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Quantum coherence in a compass chain under an alternating magnetic field
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We investigate quantum phase transitions and quantum coherence in a quantum compass chain under an
alternating transverse magnetic field. The model can be analytically solved by the Jordan-Wigner transformation
and this solution shows that it is equivalent to a two-component one-dimensional (1D) Fermi gas on a lattice.
We explore mutual effects of the staggered magnetic interaction and multisite interactions on the energy spectra
and analyze the ground-state phase diagram. We use quantum coherence measures to identify the quantum
phase transitions. Our results show that l1 norm of coherence fails to detect faithfully the quantum critical points
separating a gapped phase from a gapless phase, which can be pinpointed exactly by relative entropy of coherence.
Jensen-Shannon divergence is somewhat obscure at exception points. We also propose an experimental realization
of such a 1D system using superconducting quantum circuits.
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I. INTRODUCTION

Many physical phenomena in quantum information science
have evolved from being of purely theoretical interest to
enjoying a variety of uses as resources in quantum information
processing tasks. Throughout the development of the resource
theory of entanglement, various measures were established.
However, entanglement is not a unique measure of quantum
correlation because separable states can have nonclassical cor-
relations. The concept of quantum coherence has recently seen
a surge of popularity since it serves as a resource in quantum
information tasks [1], similar to other well-studied quantum
resource such as the entanglement [2], quantum correlations
[3], and the randomness [4]. Baumgratz et al. [5] introduced a
rigorous framework for the quantification of coherence based
on resource theory and identified easily computable measures
of coherence. Quantum coherence resulting from quantum
state superposition plays a key role in quantum physics,
quantum information processing, and quantum biology.

Ideally, the coherence of a given state is measured as its
distance to the closest incoherent state [6–23]. Coherence
properties of a quantum state are usually attributed to the
off-diagonal elements of its density matrix with respect to a
selected reference basis. Among a few popular measures, there
are three recently introduced coherence measures, namely,
relative entropy of coherence, l1 norm quantum coherence [5],
and Jensen-Shannon (JS) divergence [24]. The JS divergence
and the l1 norm of coherence obey the symmetry axiom of
a distance measure while the relative entropy does not obey
such distance properties. The l1 norm of coherence sums up
absolute values of all off-diagonal elements ρi,j (with i �= j )
of the density matrix ρ, that is,

Cl1 (ρ) =
∑
i �=j

|ρi,j |, (1)

where ρi,j is the element of the density matrix with i and j

being the row and the column index. Cl1 (ρ) is a geometric
measure that can be used as a formal distance measure. In
parallel, the relative entropy has been established as a valid
measure of coherence for a given basis:

Cre(ρ) = S(ρ||ρdiag) = S(ρdiag) − S(ρ), (2)

where S(ρ) = −Tr(ρ log2 ρ) stands for the von Neumann
entropy and ρdiag is the incoherent state obtained from ρ by
removing all its off-diagonal entries. Cl1 and Cre are known
to obey strong monotonicity for all states. Since Cre is similar
with relative entropy of entanglement, it has a clear operational
interruption as the distillable coherence. Meanwhile, Cl1 takes
an operational interpretation as the maximum distillable co-
herence from a resource theoretical viewpoint [25,26]. It was
shown that Cl1 is an upper bound for Cre for all pure states and
qubit states [27]. Moreover, the measure of quantum coherence
based on the square root of the JS divergence is given by

CJS(ρ) =
√

S

(
ρdiag + ρ

2

)
− 1

2
S(ρdiag) − 1

2
S(ρ). (3)

The JS divergence is known to be a symmetric and bounded
distance measure between mixed quantum states [28] and is
exploited to study shareability of coherence [24]. We remark
that these coherence measures are all basis dependent [29].

