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The Landau-Ginzburg-Wilson Hamiltonian for the McCoy-Wu strip-random Ising model on a two-dimensional
lattice is studied. In the Landau-Ginzburg-Wilson Hamiltonian, the random temperature only depends on one of
the coordinates (x), the horizontal coordinate. The difference (rather than differential) saddle point equation is
solved numerically. In the critical regime, there exist locally ordered regions, where the saddle point solutions are
not zero. Due to the translational invariance in the vertical direction, the locally ordered regions are striplike in
the vertical direction. In the excited state solutions, there exist horizontal domain walls across the locally ordered
regions. It is found that these horizontal domain walls are stabilized by free-energy barriers due to the discreteness.
The stability conditions for such domain walls are studied. Usually, the domain wall across multiple locally ordered
regions can be stable. These multiple locally ordered regions form an elementary cluster. The criterion for multiple
locally ordered regions forming an elementary cluster is obtained. At the saddle point level, we get an effective
Hamiltonian in which the elementary clusters behave as Ising spins and are coupled with their neighbors. For
the random temperatures with narrow uniform probability distributions, the distribution of elementary cluster
size, the horizontal and vertical bonds between elementary clusters are calculated numerically. The vertical
bonds are extremely strong and the horizontal bonds are extremely weak. The distribution of vertical bonds is
exponential. There is an exponentially small probability of elementary clusters with extremely large size. These
elementary clusters with extremely large size will cause the susceptibility divergent in a range of temperature.
The random temperature with binary probability distributions is also studied. The qualitative properties are the
same. The Griffiths-McCoy singularity in the saddle point solutions does not depend on the distribution of random
temperature.
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I. INTRODUCTION

The effects of quenched disorder on continuous phase
transitions have been the subject of intense theoretical and
experimental interest [1]. Due to the perfect correlation in the
time direction, the disorder has strong effects on the quantum
phase transition. The most interesting effect is the Griffiths-
McCoy singularity, where several thermodynamic observables
including the average susceptibility actually diverge in a finite
region of the disordered phase rather than only at the critical
point. The Griffiths-McCoy singularity was first discovered in
the classical McCoy-Wu random Ising model [2–4], which
can be mapped to a quantum model, the one-dimensional
random field transverse-field Ising model. The McCoy-Wu
model in zero magnetic field is partially exactly solvable
with transfer-matrix-type methods [2–5]. A phenomenological
optimal fluctuation theory of rare region effects was proposed
to understand the Griffiths-McCoy singularity in the mid
1990’s [6]. In the meantime, an asymptotically exact real-space
renormalization group for the random transverse-field Ising
model was achieved by Fisher [7,8]. Later, Griffiths-McCoy
singularity in random transverse-field Ising model was studied
intensively [9–12]. Griffiths-McCoy singularity was also found
at percolation with linear defects [12] and the nonequilibrium

*wuxt@bnu.edu.cn

phase transition in a disordered one-dimensional contact pro-
cess [13–15]

The McCoy-Wu model consists of a nearest-neighbor Ising
model on a rectangular lattice. For convenience, we rotate the
original model 90◦, all the vertical exchanges K are the same,
while the horizontal bonds are identical to each other within
each column but differ from column to column. In this paper,
we shall study the saddle point equation of Landau-Ginzburg-
Wilson Hamiltonian for the McCoy-Wu model. We find that the
saddle point solution leads to the Griffiths-McCoy singularity.

The motivation of this work is twofold. On the one hand, the
Landau-Ginzburg-Wilson Hamiltonian is a general framework
in studying critical phenomena. However, the conventional
field-theoretic or replica description fails to describe the
Griffiths-McCoy singularity in McCoy-Wu model and random
transverse-field Ising model [16–21]. There must be something
missed. We reexamine this problem through studying the dif-
ference saddle point equation. The results show that there exist
many excited state solutions, which are not found previously.
We show that the discreteness in the saddle point solutions
plays an important role and the saddle point solutions can not be
extended to the continuous limit directly. This can explain the
failure of the conventional field-theoretic description simply.

On the other hand, although the strong-disorder renormal-
ization group for the random transverse-field Ising model is
very successful [7,8], we hope to provide an angle to under-
stand the McCoy-Wu model. Moreover, in the field theories on
the quantum phase transition in many disordered systems, the
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FIG. 1. (a) The ground state saddle point solution. (b) The color
map is a typical excited saddle point solution and the black lines are its
domain wall. In (a), (b) the temperatures are the same. These solutions
are obtained with a random temperature with a uniform distribution.

saddle point equation is the starting point [22]. So, it is very
important to understand the saddle point solution. Although
there are a lot of qualitative discussions on it, for example, the
locally ordered region and replica symmetry breaking [23],
the quantitative studies, say numerical calculations, are still
rare. The author has carried out numerical calculations to the
saddle point equation for the classical phase transition in the
disordered systems where the random temperature is short-
range correlated [24,25]. In the present problem, the random
temperature is strongly correlated in the vertical direction.

In the Landau-Ginzburg-Wilson (LGW) Hamiltonian for
the McCoy-Wu model, the reduced temperature is random
and only depends on the horizontal coordinate. It does not
depend on the vertical coordinate because the McCoy-Wu
model is translation invariant in the vertical direction. We
solve the saddle point solution of the Landau-Ginzburg-Wilson
Hamiltonian numerically. Figure 1 shows the ground state
solution and a typical excited state solution for a given random
temperature.

As shown in Fig. 1(a), the ground state solution has many
peaks and valleys. The ground state solution does not depend
on the vertical coordinate and it is the same in each column.
At the peaks the solutions are relatively large and at the valleys
the solutions are almost zero. The regions at the peaks are
locally ordered. We call them locally ordered regions (LORs).
These LORs are strips which are infinitely long in the vertical
y direction. Because these LORs are one dimensional, they
still cannot undergo the phase transition independently. In the
saddle point solution, this can be fulfilled with the many excited
state solutions, one of which is shown in Fig. 1(b).

As shown in Fig. 1(b), the excited state solution is still
striplike. However, it changes the sign in some regions. So,
there are domain walls (DWs), where the solution is zero,
separating the regions with positive sign and negative sign.
The DWs usually consist of broken lines with segments in
the x and y directions. The vertical DWs locate at the deep
valleys in the ground state solution. For example, there is a
vertical DW segment at about x = 120, where it is a deep valley

in the ground state solution shown in Fig. 1(a). The vertical
DW causes a free-energy increase and hence a tension. The
horizontal DWs cross the striplike LOR. We find that there is a
discreteness free-energy barrier for a horizontal DW. In the ex-
cited state solutions, the discreteness barriers are high enough
to overcome the tensions caused by the vertical DWs. Then, the
horizontal DWs are stable. For example, for the horizontal DW
at 45 < x < 120, y = 180 in Fig. 1(b), the discreteness barrier
is high enough to overcome the tensions caused by the vertical
DWs at x = 45 and 120. If the discreteness barrier is not strong
enough, the horizontal DW can not be stable. The discreteness
barrier plays a key role in the excited state solutions.

The existence of horizontal DW is the reason why the strip-
like LOR can not undergo phase transition independently. If the
mapping to the one-dimensional transverse-field Ising model
is considered, the vertical direction is virtual time direction and
the horizontal DWs represent the quantum fluctuations.

In the ground state solution, every peak is a LOR. However,
not all horizontal DWs across single LOR can be stable.
Usually, a stable horizontal DW crosses multiple LORs. Such
multiple LORs form an elementary cluster. The criterion for
multiple LORs forming an elementary cluster is obtained. We
apply the criterion to the saddle point solution with random
temperatures distributed uniformly with certain width. Three
distribution widths w = 0.5,0.4,0.3 of random temperature
are studied. Taking the excited state solutions into account,
the partition function on the saddle point level is an Ising
model, in which the elementary clusters behave like superspins.
However, the effective Ising model is extremely anisotropic.
The horizontal bonds between the elementary clusters are very
weak while the vertical bonds are very strong. Both of them
are distributed widely. In certain range of temperature in the
disordered phase, the system can be dealt as a group of isolated
clusters, each of which is an Ising chain in vertical direction.
The size distribution of clusters is exponential, hence, the
vertical bonds distribution is also exponential.

There is an exponentially small probability of existing
elementary clusters (ECs) with extremely large size. These
ECs are the so-called rare regions [1]. Then, even if the
system is dealt as isolated Ising chains in vertical direction,
the susceptibility is divergent in a range of temperature. The
rare regions, the ECs with extremely large size, are responsible
for the divergence. The Griffiths-McCoy singularity can be
explained.

We have also studied the saddle point solutions for the
random temperature with the binary probability distribution.
It is found that the size and vertical bond distribution are still
exponential in certain range of temperature. In other words,
the Griffiths-McCoy singularity in the saddle point solutions
does not depend on the distribution of random temperature.

