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A substantial influence of the proximity and pair breaking effects on the range of internal phase differences
is shown to take place in symmetric double Josephson junctions with closely spaced interfaces and to affect
the evolution of the supercurrent j with the changing central lead’s length L. If the phase difference φ between
the external leads is controlled and L exceeds a few coherence lengths, the regime of interchanging modes is
established. The range of the phase differences across the two individual interfaces is reduced with decreasing
L, and the states of the higher energy mode are gradually eliminated. With a further decrease of L the regime of
interchanging modes is destroyed along with the asymmetric mode. The conventional single junction current-phase
relation j (φ) is eventually established and the condensate states’ doubling is fully removed at very small L.
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I. INTRODUCTION

Static and dynamic couplings of two closely spaced junc-
tions can play an important role in mesoscopic systems of
superconducting electronics [1–15]. Two Josephson junctions
connected in series are particularly linked to each other by the
equality of the flowing currents. If distance L between the junc-
tions significantly exceeds the coherence length ξ (T ), then, in
the absence of the magnetic effects, the junctions’ coupling is
negligible. However, in the opposite case L � ξ (T ), the prox-
imity effects can strongly influence the transport processes,
including the dc Josephson current.

A double Josephson junction with two thin interfaces is
characterized by the phase differences χ1,2 across them. The
phase difference φ between the external leads generally reveals
less information. At fixed φ the dc Josephson current still
remains uncertain to some extent. For example, let the phase
incursion over the central lead be negligible with the relation
φ = χ1 + χ2 holding. Taking χ1 = χ2 + 2πn with integer
n for symmetric double junctions, one gets χ1 = φ

2 + πn

and transforms the single junction 2π -periodic current-phase
relation j (χ1) into two different 4π -periodic modes j ( φ

2 )
and j ( φ

2 + π ), with respect to φ. Either mode describes, in
particular, the supercurrent sign change, when φ → φ + 2π

due to the coordinated variations of χ1,2 by π . If only one of
the χ1,2 varies by 2π and induces the change φ → φ + 2π , one
should simultaneously switch over to another mode to keep the
current unchanged. Therefore, the current is at least a double-
valued function of φ, if χ1,2 are controlled in experiments
independently as can occur at a sufficiently large L.

An alternative experimental possibility is to control φ

allowing χ1,2 to take on the most preferable equilibrium
values. The energetically favorable mode is formed by j ( φ

2 )
within the periods (4n − 1)π � φ � (4n + 1)π , and j ( φ

2 + π )
at (4n + 1)π � φ � (4n + 3)π . Here, unlike the junctions
containing Majorana fermions [16–21], the two originally 4π -
periodic states with different currents j ( φ

2 ) and j ( φ

2 + π ) get

interchanged, when the phase φ is advanced by 2π . Omitting
here possible “undercooling” and “overheating” of the states
at the transition, one gets a regime of interchanging modes
described by a 2π -periodic sawtoothlike current-phase relation
with discontinuities at φ = (2n + 1)π [22]. The anharmonic
relation, associated with the condensate states’ doubling at
given φ, can be partially smoothed out by fluctuations, small
junction asymmetries, etc. [15].

At L � ξ (T ), the double Josephson junction, in fact,
represents a single junction with a thin interface that includes
the central region. Though only a sequential tunneling, rather
than a direct one, is permitted, one could assume in this
limit the regular single junction phase dependence j (φ) on
φ. Although there is some experimental evidence supporting
this issue [6], theoretical results diverge in respect of it. The
sawtooth current-phase relation has been discussed at small L

[22]. The proximity effects, disregarded in Ref. [22], have been
known to be important at L � ξ and lead to a strongly phase-
dependent order parameter in the central lead [7,10,12,23].
Those microscopic studies resulted in the conventional single
junction behavior at very small L, however without taking
the regime of interchanging modes into account. Finally, the
results obtained within the Ginzburg-Landau (GL) approach
have shown no solutions at L < πξ (T ) and, in particular, no
single junction behavior [24].

This paper develops a theory of symmetric double Joseph-
son junctions within the GL approach with an improved
interface description. An effective mutual impact of the internal
phase differences, induced by interfacial proximity and pair
breaking effects, will be identified and shown to result in
their range being substantially reduced. The double Josephson
junction with closely spaced interfaces is one of the simplest
systems, where the effect occurs. As a consequence, a grad-
ual destruction of the higher energy mode takes place with
decreasing L. In particular, the state with χ1 = χ2 = 0 will
be discovered to occur at an arbitrary L, while the equilibrium
state withχ1 = χ2 = π—to exist only ifL > Lπ . In the regime
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FIG. 1. Schematic diagram of the double junction.

of interchanging modes, the abrupt change of the supercurrent
in immediate vicinities of φn = (2n + 1)π actually occurs
continuously via the current-carrying asymmetric states. Thus
in the tunneling limit the symmetry j (π − χ ) = j (χ ) allows
one to associate the valueφ = π withχ1 andχ2 = π − χ1 at all
possible χ1, i.e., at any value |j | � jc. With a further decrease
of L, the proximity is shown to reduce the order parameter
in the central lead and the range of χ1,2 in such a way that
it removes the regime of interchanging modes along with the
asymmetric states and eventually results in the single junction
dependence j (φ) at all φ.