Currently, approaches adopted from quantum information
theory are being tested to explore many-body theory from
another perspective and vice versa. Various quantum resource
measures have been exploited to characterize the state of many-
body systems and the associated quantum phase transitions
(QPTs). A QPT occurs at zero temperature and is engraved
by a qualitative change solely due to quantum fluctuations as
a nonthermal parameter is varied. Quantum entanglement and
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quantum discord have been proven to be fruitful to investigate
QPTs. For instance, entanglement entropy changes at some
(but not all) QPTs [30]. Investigation of entanglement spectra
is therefore very useful and helps to identify a possible QPT
when the entanglement entropy in the ground state changes by
a finite value when Hamiltonian parameters are varied. One of
easily accessible parameters is a magnetic field which might
control producing quantum matter near a quantum critical point
(QCP) in spin chains [31]. Small systems of interacting spins
in a two-dimensional (2D) compass model with perturbing
interactions could also be used for quantum computation [32].

Quantum coherence has emerged from an information
physics perspective to address different aspects of quantum
correlation in a many-body system. Comparing with entangle-
ment measures, quantum coherence is expected to be capable
of detecting QPTs even when the entanglement measures fail
to do so. One can easily recognize that entanglement may be
a form of coherence and the converse is not necessarily valid.
For instance, a product state (|0〉 + |1〉) ⊗ (|0〉 + |1〉), for a
two-qubit system carries coherence but not entanglement. That
is to say, quantum coherence incarnates a different feature
of a quantum state from entanglement. On the other hand,
coherence measures can be used as a resource in quantum
computing protocols, and one may claim that they are more
fundamental. So a comparative study of these measures for
characterizing QPTs in various spin chain models is a potential
research topic, which may be valuable in both physical theory
and experiment.

To test the validity of this approach, the Ising model is
the most transparent example of the importance of exactly
soluble models as guides along this difficult path. All co-
herence measures are able to locate the Ising-type second-
order transition. Here, we consider another prominent model
dubbed as a one-dimensional (1D) compass model for a
p-wave superconducting chain, which sustains more complex
physical phenomena than the Ising model, such as macroscopic
degeneracy [33], pure classical features [34], and suppressed
critical revival structure [35].

The purpose of this paper is to investigate QPTs and
quantum coherence in the 1D quantum compass model (QCM)
under an alternating transverse magnetic field. The motivation
is twofold. On the one hand, previous investigations revealed
that the 1D compass model could exhibit miscellaneous phases
via modulation of external fields. An exotic spin-liquid phase
can emerge through a Berezinskii-Kosterlitz-Thouless (BKT)
QPT under a uniform magnetic field. We would like to verify
whether such a transition is robust under realistic inhomogene-
ity of external fields [36]. The calculations take into account
both uniform and staggered fields. On the other hand, its exact
solvability provides a suitable testing ground for calculating
accurately coherence measures to detect QPTs. We investigate
the coherence of this model in the thermodynamic limit and its
connection to QPTs.

The remainder of the paper is structured as follows. An
overview of the 1D compass model with staggered magnetic
fields is presented in Sec. II. We consider the cases in the
presence of a uniform and an alternating transverse magnetic
field, and discuss a possible experimental realization using
superconducting quantum circuits in Sec. III. The model is
extended by adding three-site interactions in Sec. IV. Next,

the model is exactly solved and QPTs are studied. We present
the calculations of quantum coherence measures in Sec. V. A
final discussion and summary are presented in Sec. VI.

II. THE MODEL AND ITS ANALYTICAL SOLUTION

We begin with a generic 1D QCM [33] on a ring of N sites,
where N is even. The Hamiltonian describes a competition
between two pseudospin τ = 1

2 components {σx
i ,σ

y

i }, which
reads as

HQCM =
N/2∑
i=1

(J1 X2i−1,2i + J2 Y2i,2i+1), (4)

and has the highest possible frustration of interactions. Here,
Xi,j ≡ σx

i σ x
j , Yi,j ≡ σ

y

i σ
y

j , and σα
i is a Pauli matrix. J1 (J2)

stands for the amplitude of the nearest-neighbor interaction on
odd (even) bonds. This model owns a particular intermediate
symmetry, which allows for N/2 mutually commuting Z2

invariants Y2i−1,2i (X2i,2i+1) in the absence of the transverse
field term, and presents distinct features. The ground state
possesses a macroscopic degeneracy of at least 2(N/2−1) in the
structure of the spin Hilbert space [33,36]. The intermediate
symmetries also admit a dissipationless energy current [37].
The 1D QCM (4) can be transformed to the fermion language
and next diagonalized (see the Appendix). In fact, the model
can be described by a two-component 1D Fermi gas on a lattice
as displayed in Eq. (A3).