The paper is arranged as follows. In Sec. II, the Landau-
Ginzburg-Wilson Hamiltonian for McCoy-Wu Ising model is
given. In Sec. III, the discreteness barrier in the difference
saddle point equation is shown. In Sec. IV, the stable condition
for the horizontal DW across a single LOR is studied. In
Sec. VI, the criterion for an elementary cluster formed with
multiple LORs is given. In Sec. VII, the saddle point solutions
with random temperature distributed uniformly and binarily
are obtained. The Griffiths-McCoy singularity is discussed.
Section VII is a summary.
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II. LGW HAMILTONIAN

For convenience, we rotate the original McCoy-Wu Ising
model 90◦, the horizontal couplings are random from column
to column and identical in each column, the vertical couplings
are the same. Then, in the vertical direction, the system is
translation invariant. Using the Stratonovich-Hubbard trans-
formation, we map McCoy-Wu model to a Landau-Ginzburg-
Wilson Hamiltonian on the square lattice (see the detail in
Appendix):

H =
∑
i,j

{
1

2z
[(φi+1,j − φi,j )2 + (φi,j+1 − φi,j )2]

+ ti

2
φ2

i,j + g

4
φ4

i,j − βChφi,j

}
, (1)

where φi,j is the order parameter and i,j are the horizontal
and vertical coordinate of lattice site; z = 4 is the coordinate
number on the square lattice. For the Ising model, it has g =
1
3 . The random temperature ti depends only on the horizontal
coordinate. βC = 1/(zJ ) is the inverse of critical temperature
and J is the average coupling.

The reduced temperature ti depends only on the horizontal
coordinate since in the vertical direction the system is transla-
tion invariant. We can write

ti = t0 + δti , (2)

where t0 is average reduced temperature and δti is the random
part. The distribution of δti is related to the distribution of the
random couplings in the McCoy-Wu Ising model.

For convenience, we introduce the transformations

ϕi,j = √
zgφi,j , t ′i = zti, h′ =

√
gz3βCh (3)

and we get

H = 1

gz2

∑
i,j

{
1

2
[(ϕi+1,j − ϕi,j )2 + (ϕi,j+1 − ϕi,j )2]

+ t ′i
2

ϕ2
i,j + 1

4
ϕ4

i,j − h′ϕi,j

}
. (4)

The saddle point equation for the above Hamiltonian is
given by

−(ϕi+1,j + φi−1,j + ϕi,j+1 + ϕi,j−1 − 4ϕi,j )

+ t ′iϕi,j + ϕ3
i,j − h′ = 0. (5)

Note that it is a discrete difference equation. The transformed
temperature is z = 4 times of the original temperature. There-
fore, the transformed temperature distribution width is also
multiplied by z = 4.

There exist many excited state solutions for the saddle point
equation. If ϕ

i,j
is a solution of Eq. (5), its free energy is given

by

F ({ϕ
i,j

}) = − 1

gz2

∑
i,j

(
1

4
ϕ4

i,j
+ 1

2
h′ϕ

i,j

)
. (6)

We use the “underline” to denote the excited state solution. The
above equation is obtained by substituting Eq. (5) into Eq. (4),
and dealing h′ as a perturbation since we only concern the case
h′ → 0 for the critical phenomena.

At the saddle point level, where the fluctuation around the
saddle point solution is neglected, the partition function is
given by

Zsad =
∑

α

e−Fα , (7)

where the summation is carried out over all the excited state
solutions.

It should be pointed out that the discreteness plays a key role
in the present problem. Therefore, we shall keep the discrete
form throughout the paper. In addition, we have a convention
about the denotation of coordinates. We use i (or j ) to denote
x coordinate (or y coordinate) when it is an integer.

If it has |t | � 1, one can get the continuum limit of Eq. (1).
It turns into the well-known continuous Landau-Ginzburg-
Wilson Hamiltonian in which the coordinates i,j are replaced
by continuous coordinates x,y and the lattice constant is set to
be the unit length. Correspondingly, the saddle point equation
becomes

−
(

∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
+ t ′(r)ϕ + ϕ3 + h′ = 0. (8)

We call it continuous saddle point solution.

III. KINK SOLUTION WITH A CONSTANT
TEMPERATURE

A. Continuum limit

It is known early that there are excited state solutions even
for the pure system [26], that is, the kink solution. As we
know, the kink solution is obtained in the continuum limit. The
discreteness of lattice should induce something different from
the continuum limit solution. In the previous studies, these
differences are ignored generally because it is believed that
they are not important. This is correct in the critical phenomena
in the pure system since the correlation length approaches
to infinity in the asymptotic regime and then the detail of
lattice becomes unimportant. However, we will see that the
discreteness plays a key role in the present disordered system.

We start from the continuum limit solution, which can
be a benchmark for our numerical solution. In a pure two-
dimensional system, the temperature in Eq. (8), the reduced
temperature t , is a constant. Assuming variation in only y

direction and without the external field, Eq. (8) becomes

−d2ϕ

dy2
+ tϕ + ϕ3 = 0, (9)

where t is a constant. If t < 0, aside from the ground state
solution ϕ0 = ±√−t , there are excited state solutions [26]

ϕ(y) = ±√−t tanh

√−t

2
y. (10)

We use the “underline” to denote the excited state solution. For
these excited state solutions, there are two phases separated
by an interface, where ϕ(y) = 0. The interface is the domain
wall (DW). Here, the DW is a straight line. The free energy
of excited state solution is higher than that of ground sate. We
call their difference the free-energy increase. Substituting the
above solution into the Hamiltonian, one gets the free-energy
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increase per unit length of DW. It is given by

fd = 2
√

2

3gz2
(−t)3/2. (11)

Because the DW is infinitely long and its free-energy increase
is infinitely large, the kink solution does not play an important
role in critical phenomena in the pure systems.

We can show this solution is marginally stable under
perturbation. To study the stability of the kink solution, we
consider the fluctuation near it. Let

ϕ̃ = ϕ − ϕ (12)

and consider the Gaussian approximation of the continuous
Landau-Ginzburg-Wilson Hamiltonian for this fluctuation:

δH = 1

gz2

∫
dx dy

{
1

2

(
∂ϕ̃

∂x

)2

+
(

∂ϕ̃

∂y

)2

+ 1

2
[t + 3ϕ2]ϕ̃2

}
. (13)

The eigenmodes of ϕ̃ satisfy the following equation:

−
(

∂2ϕ̃

∂x2
+ ∂2ϕ̃

∂y2

)
+ [t + 3ϕ2]ϕ̃ = λϕ̃. (14)

For the eigenmode with the lowest eigenvalue, the fluctuation
in the x direction must be zero in the above equation. Dif-
ferentiating Eq. (9) with respect to y, it is easily shown that

ϕ̇ = dϕ

dy
= ± |t |/√2

cosh2(
√−t/2y)

(15)

is an eigenmode and its eigenvalue is zero. In fact, this
eigenmode is just a global translation of the kink. Since the
system is continuously translation invariant, such a translation
causes no free-energy increase. This mode is marginal with
respect to the perturbation. The eigenvalues of other modes
are larger than zero and they are stable. This can be verified by
numerical method.

B. Discreteness barrier

Now, we consider the pure system on a lattice, where the
reduced temperature is a constant on the lattice. Assuming
variation in only vertical direction, the discrete saddle point
equation (5) becomes

−(ϕj+1 + ϕj−1 − 2ϕj ) + tϕj + ϕ3
j = 0, (16)

where it reduces to be one dimensional. This equation can be
solved by a simple iteration algorithm

ϕ
(n+1)
j = ωϕ

(n)
j + (1 − ω)

2

[
ϕ

(n)
j+1 + ϕ

(n)
j−1

− tϕ
(n)
j − (

ϕ
(n)
j

)3]
, (17)

where ω is the relaxing parameter. We denote the converged
solution with a domain wall by ϕ

j
. Its free energy is given by

F = − 1

4gz2

∑
j

ϕ4
j
. (18)

FIG. 2. (a) The discrete kink solutions on a lattice. The solid line is
the continuous kink solution. (b) The differences between the discrete
and the continuous kink solution.

It can be expected that the solutions for the continuous and
discrete saddle point solution are approximately equal. The
solutions with several temperatures are shown in Fig. 2. In
Fig. 2(a), the rescaled solutions with temperature t = −1.0, −
0.8, − 0.6, − 0.4, − 0.2 coincide with the continuous solution
[Eq. (10)]. However, there are differences between the discrete
solution and the continuous ones. In Fig. 2(b) these differences
are shown. The differences are small indeed even for t = −1.0
and become smaller and smaller as |t | decreases.

All the discrete solutions are obtained on a lattice with
length L = 300. The open boundary condition is used. We
set the initial value of ϕ to be ϕ

(0)
j = 1 for −149 � j � 0 and

ϕ
(0)
j = −1 for 0 < j � 150. The DW in the converged solution

locates between the site of j = 0 and 1. Simply interpolating
we get that the DW location is y0 = 0.5. This is the value of
y0 in Fig. 2.