II. DESCRIPTION OF THE MODEL

Consider a symmetric double junction, which is made of
the same superconducting material and contains two identical
thin interfaces at a distance L, connected by the central
superconducting lead (see Fig. 1). The interface thickness is on
the order of or less than the zero-temperature coherence length
ξ0 considered to be zero within the GL theory. The length
of the two external leads significantly exceeds the coherent
length ξ (T ) and the magnetic penetration depth λ(T ). The
one-dimensional spatial dependence of the order parameter
is assumed, occurring, for example, when the transverse
dimensions of all three electrodes are substantially less than
ξ (T ) and λ(T ). The system’s free energy is the sum of
contributions from the interfaces and the bulk of the leads
F = ∑

Fp + F int
L
2

+ F int
− L

2
. Here p = 1,2 refer to the external

electrodes, while p = 3 refers to the central lead. One gets per
unit area of the cross section

Fp =
∫
Cp

dX

[
K

∣∣∣∣ d

dX
�(X)

∣∣∣∣
2

+ a|�(X)|2 + b

2
|�(X)|4

]
. (1)

For the interfaces placed at X = ±L/2, the integration periods
Cp for p = 1,2,3 should be taken as (−∞,−L/2), (L/2,∞),
and (−L/2,L/2), respectively.

The interfacial free energy per unit area is

F int
± L

2
= gJ

∣∣�± L
2 + − �± L

2 −
∣∣2 + g

(∣∣�± L
2 +

∣∣2 + ∣∣�± L
2 −

∣∣2)
. (2)

The two invariants in Eq. (2) describe the Josephson coupling
with the coupling constant gJ and the interfacial pair breaking
g > 0. For 0 junctions considered below gJ > 0.

The GL equation for the normalized absolute value of the
order parameter � = (|a|/b)1/2f eiϕ takes the form

d2f

dx2
− i2

f 3
+ f − f 3 = 0. (3)

Here x = X/ξ (T ), ξ (T ) = (K/|a|)1/2, and the dimensionless
current density is i = 2

3
√

3
(j/jdp), where jdp =

(8|e||a|3/2K1/2)/(3
√

3h̄b) is the depairing current deep
inside the superconducting leads.

The boundary conditions for the complex order parameter,
which follow from (1) and (2), agree with the microscopic
results [25] near Tc, at all transparency values [26–28]. Intro-
ducing l = L/ξ (T ), one gets at x = l/2:

(
df

dx

)
l/2±0

= ±(gδ + g
)fl/2±0 ∓ g
 cos χfl/2∓0, (4)

i = − f 2

(
dϕ

dx
+ 2πξ (T )

�0
A

)
= g
fl/2−0fl/2+0 sin χ. (5)

Here χ = ϕ( l
2 − 0) − ϕ( l

2 + 0),�0 = πh̄c
|e| and the dimension-

less coupling constants are g
 = gJ ξ (T )/K, gδ = gξ (T )/K .
The boundary conditions (4) and the conservation of the

supercurrent (5) allow the values fl/2±0 on opposite sides of
the interface between identical superconductors to differ from
one another. In a single symmetric Josephson junction, f (x)
is usually continuous across the thin interface. However, the
joint pair breaking by both end interfaces can more weaken the
condensate density in the short central lead. The corresponding
phase dependent jump fl/2+0 − fl/2−0 > 0 allows supercon-
ductivity to survive in the central lead at l � 1. The continuity
of f (x) across thin interfaces in double Josephson junctions is a
distinctive feature of earlier theories that used the GL approach
with the flawed boundary conditions for the order parameter
[24,29,30]. Generally, those models are neither equivalent to
the free energy (1) and (2) nor to the microscopic results near
Tc [7,10,23,25].