The 1D QCM in Eq. (4) may be supplemented by a possibly
spatially inhomogeneous Zeeman field �hi , given by

Hh =
N∑

i=1

�hi · �σi. (5)

In a realistic structure, the crystal fields surrounding the odd-
indexed sites and even-indexed sites are different. The presence
of two crystallographically inequivalent sites on each chain
with a low symmetry of the crystal structure leads to staggered
gyromagnetic tensors.

It has been recently shown that a spatially varying magnetic
field can be induced by an effective spin-orbit interaction. The
alternating spin environment is represented by the staggered
Dzyaloshinskii-Moriya interaction and Zeeman terms. The
staggered magnetic field plays an important role in under-
standing the field dependence of the gap in Cu benzoate anti-
ferromagnetic chain [38–41] and in Yb4As3 [42]. We remark
that there is increasing interest in the effects of the staggered
field motivated by the experimental work on a number of
materials. The interplay between the staggered Zeeman fields
and dimerized hopping on the topological properties of Su-
Schrieffer-Heeger (SSH) model has received much attention
only recently [43], after the rapid progress in the synthesis of
1D heterostructures [44–47].

Without the loss of generality, we consider a staggered
magnetic field, i.e., �h2i−1 = h1ẑ, �h2i = h2ẑ, ∀ i = 1, . . . ,N/2.
Be aware that hi = giμBBi here is the reduced magnetic field
containing the g factor and the Bohr magneton μB. An effective
staggered magnetic field might be attributed to the alternating
g tensor in an applied uniform field [48]. Thereby, we define an
average magnetic field h = (h1 + h2)/2 and a field difference
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δ = (h2 − h1)/2. The 1D compass model in external field,

H = HQCM + Hh, (6)

is exactly soluble and we obtain its zero-temperature phase
diagram (see below). For the sake of clarity, we briefly describe
the procedure to diagonalize the Hamiltonian (6) exactly in the
Appendix.

Thus, the Hamiltonian (6) in the Bogoliubov–de Gennes
(BdG) form in terms of Nambu spinors is

H = 1

2

∑
k

ϒ
†
k Ĥkϒk, (7)

where ϒ
†
k = (a†

k,b
†
k,a−k,b−k). In this circumstance, the Hamil-

tonian (6) reads as

Ĥk = 2δ�zz − 2h�z0 + T r
k (�zx − �yy) − T i

k (�zy + �yx),

(8)

with �ab = τ a ⊗ σb, ∀ a,b = x,y,z, and τ x,y,z/σx,y,z being the
Pauli matrices acting on particle-hole space and spin space,
respectively, and τ 0 = σ 0 is a 2 × 2 unit matrix. Here, T r

k

and T i
k are the real and imaginary parts of Tk = J1 + J2e

ik .
The BdG Hamiltonian (8) respects a particle-hole symmetry
defined as CĤ (k)C−1 = −Ĥ (−k) with C = �x0K, where K is
the complex-conjugate operator. As a consequence, the energy
levels appear in conjugate pairs such as ε(k) and −ε(−k). The
diagonal form of the Hamiltonian (8) is then given by

H =
∑

k

2∑
j=1

εk,j

(
γ
†
k,j γk,j − 1

2

)
. (9)

The spectra consist of two branches of energies εk,j (with
j = 1,2), given by the following expressions:

εk,1(2) =
√

|Tk|2 + 4h2 ±
√

|Tk|2 + 4δ2. (10)

The ground-state energy per site for h > δ may be expressed
as

e0 = − 2

N

∑
k

√
J 2

1 + J 2
2 + 2J1J2 cos k + 4h2. (11)

The advantage of the result given by Eq. (11) is that e0

is independent of δ as well as of the signs of J1 and J2.
The intersite correlators are given by the Hellmann-Feynman
theorem:〈

σx
2i−1σ

x
2i

〉 = − 2

N

∑
k

J1 + J2 cos k√
J 2

1 + J 2
2 + 2J1J2 cos k + 4h2

,

〈
σ

y

2iσ
y

2i+1

〉 = − 2

N

∑
k

J2 + J1 cos k√
J 2

1 + J 2
2 + 2J1J2 cos k + 4h2

.