All the converged solutions show that the DW locates just
at the middle of the neighbored rows, i.e., y0 = n + 0.5 where
n is an integer. We will show that this solution is stable in
two ways. First, we analyze the stability with respect to the
fluctuation. Let

ϕ̃j = ϕj − ϕ
j
, (19)

where ϕ
j

is the converged solution with a kink. We consider the
Gaussian approximation of Landau-Ginzburg-Wilson Hamil-
tonian (4) for the this fluctuation:

δH = 1

gz2

∑
j

{
1

2
(ϕ̃j − ϕ̃j−1)2 + 1

2
[t + 3(ϕ

j
)2]ϕ̃2

j

}
, (20)

where the variation in horizontal direction is ignored. The
eigenmodes of ϕ̃ satisfy the following equation:

−(ϕ̃j+1 + ϕ̃j−1 − 2ϕ̃j ) + [
t + 3ϕ2

j

]
ϕ̃j = λϕ̃j . (21)

We solve this eigenequation with LAPACK. It is found that all
the eigenvalues are positive. The lowest smallest eigenvalues
λ1 for different t are shown in Fig. 3.

In Fig. 3(a), we show typical first eigenmode of Eq. (15),
which has the lowest eigenvalue λ1. They can be approximated
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FIG. 3. (a) The first eigenmodes of Eq. (21). The solid lines are
the continuous eigenmodes given by Eq. (15). (b) The first eigenvalue
λ1 and the discreteness barrier a vs the temperature t . Equation (26)
shows that λ1 ≈ 2gz2(πB)2a.

by Eq. (10) since they are the continuous counterparts. As
mentioned after Eq. (15), this eigenmode is just a globe
translation of the kink. However, on the lattice there is only
discrete translation invariance rather than the continuous one.
Although the first eigenvalues of Eq. (15) are very small, they
are positive and not equal to zero. This means that the discrete
kink solutions are stable!

Second, to understand the stability of the discrete kink
solution, we study the transient states during the iteration of
Eq. (17). In Fig. 3(a), three states are shown for t = −0.8. The
state shown with black square is the converged solution ϕ

j
,

which is stable. The states shown with red and green scatters
are transient states. These states can be approximated by the
continuous kink solution

ϕj ≈ ϕ(j − y0), (22)

where ϕ(y) is the kink solution defined by Eq. (10) and y0

is the location of DW, which is obtained by interpolation in
the numerical calculation. In Fig. 3(a), to show the location
of the domain wall, a dotted straight line is drawn for ϕ = 0.
The solid curves are the continuous functions ϕ(y − y0).

The solution with y0 = 0 [the red circle in Fig. 4(a)] is
obtained by setting the initial condition as ϕ

(0)
j = 1, for −L <

j < 0, ϕ
(0)
0 = 0, and ϕ

(0)
j = −1, for 0 < j < L. The length

of lattice is 2L + 1. The antisymmetry about j = 0 in the
initial condition is kept in the iteration, so the solution should
converge to such a solution with y0 = 0. But, it is unstable
with respect to perturbation, for example, if we set the initial
value ϕ

(0)
0 = 0.000 01 at j = 0 (or ϕ

(0)
0 = −0.000 01). It will

converge slowly to the solution with y0 = 0.5 (or y0 = −0.5),
which is stable. The iteration process is as follows. After some
steps, the transient states converge to kink shape. Then, the kink
shape stays the same, but the location of DW shifts. During the
iteration, we record the transient states after every 500 times of
iteration, then we get the data in Fig. 4(b). For each recorded
transient state we calculate its free energy F defined in Eq. (18).
The free-energy increase is defined by

�F = F − Fd, (23)

FIG. 4. (a) Three transient states ϕj with different DW locations.
The scatters are obtained from numerical solution of Eq. (17) during
the iteration. The solid lines are obtained from the continuous
functions ϕ(y − y0). In order to see the DW location y0, a dotted
line for ϕ = 0 is drawn. (b) The free-energy increases of the transient
states vs the DW locations.

where Fd is the free energy of the solutions with y0 = ±0.5.
We recorded many transient states, of which free-energy
increases are shown in Fig. 4(b). Considering the discrete
lattice translation symmetry, the free-energy increase should be
a periodic function on y0 with period 1. The curve in Fig. 4(b)
is just a period for y0 from −0.5 to 0.5.

It can be seen that the relation between the free-energy
increase and the location of DW is approximately given by

�F = a

2
[cos(2πy0) + 1]. (24)

In Fig. 4(b), the black solid line is drawn from the above
equation with a = 7.0323 × 10−5. From this equation, we can
see that there is a free-energy barrier as the location of DW
shifts. The height, from the lowest to the highest free energy,
is a. We call a the discreteness barrier. For different t , the
discreteness barriers a are calculated numerically and shown
in Fig. 3(b).

Just due to this discreteness barrier, the stable DW can only
locate in the middle of two neighbored rows. Of course, for
a pure system, the DW length is infinite long and induces
an infinitely large free-energy increase. So, it does not play
an important role. However, for inhomogeneous and random
systems, the DW length can be finite. Then, the discreteness
barrier will play a key role.

We find that the discreteness barrier a is related to the
eigenvalue λ1 of the first eigenmode in a simple way. The first
eigenmode in Fig. 2(a) is with respect to the stable state with
y0 = n + 0.5 where n is an integer. It is approximately given
by

ϕ̃1j ≈ Bϕ̇(j − y0), (25)

where ϕ̇(y) is defined in Eq. (15) and B2 = 2
√

2|t |3/2/3 is the
normalization constant.
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FIG. 5. (a) The free-energy increases vs the distance between the
domain walls for t = −0.25. (b) The minimal distance between two
domain walls for different temperature.

The transient states with y0 = 0.5 + δy0 near y0 = 0.5 can
be regarded as shifting the whole kink a small distance δy0.
Considering the fluctuation proportional to the first eignemode,
i.e., φ̃ = cϕ̃1, from Eqs. (20) and (21), one gets the free-
energy increase caused by this shift �F = λ1c

2/2gz2. On
the other hand, the variation caused the first mode can be
approximated by φ̃ = ϕ̇(c)δy0. Then, it has δy0 = cB. The free-
energy increase due to the shit of DW is �F = a

4 (2π )2(δy0)2 =
a
4 (2π )2c2B2. Therefore,

λ1 ≈ 2g(πzB)2a. (26)

As shown in Fig. 3(b), this relation agrees with the numerical
results well.

C. Minimal distance between two kinks

Now, we consider two-kink solutions. They are obtained
by setting the initial condition as ϕ

(0)
j = −√−t , for 1 � j �

nd , and ϕ
(0)
j = √−t , for nd � j � L, where L is the length

of lattice and the periodic condition is used in the numerical
calculation. Then, the solution will converge to a two-kink
solution. There are two DWs and we denote their locations by
y01 and y02, which are obtained from the numerical solution
with a simple interpolation. The distance between two DWs is
denoted by d = |y02 − y01|.

Similar to the one-kink solutions, one may record the
transient states and their free energy. Figure 5(a) shows their
free-energy variation �F with the distance between two DWs.
The variation �F is defined are �F = �F2 − 2δF1, �F2 =
F2 − Fg , and �F1 = F1 − Fg , where F2 is the free energy of
transient with two kinks; F1 is the free energy of the stable
solution with one kink, Fg is the ground state free energy.
The lattice length is 600 and the temperature is t = −0.25. As
shown in Fig. 5(a), the free energy varies with the distance
d as a periodic function for d > 30. In this case, the two
DWs can be regarded as two isolated DWs. The free energy
is locally minimal at d = 31,33,35 . . . since the two DWs
locate at the middle of two neighbored sites. These solutions
are stable. For d = 30,32,34, . . . , the free energy is locally

maximal. For these states, the two DWs locate at the positions
with integer coordinate. They are unstable. For d < 28, it goes
down quickly as the distance d decreases and there is no stable
solution. d = 29 is minimum distance for a stable two-kink
solution.

This example tells us that if two DWs are too close they
are unstable. There is a shortest distance between two stable
DWs. For different temperatures, the shortest distances of two
DWs dmin are calculated. The results are shown in Fig. 5(b).
The log-log plot shows a perfect straight line. The fitted result
is given by dmin ≈ 5.9|t |−1.1.

IV. TWO-DIMENSIONAL EXCITED STATE SOLUTIONS

Now, we study the excited state solutions of two-
dimensional saddle point equation (5) with an inhomogeneous
temperature. With these examples, we show the basic concepts,
quantities, and rules. We show that the rules are general. Then,
we apply these rules to the random temperature cases.

A. LORs and four quantities to describe them

We consider a system with six regions. The ranges of the
regions are 0 < x � 10, 110 < x � 120 for region 1; 10 <

x � 30, 30 < x � 50, 30 < x � 50, 70 < x � 90, 90 < x �
110 for regions 2, 3, 4, 5, 6, respectively. The temperatures
in these regions are set to be 0.4, − 0.7, t3, − 0.6, t5, −
0.7, 0.4, respectively. The boundary condition is periodic. We
set t3,t5 > 0 and adjust them to study the stability of the domain
wall. In this case, the temperature is correlated in a finite
range, 20 lattice constants. However, our conclusions are not
dependent of this correlation and based on general analysis.

For the ground state solution, there is no variation in the
vertical (y) direction. Then, the saddle point equation (5)
without external field for the ground state solution becomes

−(ϕi+1,j + ϕi−1,j − 2ϕi,j ) + tiϕi,j + ϕ3
i,j = 0. (27)

This equation depends only on the x coordinate rather than y

coordinate. Figure 6(a) shows the ground state solution with
temperature stated above and t3 = t5 = 0.1. In regions 2,4,6,
the reduced temperature is negative, so the solution is nonzero.
In regions 1,3,5, the reduced temperature is positive, so the
solution decays to be very small and close to zero.