There are a number of solutions that satisfy equation
(3), the asymptotic conditions deep inside the external
electrodes and the boundary conditions at x = ±l/2 (see also
Appendix A). The solutions with the preferred energies are
assumed to have the extrema at x = 0, ± l/2,±∞, or, when
possible, only at x = ±l/2, ± ∞. The numerical simulations
show that the symmetric solutions f (x) = f (−x) with the
internal phase differences χ1 = χ2 + 2πn = χ , occur in most
cases considered below, except for close vicinities of φn =
(2n + 1)π , where the asymmetric mode prevails, if it exists.

III. CURRENTLESS STATES

The double junction’s states with vanishing supercurrent at
χ = πn allow the exact analytical description (see Appendix
B for details of the derivations). The quantity f 2

l/2−0(χ,g
,gδ),
taken at the boundary of the central lead, is depicted in Fig. 2
as a function of l at χ = 0 (the left panel) and χ = π (the
right panel), for gδ = 0.1 and various g
. The solid curves
describe energetically preferable solutions, while the dashed
curves correspond to metastable states.

For an impenetrable wall (g
 = 0) dependence on the phase
difference vanishes, and the curves 1 in both panels in Fig. 2 are
identical. The free energy density of the sample placed between
two impenetrable pair breaking walls is known to increase with
decreasing l due to the inverse proximity effects, and the tran-
sition to the normal metal state occurs at L = 2ξ (T ) arctan gδ

[31–33]. For gδ = 0.1 one gets l = 0.199. By contrast, for a
nonzero Josephson coupling, the superconducting state with
χ = 0 exists in the central electrode at any value of its length.
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FIG. 2. f 2
l/2−0 as a function of l at χ = 0 (left panel) and

χ = π (right panel). Solid curves correspond to the energetically
preferable states. Left panel:χ = 0,gδ = 0.1 and (1)g
 = 0, (2) g
 =
0.1, (3) g
 = 0.3, and (4) g
 = 0.8. Right panel: χ = π , gδ = 0.1 and
(1) g
 = 0, (2) g
 = 0.03, (3) g
 = 0.1, (4) g
 = 0.25, (5) g
 = 0.5,
and (6) g
 = 0.8.

The solid curves 2–4 in the left panel show that the quantity
f 2

l/2−0 takes on its nonzero minimum value at l = 0, unless
g
 → 0 at gδ �= 0 [see also (B4)].

At χ = 0, the two terms on the right-hand side of
the boundary condition (df/dx)(l/2)−0 = −(gδ + g
)f(l/2)−0 +
g
f(l/2)+0 contain f(l/2)−0 or f(l/2)+0 as a factor and have
opposite signs. If f(l/2)−0 > g
f(l/2)+0/(gδ + g
), the derivative
is negative and f (x) increases with decreasing x up to x = 0.
Such solutions correspond to the solid curves 2–4 in the left
panel of Fig. 2. If the equality f(l/2)−0 = g
f(l/2)+0/(gδ + g
)
holds, the derivative (df/dx)(l/2)−0 at the boundary of the
central lead vanishes. There is also the solution of a different
type, depicted by the dashed curves in the left panel of Fig. 2,
for which (df/dx)(l/2)−0 > 0 and f (x) decreases, when x goes
down inside the central lead, and vanishes at x = 0. Such a
metastable solution, induced by the proximity to the external
superconducting electrodes, has smaller values and satisfies
the relation f(l/2)−0 < g
f(l/2)+0/(gδ + g
).

Unlike the case χ = 0, the terms on the right-hand side
of the boundary conditions (4) have identical sign at χ = π .
Therefore, the condensate density decreases the nearer one gets
to the interface irrespective of the relation between f(l/2)−0

and f(l/2)+0. As a result, for the state with χ = π to exist the
length l has to exceed the critical value lπ (g
,gδ). However,
a disappearance of the equilibrium state with χ = π at l <

lπ (g
,gδ) and g
 �= 0 is not accompanied by a transition to the
normal metal state, in contrast to what takes place at g
 ≡ 0.

The transition to the normal metal state of the system
as a whole, with distant regions of the external electrodes,
is energetically unfavorable since the interfacial pair break-
ing is confined by the scale �ξ (T ). Were only the central
electrode in the normal metal state, the boundary condition
(df/dx)(l/2)−0 = −(gδ + g
)f(l/2)−0 − g
f(l/2)+0 at x = l/2 −
0 and χ = π would result in f(l/2)+0 = 0 once g
 �= 0. In
this case one also gets (df/dx)(l/2)+0 = 0 from the boundary
condition on the opposite side of the interface. These two
equalities signify vanishing superconductivity throughout the
external leads, which is not possible as stated above. Thus,
χ = π is not the equilibrium value of χ under the conditions
l < lπ (g
,gδ) and g
 �= 0, while superconductivity does exist
due to the proximity to the external superconducting leads.