(12)

For δ > h, an interchange between h and δ is performed in
Eqs. (11) and (12).

Since a QPT occurs only when the gap closes, looking
for gapless points in the energy spectrum may indicate this
transition. The lower mode εk,2 reduces to a zero-energy
flat band for h = ±δ, corresponding to either h2i−1 = 0 or
h2i = 0. This undermines the limited condition for the existence

of a macroscopic degeneracy in the ground-state manifolds.
The zero-energy flat band is fragile against an infinitesimal
external uniform magnetic field for δ = 0. A uniform field
will remove the ground-state degeneracy and the bands are no
longer degenerate. The result here implies that a magnetic field
applied on one sublattice still makes the zero-energy flat band
intact.

Interestingly, the model possesses local symmetries that one
can find in the absence of field terms at odd sites. If field h2i−1

is vanishing at odd sites and at even sites it takes any random
values, then any eigenstate has 2(N/2−1) degeneracy for a ring
of length N . These degeneracies follow from the symmetry
operators

S2i ≡ σ
y

2i−1 ⊗ σ z
2i ⊗ σx

2i+1, (13)

and are activated when the field is absent at odd sites. Such
symmetry operators (13) anticommute for the neighbors, i.e.,
{S2i ,S2(i+1)} = 0, while they commute otherwise.

III. POSSIBLE EXPERIMENTAL REALIZATION USING
SUPERCONDUCTING QUANTUM CIRCUITS

The unique features of this rich model (6) motivate us to
consider its possible physical implementations to advance our
understandings. It is well known that superconducting circuit
systems have become one of the leading platforms for scalable
quantum computation, quantum simulation, and demonstrating
quantum optical phenomena because of their exotic properties
such as controllability, flexibility, scalability, and compatibility
with microfabrication [49–51]. Various models of many-body
systems have been proved to be able to be simulated by
superconducting circuits, such as the Kitaev lattice [52], the
Heisenberg spin model [53], the fermionic model [54], the 1D
Ising model [55], and anisotropic quantum Rabi model [56].
In our case, the 1D compass chain in Eq. (6) can be built from
superconducting charge qubits, each of which is composed of
a direct current superconducting quantum interference device
(dc SQUID) with two identical Josephson junctions. For ith
charge qubit, the gate voltage Vgi applied through the gate
capacitance Cgi can be used to control the charge, and the mag-
netic flux �ei piercing the SQUID can be used to control the
effective Josephson energy EJ (�ei) = 2EJ cos(π�ei/�0).

It has been demonstrated that charge qubits can be coupled
to each other for all the individual interactions of Ising
type [49], i.e., ∝σx

i σ x
i+1 via a mutual inductance [57], ∝σ

y

i σ
y

i+1
via a LC (inductor-capacitor) oscillator [58], and ∝ σ z

i σ z
i+1

via a capacitor [59]. This provides us a promising way to
implement the 1D compass chain with the superconducting
charge qubits. As shown in Fig. 1, a charge qubit is placed at
each node, and is then connected to its two nearest neighbors
with two types of couplers, i.e., a capacitor for the z-type bond
and a LC oscillator for the y-type bond.

For the sake of simplicity and without the loss of gener-
ality, we assume all the charge qubits to be identical such
that Cgi ≡Cg , EJi ≡ EJ , ECi ≡ EC . Following the standard
quantization procedure of the circuit by first writing the kinetic
energy and the potential energy of the circuit, and, second,
choosing the average phase drop ϕi of each charge qubit as the
canonical coordinate, the Hamiltonian of the entire system can
then be obtained by a Legendre transformation.
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FIG. 1. Scheme of a circuit QED system for the physical imple-
mentation of the 1D compass chain Hamiltonian (6): (a) design of
the basic building block, which is composed of three superconducting
charge qubits, labeled as 1,2,3. Qubits 1 and 2 are coupled capacitively
to each other via a mutual capacitance Cm; and the coupling between
the qubits 1 and 3 are provided by a commonly shared LC oscillator.
Inset: the orange circles denote the superconducting charge qubits; the
two types of interqubit couplings are denoted as z and y bonds, which
are indicated by the blue-solid and the red-dashed lines, respectively.
(b) A 1D compass chain constructed by repeating the building block
in (a).