There are three peaks in the ground state solution. The
regions of the three peaks are locally ordered. We call them
locally ordered regions (LORs). In Fig. 6(a), three LORs are
labeled by words in blue. We determine the spatial range of
the LOR by the minimum. One can see that the ranges of
three LORs are 0 < x < 40, 40 < x < 80, and 80 < x < 120,
respectively. We call these ranges the sizes of LOR. Here, the
sizes of the three LORs are the same ln = 40.

As shown in Fig. 1, in the excited state solutions, there
are vertical DWs, which locate between neighbored LORs. To
calculate the free-energy increase due to such a DW between
two neighbored LORs, we separate the two LORs off the
system. For example, as shown in Fig. 6(b), we separate LORs
1,2 off. The temperatures are set to be the same, but we only
consider part of the system for 0 < x � 80, in which the saddle
point equation (27) is solved with open boundary condition.
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FIG. 6. (a) The ground state solution for the temperature stated
in the text. There are three peaks. We call them three LORs. (b) The
ground state and excited state solutions for the calculation of the
coupling between LORs 1 and 2. Here, t2 = t4 = 0.1. (c) The excited
state solutions for the calculation of the discreteness barrier of the
domain wall across LOR 2. The color map is the solution and the black
dotted line is the DW. (d) The free-energy increase as the location of
DW shown in (c) varies.

The ground state solution and excited state solution are shown
in Fig 6(b). The open boundary condition guarantees that there
is only one DW between LORs 1 and 2. For any two neighbored
LORs, we can carry out this calculation. Consider such a
DW crosses the whole system along the y direction. Let the
free-energy increase per unit length due to this DW be

2kx
n,n+1 = FE

n,n+1 − FG
n,n+1, (28)

where FG
n,n+1,F

E
n,n+1 are the free energy of the ground state

and excited state solution of Eq. (27) for nth and (n + 1)th
LORs, respectively. The significance of 2kx

n,n+1 is discussed

later. The free energy is obtained with F = − 1
gz2

∑
i

ϕ4
i,j

4 . In
principle, one should calculate this free-energy increase taking
the whole system into account. However, the solution near
the DW between LORs 1 and 2 is only related to LORs 1,2
closely and not influenced much by the remote part like LOR
3. Moreover, this method can save computing time.

To study the DW across a LOR, for example, LOR 2, we
can study LOR 2 separately. We separate LOR 2 off by solving
the two-dimensional saddle point equation (5) only for 40 <

x < 80. We use open boundary conditions in both directions.
There exist stable excited state solution with a DW across the
LOR as shown in Fig. 6(c). The black dotted line is the DW.
For any LOR, we can calculate the free-energy increase due
this kind of DW. Let it be

2ky
n = FE

n − FG
n , (29)

where FE
n ,FG

n are the free energies for the excited state with a
DW across the nth LOR and ground state solution, respectively.
The significance of 2k

y
n is discussed later.

To show the stability of this solution, we study the free
energy of transient state. By tuning the initial values as in
Sec. III, we can get the transient states. In Fig. 6(d), we
show the free energy of transient state with a DW across

LOR 2 shown in Fig. 6(c). We characterize the transient
state with the location of DW y2, where the SP solution
is zero. For y2 = 149.5,150.5,151.5, . . . , the free energy is
locally minimal and its value is about 1.5375. In the converged
solutions, the DW just locates at y2 = 149.5,150.5,151.5, . . . .
The free energy is a periodic function of y2 with period 1. The
data in Fig. 6(d) are obtained piece by piece. For example, if
we set the y0 = 149.001 initially, the solution will converge to
y0 = 149.5 and if we set y0 = 148.999 initially, the solution
will converge to y0 = 148.5.

The free energy of the transient state as shown in Fig. 6(d)
should be approximately

�Fn = 2ky
n + an

2
[cos(2πyn) + 1] (30)

for nth LOR, where �Fn = FE
n − FG

n , FE
n is the free energy of

the transient state, and FG
n is that of the ground state. 2k

y
n is the

free-energy increase of DW across LOR n. The discreteness
barrier, which equals to the height from lowest free energy to
the highest free energy, is an. In Fig. 6(d), it has 2k

y

2 = 1.5375
and a2 = 9.7385 × 10−5.

This discreteness barrier is the counterpart of that obtained
in Sec. III, where the temperature is a constant. It depends
on the temperature in the LOR. Generally speaking, it can be
influenced by the neighbored LOR, but this kind of influence
must be very small. Since the saddle point solution, especially
at the peak, is mainly determined by the local temperature.
Therefore, we can separate the LORs off and study the
discreteness barrier individually.

It costs too much computing time to extract the discreteness
barrier an according to the above discussion. We have a simpler
algorithm, in which only two solutions are solved. One is
obtained by setting the initial DW at the center of the system,
i.e., ϕ

(0)
i,j = −1 for −L � i < 0, ϕ

(0)
i,0 = 0, and ϕ

(0)
i,j = 1 for

0 < j � L. Because during the iteration the antisymmetry in
the solution is kept, the DW in the converged solution is at
j = 0. This solution is unstable with respect to perturbation.
Another one is obtained by setting the initial DW between
two neighbored rows, i.e., ϕ

(0)
i,j = −1 for −L � i < 0, and

ϕ
(0)
i,j = 1 for 0 � j � L. The converged solution is stable. The

free-energy difference of these two solutions is the discreteness
barrier an.

For a LOR, we need four quantities: the size ln, the coupling
in x direction kx

n,n+1, in y direction k
y
n , the discreteness barrier

an. For any LOR we can calculate them according to the above
algorithms.

B. Two basic shapes of DW segments

Figures 7(a) and 7(b) show typical stable excited state
solutions of Eq. (5) for the temperatures stated in the last
subsection. The colored map shows the excited state solutions.
The domain walls, where the solution changes sign, are
shown with black lines. They are approximately composed
of horizontal and vertical segments. As we discussed above,
there are three LORs, which are labeled by words in white.
The vertical DW segments locate just at the borders between
two neighbored LORs and the horizontal DW segments cross
the LORs.
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FIG. 7. Basic shapes of DWs. In (a) and (b) the color maps are
the saddle point solutions and the black lines are DWs. (a) The DW
segment across LOR 2 and the two DW segments it connects form
a shape of a “big cap.” (b) The DW segment across LOR 2 and the
two DW segments it connects form a shape of an “elbow.” (c) The
free-energy variation of the transient states vs y02, the location of DW
across LOR 2 with big cap DW segments as shown in (a). (d) The
free-energy variation of the transient states vs y02, the location of DW
across LOR 2 with elbow DW segments as shown in (b).

Figures 7(a) and 7(b) show two basic shapes for the
horizontal DW segments and vertical DW segments. See the
horizontal DW segment at 40 < i < 80, j = 110. It connects
with two vertical DW segments, one is between LOR 2 and
LOR 1, and another one is between LOR 2 and LOR 3. The
three segments in Fig. 7(a) form a shape of “big cap” and in
Fig. 7(b) form a shape of an “elbow.”

The free energy depends on the positions of the DWs
obviously. We show the free energy of the transient states in
Fig. 7(c) for the big cap case shown in Fig. 7(a). We adjust the
initial condition and record the transient states. The position
of the upper DW across the LOR 2 is labeled by y2. In the
numerical calculation, y2 is obtained by simple interpolation
at the middle of the LOR 2, i.e., x = 60. In the three cases
with t3 = t5 = 0.1,0.071,0.05 in Fig. 7(c), only the upper DW
across LOR 2 is moving in the iterations. Therefore, the free
energy of transient states only depends on y2. We find that the
free energy of the transient states can be approximately given
by

�F ≈ 2
(
kx

1,2 + kx
2,3

)
y2 + a2

2
cos(2πy2) + C, (31)

where C is constant to make �F = 0 at a reference point,
whose position is y0 = 111.5. The length of the segment of
DW between LORs 1 and 2 increases with y2. As discussed
above, 2kx

12 is the free-energy increase per unit length of DW
between LORs 1 and 2. 2kx

23 is that between LORs 2 and 3. That
between LORs 2 and 3 also increases with y2. The third term
stems from free-energy variation due to the horizontal DW
across LOR 2 defined in Eq. (30). a2 is discreteness barrier
of LOR 2. The three parameters 2kx

12,2kx
23,a2 are calculated

according to the algorithm in the last subsection. They are
given in Table I.

