of the supercurrent was carried out here for
the ensemble-averaged Green’s function, and cannot therefore
describe the mesoscopic fluctuations of I (φ) from the average.
These fluctuations are known to be universal in the regime
ETh � � where variance of the current scales as var{I (φ)} ∝
(e�/h)2 [7,39]. This can be immediately concluded from the
circuit theory knowing that the supercurrent I (φ) is a linear
statistic on transitions Tk . In the opposite limit, ETh � �,
fluctuations are not universal and scale with Thouless energy
var{I (φ)} ∝ (eETh/h)2 [40–42]. Another important meso-
scopic coherence effect is that of weak localization. Such
corrections to supercurrent are known to be small in inverse
dimensionless conductance of the normal region δIc/Ic ∼
1/g � 1, irrespective of the relationship between the Thouless
energy and the superconducting gap [42].

Finally, we discuss two aspects of the CPR of Josephson
junctions in light of their use in qubits. It has been recently
proposed [28,29] that special Josephson elements whose
first harmonic of Josephson energy V (φ) = EJ1 cos(φ) +
EJ2 cos(2φ) is suppressed compared to the second harmonic
may realize protected qubits against charge noise as trans-
fer of single Cooper pairs is strongly suppressed in such
devices. An effective cos(2φ) element can be formed by
placing two such junctions in parallel and biasing the resulting
loop with external flux to suppress the first harmonic of
the Josephson energy. Two such plaquettes form a minimal
protected element. If N � 1 is the total number of plaquettes
in the qubit, the suppression of sensitivity to local noise
due to inevitable static disorder in the parameter values of
the device is then exponential exp[−N ln(EJ2/EJ1)]. Our

calculations of supercurrent in S-QD-S circuits reveal that
even such basic junctions can realize desirable properties
of current-phase relationship with comparable magnitudes of
amplitudes in current harmonics. Lastly, we wish to comment
on the anharmonicity of gatemon qubit as recently realized
in epitaxial InAs-Al junctions [27]. For a multimode junction
qubit Josephson energy was modeled by the usual circuit theory
expression V (φ) = −�

∑
k

√
1 − Tk sin2(φ/2). By expanding

energy over phase and retaining the first two terms one gets
a harmonic oscillator and its quartic nonlinearity. The latter
translates into the anharmonicity of the qubit as quantified by
a parameter α ≈ −EC[1 − (3/4)

∑
k T 2

k /
∑

k Tk], where EC

is the charging energy. For fully transmitting channels α =
−EC/4. As we have shown, Josephson CPR of the multimode
junction with transparent interfaces deviates from the predic-
tion of the circuit theory because it does not account properly
for the intricate details of the superconducting proximity effect
on the normal region. Thus more accurate theoretical modeling
of gatemon-qubit nonlinearities remains an open task, and our
theory will be useful for that purpose.
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