We consider the situation when the frequency of the LC
oscillator is much larger than the frequency of the qubit. In
this case, the LC oscillator is not really excited and the cor-
responding terms can be removed from the total Hamiltonian,
even though the LC oscillator’s virtual excitation still produces
an effective coupling between the corresponding charge qubits.
For charge qubit with EC 	 EJ , at very low temperature, the
two-level system is formed by the charge states |0〉 and |1〉,
which denote the zero and one extra Cooper pair on the island,
respectively. After projecting the total Hamiltonian into the ith
charge qubit’s computational basis {|0〉i ,|1〉i}, we obtain [52]

H = J
y

i,j

∑
y links

σ
y

i σ
y

j + J z
i,j

∑
z links

σ z
i σ z

j +
∑

i

hx
i σ

x
i , (14)

where all the charge qubits are biased at the optimal
point [i.e., ngi = CgVgi/(2e) = 1/2] such that hz

i = 0, and
hx

i = −EJ cos(π�ei/�0) is the effective Josephson energy
of the ith charge qubit, �0 ≡ h/2e is the flux quantum. The
y-type Ising coupling strength

J
y

i,j = −4ξE2
J cos(π�ei/�0) cos(π�ej/�0) � 0, (15)

with ξ = Lπ2(2CJ + Cg + Cm)2(Cg + Cm)2/(��0)2, are
tunable via the external magnetic flux threading the SQUIDs
in the ith and j th charge qubits. Simultaneously, the z-type
coupling strength is fixed as

J z
i,j = e2Cm

�
� 0, (16)

with � = (2CJ + Cg + Cm)2 − C2
m. A detailed analysis of

circuit quantization can be found in Ref. [52].
An intuitive understanding of the coupling mechanism in

the Hamiltonian (14) would be the following. Each charge
qubit is coupled to its left or right nearest neighbor via a capac-
itor or a LC oscillator. The appearance of a capacitor modifies
the electrostatic energy of the system, and thus provides the
z-type Ising coupling. On the other hand, the magnetic energy
of the inductor is biased by a current composed of contributions
from both of the two qubits, and thus the virtually excited LC
oscillator induces the y-type Ising coupling. Then, implement-
ing a unitary rotation around the y axis, i.e., U ≡ ∏

j eiπσ z
j /4,

one can find Uσx
i U † = σ z

i , Uσz
i U † = −σx

i , and then Eq. (14)
can be recast into the Hamiltonian (6).

IV. EFFECT OF THREE-SITE INTERACTIONS

To make the model as general as possible and still exactly
soluble, we introduce in addition three-site interactions of the
(XZX + YZY ) type into Eq. (6),

H3-site = J3

N∑
i=1

(Xi−1,i+1 + Yi−1,i+1)Zi, (17)

where J3 characterizes their strength. Such interactions be-
tween three adjacent sites emerge as an energy current of a
compass chain in the nonequilibrium steady states [37]. Three-
site interactions violate the intermediate symmetry and elicit
exotic phenomena. This generalized version of the 1D QCM
has been shown to host a diversity of nontrivial topological
phases and an emergent BKT QPT under the interplay of a
perpendicular Zeeman field and multisite interactions [60].

We next turn to the discussion of the physical implementa-
tion of the 1D QCM including the three-site interaction with
superconducting circuits. As superconducting circuits offer
advantages of easy tunability and scalability, in principle,
many-body interactions in superconducting systems could be
designed using Josephson-junction-based couplers in a graph
structure [61–63]. However, the effective many-body coupling
terms may emerge with a much weaker strength. An alternative
and practical strategy to generate many-body interactions
would be the simulation protocols employing the microwave
fields with appropriate frequency conditions, as have been
studied in nuclear magnetic resonance systems [64], optical
lattices [65], and superconducting circuits [66,67]. Therefore,
we expect that the three-site interactions of the sort of XZX +
YZY type as in Eq. (17) would be built in similar fashions.
However, an in-depth study of experimental implementation
of this particular model will be left for future investigation.