TABLE I. The parameters for the curves in Fig. 7.

t3 t5 2kx
12 2kx

23 a2

0.1 0.1 7.517 × 10−5 7.517 × 10−5 9.741 × 10−5

0.071 0.071 1.525 × 10−4 1.525 × 10−4 9.793 × 10−5

0.05 0.05 2.612 × 10−4 2.612 × 10−4 9.836 × 10−5

0.4 0.1 3.308 × 10−7 7.517 × 10−5 9.564 × 10−5

0.1 0.1 7.517 × 10−5 7.517 × 10−5 9.741 × 10−5

0.07 0.1 1.564 × 10−4 7.517 × 10−5 9.769 × 10−5

We choose three cases t3 = 0.4,0.1,0.07 for the elbow
shape shown in Fig. 7(b) to show the free-energy variation
with y2 in Fig. 7(d). In all three cases, it has t5 = 0.1. The
relation between the free energy and the location of the DW
across LOR 2 can be approximately given by

�F ≈ 2
(
kx

1,2 − kx
2,3

)
y2 + a2

2
cos(2πy2) + C, (32)

where C is constant to make �F = 0 at a reference point,
whose position is y0 = 111.5. Similarly, 2kx

12 is the free-energy
increase per unit length of DW between LORs 1 and 2. 2kx

23
is that between LORs 2 and 3. The length of the vertical DW
between LORs 1 and 2 increases with y2. That between LORs
2 and 3 decreases with y2.

It can be easily seen that the formula for the big cap is valid
for the “big cup” case and the formula for elbow is still valid if
the elbow is reversed. In addition, the above two formulas are
valid only for |y2 − y3| � 1 and |y2 − y1| � 1, where y1,y3

are the y coordinates of the upper DW across the LORs 1 and
3, respectively.

The scatters in Figs. 7(c) and 7(d) are the numerical results
of the free energy of the transient states and the solid curves
are obtained from Eqs. (32) and (31) with parameters give
in Table I. The agreement between the numerical results and
Eqs. (32) and (31) are good.

The DW segment across LOR 2 is stable if the free energy
is locally minimal. In Fig. 7(c), for t3 = t5 = 0.1 it is stable at
about y2 = 109.5,110.5. For t3 = t5 = 0.071, it is marginally
stable at y2 = 109.5,110.5, where the second derivative of
free energy with respect to y2 is zero. For t3 = t5 = 0.05, it
is unstable in Fig. 7(c). In Fig. 7(d), in the three cases, one
can see the DW segment across LOR 2 is stable at about
y2 = 109.5,110.5, where the free energy is locally minimal.

Figuratively speaking, the vertical DWs between LORs
cause tensions and the horizontal DWs across the LORs cause
resistances stemming from the discreteness barrier. In the next
subsection, we discuss the stability condition for the DW
segment across LOR.

C. Generalized force and the stable condition for
the horizontal DW

Combining Eqs. (32) and (31), we assume the free-energy
increase concerning the elbow and big cap as shown in
Figs. 7(a) and 7(b) in a unified form

F = F1,2 + F2,3 + G2, (33)

where the first two terms stem from the vertical DWs between
LORs 1 and 2 and between 2 and 3; the third term stems from
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the horizontal DW across LOR 2. The first two terms can be
written generally

Fn,n±1 = Fn,n±1(|yn − yn±1|). (34)

Here, n = 2 and y1 and y3 are the y coordinates of the upper
horizontal DWs across the LORs 1 and 3, respectively. The
third term can be written generally

Gn ≈ an

2
cos(2πyn) (35)

because the DW across the LOR n has a discreteness barrier
with amplitude an. Then, we can introduce three generalized
forces

τn±1,n = −∂Fn,n±1

∂yn

(36)

and

ρn = −∂Gn

∂yn

. (37)

Obviously, τ1,2 (τ3,2) are the tensions from the vertical DW
between LORs 1 and 2 (LORs 2 and 3); ρ2 is the resistance
of the horizontal DW across LOR 2 due to the discreteness
barrier.

To show the generalized force in detail, we consider the big
cap case shown in Fig. 7(a). We set y1 = 50.5, y3 = 120.5 and
t1 = 0.4, t2 = −0.7, t3 = 1.0, t5 = 0.07, t6 = −0.7. We only
change t4 and we show four cases with t4 = −0.3, − 0.4, −
0.5, − 0.54 in Fig. 8.

In the numerical calculation, we calculate the net general-
ized force with difference method. After we get the free energy
of the transient states, we calculate differentiation of F respect
to y2 to get the net force. Because of t3 = 1.0, the free-energy
increase due to the vertical DW between LORs 1 and 2 is
so small that the tension τ1,2 ≈ 2k1,2 ∼ 10−9 can be omitted.
Therefore, the tension τ2,3 and the resistance ρ2 dominate.

For all the four cases in Fig. 8, there are two common
features. The first one is that the generalized force − ∂F

∂y2
has

an oscillating part with oscillation period 1. The second one

FIG. 8. (a) The net generalized force with t4 = −0.3, − 0.4. (b)
The fine structure of the generalized forces in (a) fory02 − y03 � 1. (c)
The net generalized force with t4 = −0.5,0.54. (d) The fine structure
of the generalized forces in (c) for y2 − y3 � 1.

is that the oscillation center, which is obtained by averaging
the oscillating part in a period, approaches zero with |y2 − y3|.
The oscillation center becomes a constant for |y2 − y3| � 1.
For t4 = −0.5, − 0.54, the oscillating part can be attributed to
the discreteness barrier of LOR 2.

From Eqs. (31) and (32), one can see that for |y2 − y3| � 1,
it should have τ3,2 ≈ 2kx

2,3. However, the situation is a bit more
complicated if the force is studied more carefully. It is found
that there is a fine structure for the tension τn,n+1.

The four cases shown in Figs. 8(a) and 8(c) can be cataloged
into two types. The cases t4 = −0.3, − 0.4 shown in Fig. 8(a)
belong to a type and it has ρ2 � τ2,3. The cases t4 =
−0.5, − 0.54 shown in Fig. 8(c) belong to another type and it
has ρ2 ∼ τ2,3. For t4 = −0.3, the discreteness barrier is a2 =
2.39 × 10−7 and it generates a force with maximum πa2 ≈
1.5 × 10−6. This can not explain the oscillating amplitude
5.0 × 10−5. In addition, the discreteness barrier should induce
a force proportional to πa2 sin(2πy2), which can not have the
shape of the oscillating part shown in Fig. 8(b). We have tested
many cases with very small τ1,2,a2, we get the similar shapes
of oscillating part of generalized force.

We conclude that the oscillating part is a lattice effect. In
other words, the tension τ3,2 should be approximately given by

τ3,2 ≈ 2kx
2,3 + b2,3

[
| cos(πy2)| − 2

π

]
(38)

for y3 is fixed and y2 − y3 � 1. The above formula satisfies
two requirements. First, τ3,2 should be a periodic function with
period 1. Second, the averaged τ3,2 should be equal to 2kx

2,3 [see

Eq. (28)], i.e.,
∫ 0.5
−0.5 τ2,3dy2 = 2kx

2,3.
Figures 8(b) and 8(d) show the agreement of the fine-

structure formula (38) with the numerical results. For t4 =
−0.3, it has 2k2,3 = 6.41 × 10−4 and b2,3 = 5.0 × 10−5. The
scatters are the numerical results and the solid line is drawn
according to Eq. (38). For t4 = −0.4 shown in Fig. 8(b), the
oscillating part contains the discreteness barrier of LOR 2 and
the lattice effect of τ2,3. The solid line is drawn according
to Eq. (38) with 2k2,3 = 7.22 × 10−4, b2,3 = 8.0 × 10−5. The
numerical result (the scatters) of the transient states agree
with Eq. (38) well. It is so for t4 = −0.5,0.54 shown in
Fig. 8(d). The fine-structure coefficient bn,n+1 is generally
less than 10% of 2kx

n,n+1. This is tested in a large range
of parameters. Therefore, we omit the fine structure in the
following discussion.

Now, we summarize the generalized forces as follows. From
Eqs. (34) and (35), the discreteness barrier of DW across the
LOR n can cause the resistance ρn:

ρn ≈ πan sin(2πyn). (39)

The tensions between the LORs are approximately given by

|τn±1,n| = 2kx
n±1,n for |yn − yn±1| � 1,

|τn±1,n| → 0 as |yn − yn±1| → 0. (40)

Here, we omit the fine structure due to the lattice effect.
If the DW across LOR 2 is stable, it must be satisfied that

∂F/∂y2 = 0, i.e., the net force on the DW across LOR 2 is
zero. According to Eq. (33), we get

ρ2 + τ12 + τ23 = 0. (41)
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Specifically, for the big cap case shown in Fig. 7(a), it has
τ1,2,τ3,2 < 0, ρ2 > 0. Then, we get the balance equation

|ρ2| = |τ12| + |τ23|. (42)

Because |τ1,2| � 2kx
1,2, |τ1,2| � 2kx

1,2, and ρ2 � πa2, we get
that if

πa2 > 2kx
1,2 + 2kx

2,3, (43)

the balance can always be reached in any case. Then, one can
find a local minimum of free energy for y2 in every period of
one, as shown in the cases t3 = t5 = 0.1,0.071 in Fig. 7(c).
Otherwise, one can not find a local minimum as shown in
the case t3 = t5 = 0.05 in Fig. 7(c). One can test it with the
parameters given in Table I.

And, for the elbow case shown in Fig. 7(a), it has τ3,2 > 0,
τ1,2 < 0, and ρ2 = −(τ1,2 + τ3,2):

|ρ2| = ||τ12| − |τ23||. (44)

Because |τ1,2| � 2kx
1,2, |τ1,2| � 2kx

1,2, and ρ2 � πa2, we get
that if

πa2 >
∣∣2kx

1,2 − 2kx
2,3

∣∣ (45)

the balance can always be reached at a point j < y2 < j + 1
where j is an arbitrary integer. This condition is satisfied for
the three cases shown in Fig. 7(d). Then, one can find a local
minimum of free energy for y2 in every period of one, as shown
in Fig. 7(d).