The metastable solutions at χ = π , depicted by the dashed
curves in the right panel of Fig. 2, are of the same type as the
energetically preferable ones. They appear within the range
lπ (g
,gδ) < l < lps(g
,gδ). At l = lps(g
,gδ) the metastable
phase-slip centers arise on the central lead’s end interfaces:
f±(lps/2−0) = 0 (see Appendix B). In the tunneling limit lps

takes on its minimum value lps(g
 → 0,gδ) = π . The points
with coordinates l = lps(g
,gδ) and fl/2−0 = 0 are marked in
the right panel of Fig. 2.

The numerical study of the solutions shows that the left
and right panels of Fig. 2 represent the two main types of
mapping of f 2

l/2−0. The transformation of one type into another
with changing χ usually occurs some distance below χ = π/2
within a noticeable interval �χ .

IV. DOUBLE JUNCTIONS WITH l � 1

Within the zeroth-order approximation in the small param-
eter l � 1, the symmetric solution of the GL equation, com-
plemented by the boundary conditions at the interfaces and the
asymptotic conditions deep inside the external electrodes, sat-
isfies, if cos χ > 0, the relation fl/2−0 = g
 cos χ

gδ+g

fl/2+0, which

leads to vanishing derivative (df /dx)l/2−0 (see Appendix C).
However, the pair breaking effects do not allow the phase
differences with cos χ < 0 to be established in the equilibrium.

The condition cos χ > 0 results in the allowed bands
−π/2 + 2πn < χ < π/2 + 2πn and the forbidden gaps be-
tween them. Switching over to the φ dependence and disre-
garding the phase incursion over the central lead, one gets the
same bands for the argument φ

2 of the first mode, whereas the
allowed and forbidden gaps are interchanged for the argument
φ

2 + π of the second mode. Combining the allowed bands of
both modes, which are tightly adjoined to each other but do
not overlap, results in the single-valued dependence on φ of the
quantities in question, at all real φ. Here the functions cos χ and
sin χ should be replaced by cos φ

2 and sin φ

2 , if (4n − 1)π �
φ � (4n + 1)π , and by cos( φ

2 + π ) = − cos φ

2 and − sin φ

2 in
the case (4n + 1)π � φ � (4n + 3)π . Therefore, one obtains
at any value of φ

fl/2−0 = g


∣∣ cos φ

2

∣∣
gδ + g


fl/2+0, (6)

i = geff

 f 2

l/2+0 sin φ, geff

 = g2




2(gδ + g
)
, (7)

where the right-hand side in Eq. (5) has been used in Eq. (7).
Remarkably, the higher energy mode present to the full

extent at large l is completely destroyed in the limit of very
small l due to the proximity reduced range of the internal phase
differences. While the low energy mode can be distorted at
large l by the “undercooling” and “overheating” processes, it
is stabilized at small l. The total elimination of the condensate
states’ doubling at any given φ and the GL expression (7)
for the supercurrent across the junction reduce the double
junction behavior in the limit l → 0 to that of a symmetric
single junction with the effective Josephson coupling geff


 .
The supercurrent (7) decreases with φ at π/2 � φ � π at

the expense of the proximity-induced phase dependent factor
| cos φ

2 | on the right-hand side of (6). Since in tunnel junctions
g
 ∝ D, where D is the interface transmission coefficient,

224509-3



YU. S. BARASH PHYSICAL REVIEW B 97, 224509 (2018)

FIG. 3. Critical current as a function of l at g
 = 0.1, gδ = 0.1.
Inset: The quantity tl/2−0(φ) at (1) l = 0.02, (2) l = 0.1, (3) l = 0.25.

geff

 ∝ D2, when gδ 
 g
, and g
 ∝ D in the opposite limit

gδ � g
, in agreement with the earlier microscopic results
[7,10,23]. As follows from (7) and (4), the effective interfacial
pair breaking parameter, in the zeroth order in l, is geff

δ =
gδ(gδ + 2g
)/(gδ + g
).

A strong suppression of the quantity fl/2−0 in a close
vicinity of φ = π and the supercurrent spatial uniformity entail
a large gradient of the order-parameter phase. As the numerical
study shows, this results, even at very small l, in a noticeable
phase incursion over the central lead that violates the appli-
cability of the zeroth-order approximation in l near φ = π .
Although there are no discernible modifications near φ = π in
Eqs. (6) and (7), the range of χ is more restricted so that only
values at a distance below χ = π/2 are permitted at small l.