To illustrate the generalized forces and the DWs simply,
we draw diagrams in Fig. 9. The red lines indicate the DWs.
The black dotted lines indicate the borders of LORs. The blue
arrows indicate the generalized forces. Figure 9(a) is for the
elbow case and 9(b) is for the big cap case. The above relations
for the generalized force can be seen simply in the sketches.

These stable conditions (43) and (45) can be extended to
any stable DW across a LOR. There is a simple physical
explanation for the above equation. The generalized forces
from the vertical DWs between LORs tend to shrink the

FIG. 9. The sketch of generalized forces. (a) The big cap case.
(b) The elbow case. (c) The big cap case with two horizontal DW
segments. (d) The elbow case with two horizontal DW segments.

DW. However, the horizontal DWs across the LORs resist the
shrinking because of the discreteness barriers. If the barrier is
high enough and then the resistance is strong enough, the DW
across the LOR can be stable.

V. THE ELEMENTARY CLUSTER AND ITS CRITERION

A. Elementary cluster and the effective Hamiltonian at the
saddle point level

For πa2 > 2(kx
1,2 + kx

2,3), both the elbow and big cap are
stable. The DW segment across the LOR 2 can be stable
at the middle between any neighbored rows, i.e., any j th
and (j + 1)th row. Then, we call LOR 2 an elementary
cluster (EC).

To distinguish from the LOR, we denote the quantities of
EC with bigger letters. For example, we use LN,Kx

N,N+1,K
y

N

to denote the size, the couplings between two neighbored ECs,
and the vertical couplings inside an EC. If the condition πan >

2(kx
n−1,n + kx

k,k+1) for all three LORs is satisfied, every LOR
is an EC. The couplings between ECs Kx

N,N+1 and inside ECs
K

y

N are just kx
n,n+1,k

y
n because the three LORs are ECs.

The stable DW configurations can be mapped to an Ising
model. The three ECs can be regarded as three columns of
Ising spins. If the solution has opposite sign in two neighbored
LORs, say EC n and n ± 1, there exists a segment of vertical
DW of length 1, which causes a free-energy increase 2Kx

n,n±1.
If the solution changes sign inside an EC, there exists a segment
of DW across the EC, which causes a free-energy increase 2K

y
n .

In the horizontal direction, the spatial size of the spin is the size
of EC Ln. In the vertical direction, the spatial size of the spin
is the original lattice constant. Then, the free-energy increase
for a stable excited state solution can be approximately given
by

Hsad = −
∑
N,j

[
Kx

N,N+1SN,jSN+1,j + K
y

NSN,jSN,j+1

−h′MNSN,j

]
, (46)

where SN,j = ±1 is spin of the N th EC at j th site in the
vertical direction, Kx

N,N+1,K
y

N are the couplings between ECs.
They are just kx

n,n+1,k
y
n because the three LORs are ECs. The

magnetic moment of the N th EC is given by

MN =
∑

i∈N th EC

1

2
φi. (47)

The partition function at the SP level is given by

Z =
∑
{SN,j }

e−Hsad . (48)

In the following, we will show that an EC usually consists
of multiple LORs rather than single LOR. In that case, the
couplings between ECs Kx

N,N+1 and inside ECs K
y

N are not
kx
n,n+1,k

y
n . However, the effective Hamiltonian for the saddle

point solution is still given by Eq. (46).
One may note that for a stable excited state solution, two

DW segments across the same LOR can not be too close. There
should be a minimal distance, just as discussed in Sec. III C.
We have studied this distance minimum for some cases. In our
concerned situation, the distance minimum can be estimated
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FIG. 10. (a) The stable DW for 2(kx
2,3 + kx

1,2) > πa2. (b) The
black dotted lines mark the borders of LORs. The stable DW for
2(kx

2,3 − kx
1,2) > πa2. (c) The distance between the DW segment

across LORs 2 and 3 for case (b) vs t5 with t5c = 0.070 326. (d) The
distance between the DW segment across LORs 2 and 3 for case (a)
vs t5 with t5c = 0.035 464.

to be 6/|t |, where t is the reduced temperature at the center of
LOR. If K

y

N is much bigger than 1 and the N th EC is dealt as an
isolated Ising chain in vertical direction, the correlation length
is given by e2K

y

N /2. In other words, the most probable distance
between two DW segments across the N th EC is e2K

y

N /2. If
this most probable distance is much larger than the minimal
distance, this constraint from the minimal distance will not
cause much error. This condition is satisfied in the random
temperature cases discussed in the following sections.

If πa2 < 2(ax
2,3 + ax

1,2) and πa2 > |2(kx
2,3 − kx

1,2)|, the DW
segment across LOR 2 is not stable in big cap case for y2 −
y1 � 1, y2 − y3 � 1 but stable in the elbow case. Then, the
saddle point solutions can not be described by Eq. (46) any
longer. LOR 2 is not an EC. Of course, one adds a constraint
to eliminate the DW configuration containing big cap at LOR
2 in Eq. (46).

B. Near the unstable point of EC

For the big cap case as shown in Fig. 10(a), the DW segment
across LOR 2 is not stable for y2 − y3 � 1 any longer if πa2 <

2(kx
2,3 + kx

1,2). In this case, the DW segment across LOR 2 will
be dragged to the DW segment across LOR 3. However, as the
distance y2 − y3 decreases, it may become stable. Figure 10(a)
shows such a situation in four cases with 2(kx

2,3 + kx
1,2) > πa2.

In these cases, a2,k
x
1,2 are fixed and kx

2,3 is different since it
depends on t5. The smaller t5 is, the stronger kx

2,3 is. The main
part of the DW segment between LORs 2 and 3 is inclined. The
tension τ2,3 on this inclined DW is less than 2kx

2,3, so the balance
can be reached as the DW is inclined enough. See the case for
t5 = 0.065 shown in Fig. 10(a), where the DW segment across
LOR 3 is stable and its vertical position is given by y3 ≈ 100.5
for x = 100. The DW segment across LOR 2 is unstable if
we set its initial position y2 > 113 for x = 60. The solution

will converge to y2 = 112.273 for x = 60. y2 − y3 ≈ 11.7 is
the maximal difference between the y coordinates of the DW
segments across LORs 2 and 3. Moreover, there are stable
solutions for 0 < y2 − y3 < 11 since the DW segment between
LORs 2 and 3 is more inclined and τ2,3 becomes smaller.

We adjust kx
2,3 through tuning t5. As t5 approaches the crit-

ical value t5C , the maximum stable distance y2 − y3 increases
to infinity logarithmically obeying

|y03 − y02|max ∼ log |t5C − t5|. (49)

This logarithmic dependence is shown in Fig. 10(c). This
indicates that unless πa2 is very close to 2(kx

2,3 + kx
1,2), the

distance y2 − y3 is small and in order of 1.
For the elbow case as shown in Fig. 10(b), the DW segment

across LOR 2 is not stable if πa2 < 2(Kx
2,3 − Kx

1,2). In this
case, the DW segment across LOR 2 will be dragged to the DW
segment across LOR 3. Figure 10(b) shows the stable location
of the DW segment across LOR 2 in four cases with πa2 <

2(kx
2,3 − kx

1,2). In these cases, the main part of the DW segment
between LORs 2 and 3 (70 < x < 90) is inclined, rather than
vertical. The inclined DW segment between LORs 2 and 3
causes a tension less than 2kx

2,3, so the balance can be reached.
See the case t5 = 0.03 (the blue triangle scatters), the distance
between the DW segments across LORs 2 and 3 is y3 − y2 =
11.758. If y2 is set to be y3 − y2 > 12 initially, the DW segment
across LOR 2 is not stable. The solution converges toy3 − y2 =
11.758. Moreover, there are stable solutions for 0 < y3 − y2 <

11 since the DW segment between LORs 2 and 3 is more
inclined and τ2,3 is smaller.

If πa2 < 2(kx
2,3 − kx

1,2) and πa2 is very close to 2(kx
2,3 −

kx
1,2), the maximum stable distance |y3 − y2| will become very

large. It increases to infinity as t5 approaches to t5C obeying
Eq. (49) as shown in Fig. 10(d). If 2(kx

2,3 − kx
1,2) � πa2, the

y3 − y2 will be very small and in order of 1.

C. Clustering of two neighbored LORs

As discussed in the above, if πa2 < 2kx
1,2 + 2kx

2,3, the DW
across LOR 2 in the big cap case will be dragged to the DW
across LOR 3. Usually, y2 − y3 is small and in order of 1. If
πa2 < 2(kx

2,3 − kx
1,2), the DW across LOR 2 in the elbow case

will also be dragged to that across 3. y3 − y2 is small and in
order of 1 unless πa2 is very close to 2(kx

2,3 − kx
1,2). In this

case, the DW segments across LORs 2 and 3 can be regarded
as being “tied together.” The LORs 2 and 3 are united as an
EC. To realize such DW configuration, it is required that the
superspins S2,j and S3,j flip coherently, where j is row’s label.
Then, we only have two ECs: the EC of LOR 1 and the EC of
LORs 2 and 3. Obviously, the size of this EC is the sum of the
sizes of LORs 2 and 3, i.e., L2 = l2 + l3.