The solid curves 1–3 in the inset in Fig. 3 show the numerical
results for the phase-dependent order parameter squared f 2

l/2−0
taken at the central lead’s end face. The dashed curve that
corresponds to the right-hand side of (6) at l = 0.02, coincides
with curve 1 with only a small percentage of deviation. Due to
a weak dependence on l of the order parameter fl/2+0 on the
opposite side of the interface, the dashed curves at l = 0.1 and
l = 0.25 (not shown) almost coincide with the one presented
for l = 0.02 and, therefore, substantially deviate from the solid
curves 2 and 3. Thus the relation (6), justified at l = 0.02 for the
chosen set of parameters, is violated with increasing l already
at l = 0.1 and l = 0.25.

The current-phase relation j̃ (φ), taken at various l, is
depicted in Fig. 4 for the supercurrent j̃ = j/jdp and the
interfaces with g
 = gδ = 0.1. The numerical results have been
obtained by carrying out the evaluation of the supercurrent (5)
with the consistent solutions of the model (1), (2), including
the phase incursion over the central lead. For the given set
of parameters, the asymmetric states, along with a noticeable
abrupt change of the supercurrent in the vicinities of φn =
(2n + 1)π , are fully destroyed by the pair breaking effects
below l ≈ 0.36. The curves 1 and 2 show that the regime of
interchanging modes still takes place at l = 1 and l = 0.5. By
contrast, the curve 5 for l = 0.02 differs only by several percent
from the one corresponding to the conventional single junction
current-phase dependence (7). Anharmonic contributions to
j̃ (φ) are characteristic of the curves 3 and 4. The critical current

FIG. 4. Current-phase relations j̃ (φ) taken for g
 = 0.1, gδ = 0.1
and (1) l = 1, (2) l = 0.5, (3) l = 0.38, (4) l = 0.25, (5) l = 0.02.

of the double junction as a function of l is shown in the main
panel of Fig. 3.

In conclusion, the double Josephson junctions with closely
spaced interfaces have been theoretically studied. With de-
creasing central lead’s length l, the range of the internal phase
differences is shown to be gradually reduced. At very small l,
the condensate states’ doubling at any given φ is fully removed
and the single junction expression (7) describes the Josephson
current.

APPENDIX A: SYMMETRIC SOLUTIONS
OF THE GL EQUATION

For identifying the Josephson current (5), one should know
the order parameter interface values f(l/2)±0 as functions of the
phase difference χ and the length l, and of other GL theory’s
parameters. The simplest way to obtain the results is to make
use of the first integral of the GL equation (3). The quantity E ,
defined as

E =
(

df (x)

dx

)2

+ i2

f 2(x)
+ f 2(x) − 1

2
f 4(x), (A1)

is spatially constant inside each of the leads, when taken for
the solutions of (3). Different values of E in different leads
can appear due to the boundary conditions, which follow from
(1) and (2) and do not generally support the conservation of E
through the interfaces.

Equation (A1) can be also rewritten in the form(
df

dx

)2

= 1

2f 2
(f 2 − f 2

+)
(
f 2 − f 2

d

)
(f 2 − f 2

−). (A2)

The quantities t− = f 2
−, td = f 2

d , and t+ = f 2
+ satisfy the

following set of equations

t− + td + t+ = 2,

t−td t+ = 2i2, (A3)

td t− + td t+ + t−t+ = 2E .

Solutions of equation (A2) are characterized by three formal
extrema f−, fd, f+ with the vanishing first derivative df

dx
. In

general, either all three roots t−, td , and t+ take on real values,
or only one is real and two are the complex conjugate of
each other. As the numerical study shows, only real values
are relevant for the given problem, and the case with three real
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minimums is also excluded, at least for the set of parameters
studied. As the left hand side of (A2) takes on nonnegative
values, there should be, therefore, one minimum (let it be t−)
and two maximums t+ � td � t(x) among the three real roots.

Symmetric analytical solutions of the GL equation (3)
describe the order-parameter absolute value as a function of l

and χ ≡ χ1 = χ2 + 2πn, and satisfy the boundary conditions
at x = ±l/2 ± 0 [see, e.g., (4)] as well as the asymptotic
conditions deep inside the long external leads. The ener-
getically most favorable solutions are expected to have the
order-parameter absolute value with only a single extremum
inside the central lead, at the center x = 0 between the
interfaces. It should be a maximum, if (df/dx)(l/2)−0 < 0,
and a minimum otherwise. Correspondingly, the two types of
symmetric solutions will be considered in the following.