If πa2 < 2kx
1,2 + 2kx

2,3 but πa2 > 2(kx
2,3 − kx

1,2), the DW
across LOR 2 in the big cap case will be dragged to the DW
across LOR 3, but the DW across LOR 2 in the elbow can be
stable for y3 − y2 > 0. In this case, the DWs across LORs 2
and 3 can be regarded to be tied up only in the big cap case
rather than in the elbow case. We have two options to deal
this situation. One option is to add constraint to eliminate the
big cap configuration in the summation of partition function.
Another option is to ignore it if the probability of this situation
is very small. In the random temperature case, we argue that
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the probability of this case is small and plays a less important
role. We ignore it in the random temperature cases.

As LORs 2 and 3 form an EC, which is denoted by EC 2, the
free-energy increase caused by the DW across it is the effective
coupling of the EC in the y direction. It is simply given by

K
y

2 = k
y

2 + k
y

3 (50)

and its size is given by

L2 = l2 + l3. (51)

What about the discreteness of the EC of LORs 2 and 3? See
the big cap case for the EC of LORs 2 and 3 in Fig. 9(c), if DW
segments across LORs 2 and 3, it must have |τ1,2| = |ρ2| +
|τ3,2| and |τ2,3| + |τ4,3| = |ρ3|. Considering τ3,2 = −τ2,3, we
get |τ1,2| + |τ4,3| = |ρ2| + |ρ3|. The stable condition for the
DW across this EC should be π (a2 + a3) > 2(kx

1,2 + kx
3,4), so

the effective discreteness barrier is given by

A2 = a2 + a3. (52)

This argument can be applied to the elbow case for the EC of
LORs 2 and 3 shown Fig. 9(d). One gets the above equation
again. Then, it must be satisfied that

πA2 = π (a2 + a3) > 2Kx
1,2 + 2Kx

2,3, (53)

where Kx
1,2 = kx

1,2, Kx
2,3 = kx

3,4 because EC 2 contains LORs
2 and 3 and EC 3 is the previous EC 4. The coupling between
ECs 1 and 2 is kx

1,2 and that between ECs 2 and 3 is kx
3,4.

In the cases shown in Fig. 10(b), the LOR 2 can not be an
EC but LOR 3 can be an EC. They are united as a new EC.
The DW across LOR 2 is dragged to that across LOR 3. Here,
the necessary condition to is 2kx

2,3 > 2kx
1,2 + πa2. Of course,

if the LOR 3 can not be an EC but LOR 2 can be an EC and
2kx

2,3 > 2kx
3,4 + πa3, LORs 2 and 3 are also united as a new

EC. The DW across LOR 3 will be dragged to that across LOR
2. There is another possibility. If both LORs 2 and 3 can not
be ECs, but π (a2 + a3) > 2kx

1,2 + 2kx
3,4, they may be united as

an EC. The coupling between LORs 2 and 3 is strong enough
to drag the DWs across LORs 2 and 3 together.

Therefore, aside from the stability condition (53), there is
another sufficient condition, that is, kx

2,3 > kx
1,2 or kx

2,3 > kx
3,4.

So, the tension from the DW between LORs 2 and 3 can drag
the DW across LORs 2 and 3 together. In other words, the
coupling between LORs inside an EC should be larger than
the couplings between this EC and its neighbors, which are the
coupling between the LOR at the its left border and the LOR in
the left neighbored EC, and that between the LOR at its right
border and the LOR in the right neighbored EC.

Generalizing the above discussion, one can get the follow-
ing rules.

(1) The y-direction coupling for this EC is given by

K
y

N =
∑

i

ky
n, n ∈ the N th EC. (54)

(2) Its size is given by

LN =
∑

n

ln, n ∈ the N th EC. (55)

(3) Its magnetic moment is given by

m̃N =
∑

n

ϕn, n ∈ the N th EC. (56)

(4) For this EC, the effective discreteness barrier is given
by

AN =
∑

n

an, n ∈ the N th EC. (57)

(5) The couplings with its neighbored ECs are given by

Kx
N−1,N = kx

NL; Kx
N,N+1 = kx

NR, (58)

where kx
NR , kx

NL are the couplings between the leftmost and the
rightmost LOR of the N th EC with their neighbored LORs in
other ECs.

(6) The criterion of the stability for this EC is that the
effective resistance must be larger than the sum of the tensions
of the leftmost and the rightmost boundaries:

πAN > 2
(
Kx

N−1,N + Kx
N,N+1

)
. (59)

Moreover, in this EC there should not be a subgroup of adjoined
LORs satisfying the above equation. Otherwise, the cluster is
not elementary.

(7) Aside from this necessary stability condition, there is
another necessary condition. To drag the DWs across LORs in
the EC, the couplings between LORs inside an EC should be
larger than one of the couplings Kx

N−1,N + Kx
N,N+1, between

this EC and its neighbors.

VI. SADDLE POINT SOLUTION WITH RANDOM
TEMPERATURE

Now, we report the result of the saddle point (5) with random
temperatures with the following form:

ti = t0 + δti, (60)

where t̃i obeys a uniform distribution

p(δti) = 1

w
, − w

2
� t̃i �

w

2
. (61)

See the transformation (3); the random temperature in Eq. (5) is
a transformed one. Its width is z = 4 times the original one. We
consider three cases with original widths 0.5,0.4,0.3, which are
narrow, so the widths of the transformed random temperature
in Eq. (5) are set to be w = 2.0,1.6,1.2.

To explain our algorithm, we show a typical ground state
solution (the solid green line) in Fig. 11(a). After getting the
ground state solution, we divide the system into LORs. The
algorithm to determine the boundary of LOR is as follows.
From the right boundary of the last LOR, we search the local
maximum of the next ls = 20 sites. Then, from the maximum,
we search the local minimum of the next ls = 20 sites. The
position of this minimum is the right boundary of this LOR.
Reiterating the process to scan over the whole system, we get
all the LORs. The boundaries of LOR are shown with blue
drop lines in Fig. 11(b). Then, we calculate the couplings
2kx

n,n+1 between two neighbored LORs according to Eq. (28)
and the coupling inside a LOR 2k

y
n and the discreteness barrier

an of each LOR according to Eqs. (29) and (30). In these
calculations, the vertical size in solving an,k

y
n is set to be 300.
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FIG. 11. (a) The solid green curve is the ground state solution.
The ranges of three ECs are indicated by the black dotted lines. (b)
The blue drop lines are the boundaries of LORs and the tops are the
x-direction couplings between two adjoined LORs 2kx

n,n+1. The red
horizontal segments are the discreteness barriers of the LORs πan.
These results are obtained with w = 2.0, t0 = 0.2 of the transformed
random temperature.

At last, we determine the ECs according to Eq. (59). In the
lower panel, we show the couplings kx

n,n+1 between LORs by
the blue drop lines and the discreteness barriers πan by red
steplike lines. As one can see, most of kn,n+1 are much larger
than πan. Usually, a single LOR can not form an EC, and an
EC usually has many LORs. At about x = 100,250,350,740,
where the ground state solution is almost zero, the couplings
kx
n,n+1 are small enough to satisfy Eq. (59) to form ECs.

Therefore, for the ECs 2,3,4, the boundaries are at about
x = 100,250,350,740 as shown in the upper panel.

We search the maximum and minimum in the next ls = 20
sites. The parameter ls for finding the LOR has some arbitrari-
ness. We will show that the distributions for ECs do not depend
on this parameter. In Fig. 11, the LORs are found with ls = 20.
In fact, one can set other ls , for example, ls = 30,40. Obviously,
with different l0, one will get different LORs. However, we find
that the distributions for the ECs are almost the same. This
is shown in Fig. 12. In the upper panels, the distributions of
discreteness barrier an, the couplings kx

n,n+1,k
y
n for LORs are

shown. Obviously, they are different for different ls . However,
the distributions of size, the couplings Kx

N,N+1,K
y

N for ECs
collapse for ls = 20,30,40, are shown in the lower panels. In
other words, the distributions for EC do not depend on the
parameter ls . To get the distribution of the ECs, 300 samples
are made. Each sample is a lattice with 50 000 sites, on which
we solve the ground state solution of Eq. (27).

A remarkable result is that near t0 = 0 the couplings K
y

N

inside ECs are very strong and the couplings Kx
N,N+1 between

ECs are very weak. Moreover, the size of ECs is usually much
larger than that of LORs. There is a simple reason for this
situation. As shown in Figs. 12(a) and 12(b), the discreteness
barriers for most LORs are very small and smaller than most
couplings between LORs, and only a small part of LORs

FIG. 12. The distributions of LOR sizes ln, the couplings
kx

n,n+1,k
y
n . The distributions of cluster sizes LN , the couplings

Kx
N,N+1,K

y

N . These results are obtained with w = 2.0, t0 = 0.0 of
the transformed random temperature.

have discreteness barriers larger than a small part of couplings
between LORs. Therefore, usually multiple LORs can form
an EC. The average size of LORs is less than 2ls = 40,60,80.
As shown in Fig. 12, the average size of EC is 278, much
larger than that of LORs and the size distribution of ECs has an
exponential tail for large size. In addition, the size distributions
of ECs collapsed for different ls .