The solution of the first type satisfies the condition
(df/dx)(l/2)−0 � 0. It has the maximum t(0) = td at x = 0
and minima at the boundaries x = ±(l/2 − 0). The order
parameter values t− and t+ do not show up inside the central
lead in this case. In accordance with the boundary conditions,
the derivatives at the boundaries are generally nonzero and
discontinuous across the interfaces. The solution of the second
type has the minimum t(0) = t− at x = 0 and maxima at x =
±(l/2 − 0), in agreement with the condition (df/dx)(l/2)−0 >

0, while the values fd, f+ do not show up in the central lead.
For the solution of the first type, one has t− � t(l/2)−0 �

t(x) � td � t+ inside the central lead |x| < l/2 and gets from
Eq. (A2):

|x| =
√

2

t+ − t−
F

(
arcsin

√
(t+ − t−)(td − t)

(td − t−)(t+ − t)

∣∣∣∣∣ td − t−
t+ − t−

)
.

(A4)

Here the definitions of the Mathematica book are used for the
notations of arguments of the elliptic integral of the first kind
F (ϕ| m) [34].

Taking x = l/2 − 0 in Eq. (A4) results in the condition
associated with the central lead’s length:√

2

t+ − t−
F

⎛
⎝arcsin

√√√√ (t+ − t−)
(
td − t l

2 −0

)
(td − t−)

(
t+ − t l

2 −0

)
∣∣∣∣∣∣

td − t−
t+ − t−

⎞
⎠ = l

2
.

(A5)

The solution of the second type applies when t− � t �
tl/2−0 � td � t+ and (gδ + g
)fl/2−0 − g
 cos χfl/2+0 � 0.
For |x| < l/2, it takes the form

|x| =
√

2

t+ − t−
F

(
arcsin

√
t − t−
td − t−

∣∣∣∣∣ td − t−
t+ − t−

)
. (A6)

Similarly to (A5), one finds from (A6)√
2

t+ − t−
F

(
arcsin

√
tl/2−0 − t−

td − t−

∣∣∣∣∣ td − t−
t+ − t−

)
= l

2
. (A7)

The quantity E in the central lead can be expressed via f(l/2)±0,
taking x = (l/2) − 0 in Eq. (A1) and making use of (4) and (5):

E = [1 + (gδ + g
)2]f 2
(l/2)−0 + g2


f
2
(l/2)+0

− 2g
(g
 + gδ) cos χf(l/2)−0f(l/2)+0 − 1
2f 4

(l/2)−0. (A8)

The order-parameter profile in the long external supercon-
ducting leads satisfies f (−x) = f (x) and takes the conven-
tional form (see, e.g., Refs. [35,36])

f (x) = f∞ tanh

(
x − (l/2) + x0√

2

)
, x >

l

2
. (A9)

It has a maximum f∞ � 1 at asymptotically large distances
deep inside the leads and a minimum at the pair breaking
boundaries x = ±(l/2 + 0). The quantity x0 > 0 is asso-
ciated with the boundary order-parameter value f(l/2)+0 =
f∞ tanh(x0/

√
2). The parameters f(l/2)+0 and f∞ depend on

the phase difference χ and the central lead’s length l and
should be determined, together with other parameters of the
whole solution, from the boundary and asymptotic conditions,
as well as the current conservation.

Since the derivative df/dx vanishes at asymptotically large
distances, it follows from (3),

i2 = (
1 − f 2

∞
)
f 4

∞. (A10)

Therefore, inside the external lead, the quantity Eext is conve-
niently associated with f∞:

Eext = 2f 2
∞ − 3

2f 4
∞. (A11)

One also gets from (A3)–(A11) text,d = text,+ = f 2
∞ and

text,− = 2(1 − f 2
∞).

Equating (5) and (A10) results in the equation(
1 − f 2

∞
)
f 4

∞ = g2

f

2
(l/2)−0f

2
(l/2)+0 sin2 χ. (A12)

As the conditions (df (x)/dx) � 0, 2(1 − t∞) � tl/2+0 �
t(x) � t∞ are satisfied at x > l/2, taking the square root of
both sides of equation (A2) results in

df (x)

dx
= 1√

2f (x)

(
f 2

∞ − f 2(x)
)√

f 2(x) − 2
(
1 − f 2∞

)
.

(A13)
One puts x = l/2 + 0 in Eq. (A13), substitutes (4) for the
derivative at the boundary, and obtains the following relation
between the parameters of the problem:(

f 2
∞ − f 2

l/2+0

)√
2f 2∞ + f 2

l/2+0 − 2
√

2fl/2+0

= (gδ + g
)fl/2+0 − g
 cos χfl/2−0. (A14)

Positive sign of the right-hand side in Eq. (A14) agrees with
the condition fl/2−0 � fl/2+0, which will be satisfied by the
consistent values of the quantities.

Since in the absence of the supercurrent f∞ = 1, while for
the depairing current f 2

∞ = 2/3, one obtains from (A11) 1
2 �

Eext � 2
3 . The same value of the first integral Eext should

follow from (A1) at x = l/2 + 0. Taking into account the
corresponding boundary condition (4) as well as (5), one gets
from (A1) in this case

1
2 � ((gδ + g
)f(l/2)+0 − g
 cos χf(l/2)−0))2

+ g2

 sin2 χf 2

(l/2)−0 + f 2
(l/2)+0 − 1

2f 4
(l/2)+0 � 2

3 . (A15)

As follows from (A15) and the relation fl/2−0 � fl/2+0, the
boundary value f(l/2)+0 = 0 is inappropriate for the consistent
solutions discussed.
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The solutions of Eq. (3), which are described by (A4)
[or (A6)] and (A9), and satisfy the boundary conditions
(4), contain six parameters t−, td , t+, f(l/2)±0 and f∞. The
parameters are linked to each other by six equations (A3),
(A14), (A12), and (A5) [or (A7)], where expressions (A8)
and (5) should be substituted for E and i. Joint solutions of
the equations represent the parameters t−, td , t+, f(l/2)±0, and
f∞ as well as the whole of the inhomogeneous profile of the
order parameter (A9), (A4), or (A6), as functions of the phase
difference χ and the dimensionless length of the central lead
l = L/ξ (T ). Though a numerical study of such solutions is
generally required, a number of important particular problems
allow analytical descriptions.

APPENDIX B: SOLUTIONS AT χ = 0 AND χ = π

When χ = 0 or π , the supercurrent vanishes and t− =
0, t∞ = 1, as this follows from (A12) and the second equa-
tion in Eq. (A3). This substantially simplifies the remaining
equations in Eqs. (A3) and (A14), which allow one to express
the quantities td , t+ and f(l/2)+0 via f(l/2)−0:

fl/2+0 = 1√
2

[
√

(gδ + g
)2 + 2(1 ±
√

2g
fl/2−0) − (gδ + g
)],

(B1)

td = 1 −
√(

1 − f 2
l/2−0

)2 − 2[(g
 + gδ)fl/2−0 ∓ g
fl/2+0]2,

(B2)

t+ = 1 +
√(

1 − f 2
l/2−0

)2 − 2[(g
 + gδ)fl/2−0 ∓ g
fl/2+0]2.

(B3)

The quantity fl/2+0 should be considered in Eqs. (B2) and (B3)
as a function of fl/2−0, defined in Eq. (B1). The upper sign in
Eqs. (B1)–(B3) corresponds to χ = 0, while the lower sign is
associated with χ = π .

If χ = 0, it follows from (B2) that the equality td = tl/2−0

holds, if the derivative df

dx
at x = l/2 − 0 in Eq. (4) vanishes,

i.e., (g
 + gδ)fl/2−0 = g
fl/2+0. When the derivative is neg-
ative, one substitutes (B1)–(B3) and t− = 0 into (A5) and
obtains for the solution of the first type the dependencefl/2−0(l)
shown by solid curves in the left panel of Fig. 1. As seen in
Eq. (A5), one gets l → 0 in the limit tl/2−0 → td . The quantity
fl/2−0(l → 0) describes the solid curves’ starting points in the
left panel of Fig. 1, which can be found by taking together
(B1)–(B3) and the relation (g
 + gδ)fl/2−0 = g
fl/2+0:

f l
2 −0 = g
√

2(gδ + g
)2

[√
g2

δ (gδ + 2g
)2 + 2(gδ + g
)2

− gδ(gδ + 2g
)
]
, l → 0. (B4)

Thus, the order parameter at the boundary of the central lead
remains nonzero at χ = 0 even in the limit l → 0, unless gδ =
0.

A positive derivative df

dx
> 0 at x = l/2 − 0 takes place at a

stronger suppression of the order parameter in the central lead,
that corresponds to metastable states. In the latter case one
substitutes (B1)–(B3) and t− = 0 into (A7) and obtains, for
the solution of the second type, another dependence f m

l/2−0(l)

shown by dashed curves in the left panel of Fig. (1). In
accordance with (A7) and the condition t− = 0, there is the
single starting point for all the dashed curves: l → 0 and
tl/2−0 → 0. Furthermore, as distinct from the solid curves
describing the first type of the solution, the dashed curves
take place only within a finite range of the length’s values
0 < l < lmax, where the maximum length at the end point is

lmax = 2
√

2√
2 − f 2

l/2−0

K

(
f 2

l/2−0

2 − f 2
l/2−0

)
(B5)

and f l
2 −0 is defined in Eq. (B4).