As shown in Figs. 12(b) and 12(e), the average of kx is much
larger than Kx . This can guarantee the necessary condition 7
after Eq. (59) that the couplings between LORs inside an EC
should be larger than one of the couplings Kx

N−1,N + Kx
N,N+1,

between this EC and its neighbors.
In this case, the effective Hamiltonian for the EC is an

extremely anisotropic two-dimensional Ising model with ex-
tremely strong vertical bonds and extremely weak horizontal
bonds. It can be mapped to a one-dimensional transverse-field
Ising model (TFIM) [27,28]

HTFIM = −
∑
N

(
JN,N+1σ

z
I σ z

N+1 + γNσx
N

)
, (62)

where

JN,N+1 = Kx
N,N+1, γN = e−2K

y

N . (63)

According to the result of TFIM, the critical point is given by
ln J = ln γ [8]. Therefore, the critical point for the effective
Hamiltonian for the EC is given by

−ln Kx = 2Ky. (64)

We can determine the critical point of the effective Hamilto-
nian at the saddle point level according to the above equa-
tion. For w = 2.0, we get tC = −0.1565, at which it has
−ln Kx = 2Ky = 8.613 and L = 288. For w = 1.6, we get
tC = −0.077 44, at which it has −ln Kx = 2Ky = 10.97 and
L = 700. For w = 1.2, we get tC = −0.0241, at which it has
−ln Kx = 2Ky = 14.73 and L = 2100.

A qualitative trend is that as the width w decreases, the
average −ln Kx = 2Ky and the average size of EC increases.
Moreover, the average 2Ky is much larger than 1, so the
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FIG. 13. The distributions of vertical bond 2Ky . These results are
obtained with w = 2.0 of the transformed random temperature.

most probable distance between two horizontal DWs, which is
approximately given by e2Ky

, is much bigger than 1.
We have also carried out the numerical calculation for the

binary distribution of random temperature. The properties are
the qualitatively the same as those for the uniform distribution.
We do not present the results here.

Griffiths-McCoy singularity

The Griffiths-McCoy singularity is found in the McCoy-
Wu model [4], at both sides of the critical point, where the
susceptibility is divergent in a whole region.

As shown above, the horizontal bonds are very weak and
the vertical bonds are very strong. If the horizontal bonds are
ignored, the system can approximately be dealt as isolated
chains in vertical direction. Taking a very small field into
account, the Ising chain is given by

HIsing chain =
∑

j

( − K
y

NSjSj+1 − h′MNSj

)
. (65)

For this Ising chain, the magnetization is given by

SN = MN sinh(h′MN )

LN

√
e−4Ky + sinh2(h′MN )

. (66)

As shown in Fig. 13, the distribution of K
y

N is exponential
in a range of t0. For large Ky , the distribution can be approxi-
mately given by

P (Ky) ≈ P0e
−2�Ky

. (67)

In Fig. 13, for t0 = −0.1, 0.0, 0.1, the indices � are
0.302(4), 0.356(9), 0.44(2), respectively. To get these distri-
butions of the ECs, 300 samples are made. Each sample is a
lattice with 50 000 sites, on which we solve the ground state
solution of Eq. (27).

The relation between K
y

N and MN is shown in Fig. 14.
The size distribution of EC is exponential too. The coupling
Ky is approximately proportional to the size of EC as shown
in Fig. 14(a). On the other hand, the magnetic moment
is also approximately proportional to the size as shown in

FIG. 14. The relation between 2Ky and the size of EC and
magnetic moment of EC. The solid scatters are the average of
2K

y

N/LN,MN/LN,M/(2K
y

N ) and empty scatters are the deviations
(the distribution width) of the corresponding quantities. These results
are obtained with w = 2.0, t0 = −0.1 of the transformed random
temperature.

Fig. 14(b). Therefore, the magnetic moment is proportional
to Ky approximately as shown in Fig. 14(c). Then, we can
take the approximation

MN ≈ 2c1K
y

N ≈ c2L. (68)

Combining the distribution of Ky , we get the average magne-
tization over the whole system as given by

S =
∫

c2P0e
−2�Ky

sinh(2c1h
′Ky)dKy√

e−4Ky + sinh2(2c1h′Ky)

∝ h�. (69)

Hence, we get the susceptibility

χ = ∂S

∂h
∝ h�−1. (70)

As shown in Fig. 2, the exponent � is less than 1 in a range
of temperature. In this regime, the susceptibility is divergent.
Obviously, the divergence comes from the ECs with extremely
large vertical bond. These ECs have extremely large sizes and
exponentially small probability. They are the so-called rare
regions.

This approach is similar to the droplet theory for the
quantum Ising spin glass proposed by Thill and Huse [6],
in which the divergence is attributed to the rare regions.
Concerning the role of rare regions in the quantum phase
transition in disordered systems, please see the review by Vojta
[1]. Our result agrees with these previous theories.

Here, we ignore the horizontal bonds, so we give the lower
bounds for the susceptibility divergence since the correlation
between superspins will be enhanced if the horizontal bonds
are taken into account. In fact, only if the horizontal bonds are
taken into account, the long-range order can be realized.
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VII. SUMMARY

We have solved the saddle point equation of Landau-
Ginzburg-Wilson Hamiltonian for the McCoy-Wu random
Ising model. In the saddle point solutions, the LORs self-
organize into ECs with a broad size and bond distribution.
This leads to the Griffiths-McCoy singularity directly. Our
work agrees with the exact solution [4] and the strong-disorder
renormalization group theory [7,8]. This result is surprising
since it is believed implicitly for 50 years that the saddle point
solution can not deal the McCoy-Wu model.

This work indicates that solving the saddle point solution is
an efficient approach to understand the phase transition in this
kind of disordered system. Its success implies that the saddle
point solution may be also an efficient way to study the other

disordered systems. It is well known that the saddle point equa-
tion is the starting point for the theoretical study on many dis-
ordered quantum systems [22]. Understanding the saddle point
solution thoroughly in those systems should be interesting.

For the pure system, the saddle point solution is of mean
field and the excited state saddle point solutions can be ignored.
For the McCoy-Wu model, the saddle point solution is not
of the usual mean field and the excited state solutions can
not be neglected. Moreover, we show that the discreteness is
important for this kind of disordered system and we can not
deal the saddle point solution in the continuum limit simply.

The approach in this work can be extended to three-
dimensional Ising model with disorder strongly correlated in
one dimension, which corresponds to the two-dimensional
transverse-field Ising model.

APPENDIX: LGW HAMILTONIAN FOR RANDOM BOND ISING MODEL

We consider the two-dimensional nearest-neighbored Ising model with random bond

H = −1

2

∑
r,η

Jr,r+ηSrSr+η − h
∑

r

Sr, (A1)

where r labels the lattice sites and η = (±1,0),(0, ± 1). Using Stratonovich-Hubbard transformation, we get the effective action

S[φ] = β

2

∑
r,η

Jr,r+ηφrφr+η −
∑

r

ln

[
2 cosh

(
βh + β

∑
η

Jr,r+ηφr+η

)]
. (A2)

Truncating the expansion of the second term at fourth order, we obtain

S[φ] = β

2

∑
r,η

Jr,r+ηφrφr+η − β2

2

∑
r

[∑
η

Jr,r+ηφr+η + h

]2

+ β4

12

∑
r

[∑
η

Jr,r+ηφr+η + h

]4

. (A3)

We write Jr,r+η = J + J̃r,r+η, where J is the average and J̃r,r+η is the fluctuating part. Then, the first term becomes

Jr,r+ηφrφr+η = −1

2
(J + J̃r,r+η)

[
(φr − φr+η)2 − φ2

r − φ2
r+η

]
≈ 1

2
(J + J̃r,r+η)

(
φ2

r + φ2
r+η

) + J

2
(φr − φr+η)2, (A4)

where we omit the term J̃r,r+η(φr − φr+η)2 since it is of higher order. Similarly, we adopt the approximation for the second term∑
η

Jr,r+ηφr+η =
∑

η

(J + J̃r,r+η)[φr + (φr+η − φr)]

≈
(

zJ +
∑

η

J̃r,r+η

)
φr + J

∑
η

(φr+η − φr), (A5)

where z = 4 is the coordination number. Then, we have(∑
η

Jr,r+ηφr+η

)2

=
(

z2J 2 + 2zJ
∑

η

J̃r,r+η

)
φ2

r + 2zJ 2
∑

η

(φr+η − φr)φr. (A6)

Substituting Eqs. (A4) and (A6) into (A3), we obtain

S[φ] =
∑

r

[
1

2z

∑
η

(φr+η − φr)2

2
+ t0 + δtr

2
φ2

r + uφ4
r − βhφr

]
, (A7)

where u = 1
12 and

βCzJ = 1, t0 = T − TC

T
, δtr = −1

z

∑
η

J̃r, r+η

J
. (A8)
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