As seen from (B4) and the left panel of Fig. 1, the quantity
f l

2 −0 goes down with decreasing g
, while the corresponding
dashed curve adjoins the abscissa axis more and more closer.
In the tunneling limit the latter curve fills the whole segment
0 < l < lmax at f l

2 −0 ∝ g
 → 0, where lmax → π , as it follows
from (B5).

Let now χ = π . Since the relation df

dx
< 0 takes place in

this case at x = l/2 − 0 irrespective of the relative values of
fl/2±0, one considers solely the solution of the first type and
substitutes the corresponding equalities (B1)–(B3) and t− = 0
into (A5). This results in a nonmonotonic dependence l(fl/2−0)
and in the double-valued inverse function. The solid curves
in the right panel of Fig. 1 correspond to the energetically
favorable branch fl/2−0(l) of the inverse function, while the
dashed curves, describing a stronger suppression of the order
parameter in the central lead, are associated with the metastable
branch f m

l/2−0(l). All the statements regarding relative energies
of the states have been justified for the set of parameters studied
by numerical calculations of thermodynamic potential, which
are similar to those carried out in Ref. [33].

A striking difference between the curves in the left and
right panels of Fig. 1 is associated, first of all, with the absence
of any solutions in question under the condition l < lπ . The
minimum distance lπ depends on g
 and gδ and satisfies the
equality dl(fl/2−0)/dfl/2−0 = 0. In the right panel of Fig. 1
lπ represents the common starting point of both the solid and
dashed curves at given g
 and gδ . The metastable curves take
place only within a finite range of the length lπ < l < lps. Here
the maximum length lps(g
,gδ) is the end point of the dashed
lines at given g
 and gδ , where f m

l/2−0 → 0. In other words, at
l = lps(g
,gδ) the metastable phase-slipping centers appear at
the central lead’s boundaries.

The quantity lps is obtained after taking fl/2−0 = 0 in
Eqs. (B1)–(B3) and substituting the results together with t− =
0 in Eq. (A5):

lps(g
,gδ)

= 2
√

2√
1 +

√
1 − g2


 [
√

2 + (gδ + g
)2 − (gδ + g
)]2

×K

⎛
⎝1 −

√
1 − g2


 [
√

2 + (gδ + g
)2 − (gδ + g
)]2

1 +
√

1 − g2

 [

√
2 + (gδ + g
)2 − (gδ + g
)]2

⎞
⎠.

(B6)

In the weak-coupling limit g
 → 0 one gets lps → π .
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APPENDIX C: SOLUTIONS AT SMALL DISTANCES

The solution of the problem considered can be analytically
obtained at any value of χ within the zeroth-order approxi-
mation in a small parameter l, when the first argument of the
elliptic integral in Eqs. (A5) or (A7) should vanish. Regarding
the applicability of such an approximation see the main text.
For the solution of the first type one gets td = tl/2−0 and,
after substituting this in equations (A3), the relation fl/2−0 =
g
 cos χ

gδ+g

fl/2+0 follows under the condition g
 cos χ � 0. Since

the equality fl/2+0 = 0 has been shown to be unacceptable,

no solutions follow at g
 cos χ < 0. For the second type’s
solution one obtains, in the zeroth order in l, t− = tl/2−0, which
leads to the same relations between tl/2−0 and tl/2+0.

Substituting g
 cos χ

gδ+g

fl/2+0 for fl/2−0 in Eq. (A12) and in

the boundary condition (4) at x = l/2 + 0 allows one to
incorporate the quantities describing the central electrodes
into the effective characteristics of the united interface with
boundaries at x = ±l/2 in a single symmetric Josephson
junction. This results, with the phase incursion over the central
lead neglected, in Eq. (7) and in the following equality

(
df

dx

)
l/2+0

=
[
gδ + g
 − g2


 cos χ2

gδ + g


]
fl/2+0 =

[
gδ + g
 − g2




gδ + g


+ 2
g2




2(gδ + g
)
sin2 φ

2

]
fl/2+0. (C1)

Equation (C1) is of the form of the boundary condition for the order-parameter absolute value in a single symmetric Josephson
junction with the phase difference φ across the interface [26,28](

df

dx

)
l/2+0

=
(

geff
δ + 2geff


 sin2 φ

2

)
fl/2+0. (C2)

Therefore, the problem of the double Josephson junction reduces in the limit l → 0 to the behavior of a single junction. The
behavior of the Josephson current flowing through a single junction is known in the GL theory at any coupling constants’ values.
Here the effective constants of the Josephson coupling and the interfacial pair breaking are associated with the characteristics of
the double junction as

geff

 = g2




2(gδ + g
)
, geff

δ = gδ(gδ + 2g
)

gδ + g


. (C3)
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