The generalized Hamiltonian of the 1D QCM which in-
cludes the three-site (XZX + YZY ) interaction is

H = HQCM + Hh + H3-site. (18)

Equation (18) describes a 1D sp chain with interband
interactions and hybridization between orbitals [68]. The
three-site interactions can be converted into fermionic form
H3-site = 4J3

∑
k cos k c

†
kck . We note that the spectra can be

pinpointed at commensurate momenta k = ±π/2 regardless
of the value of J3. Hence, the eigenspectra (10) can be renor-
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FIG. 2. The electron spectra εk,2 and its corresponding hole
spectra −εk,2 for increasing magnetic field h in Eq. (18): (a) h = −3,
(b) h = −2.5, (c) h = −2.0, (d) h = −1.5, (e) h = 0, (f) h = 1.5,
(g) h = 2, (h) h = 2.5, and (i) h = 3. Parameters are as follows:
J1 = 1, J2 = 4, J3 = 2, and δ = 0.5.

malized with −2h → Fk = −2h + 2J3 cos k, as evidenced in
Eq. (A11).

The main features and the evolution of these profiles under
staggered fields with increasing magnetic field h are depicted
in Fig. 2. We observe that the ground state of the system
is complicated under the interplay of three-site interactions
and staggered magnetic field. As h rises from large negative
values, εk,2 closes the gap gradually and finally touches ε = 0
at momentum k = π for h = −|J3 + δ|. Further increase of
h bends εk,2 downwards, leading to ε|k|>|kic|,2 < 0 with an
incommensurate momentum kic. An additional crossing at
k = π revives for h = −|J3 − δ|. We can see that the number
of crossing points at zero energy grows from 0 to 4 in
Figs. 2(a)–2(e), and then decreases with further increase of
h [see Figs. 2(f)–2(i)]. Altogether, the number of Fermi points
at which the linear dispersion relation is found changes as h

increases. Indeed, here the topological transition belongs to the
universality of the Lifshitz transition.

It is also easy to see that the Weyl points collapse at
h = ±|J3 + δ| with increasing h. In the gapless phase the
crossings between bands exhibit a linear dispersion relation
[see Figs. 2(c)–2(g)] and thus define effective 1D Weyl modes.
One notes that the nodes appear and disappear only when
two nodes are combined, as a characteristic of Weyl fermions
in a three-dimensional or 2D superconductor [69,70] and
in topological superfluidity [71–74]. It is noticed with the
emergence of two Weyl points at its extremities (k = ±π ) and
their collapse at the center of the Brillouin zone (k = 0). In this
region, the low-energy Hamiltonian with Weyl nodes in a 1D
system can be reduced to describe the two Bogoliubov bands
that cross zero energy.

The resulting phase diagram of the model (18), obtained by
the exact solution using the Jordan-Wigner transformation, is
shown in Fig. 3. For clarity, we have considered the entire plane
of fields, although the phase diagram is obviously symmetric
under reflection from the h1 = h2 and −h2 lines, which also
symmetrize the spectrum and entanglement. The quantum

-2 -1 0 1 2
-2

0

2

dimer

dimer

PM

SLI

SLISLI

SLI

h

SLII
PM

FIG. 3. Phase diagram of the compass chain (18) in an alternating
transverse field. The shaded regions mark the gapless spin-liquid
phase, in which SLI (SLII) denotes the spin-liquid phase I (II) with
2 (4) Fermi nodes. The dashed line marks the path δ = 0. Other
parameters: J1 = 1, J2 = 4, J3 = 1.

phase boundaries are determined by the following condition:

|h| + |δ| = J3. (19)

For large h, the system changes to a disordered paramagnetic
(PM) phase, in which the z-axis sublattice magnetizations are
unbiased, as shown in Fig. 4(a). On the contrary, the dimer
phase is the one in which z-axis magnetization at odd and even
sites has a staggered order.

The staggered magnetic susceptibilities are vanishing in the
both gapped phases, while they are finite in the gapless phases.
Besides, as shown in Fig. 4(b), the nearest-neighbor correlation
〈σy

2i−1σ
y

2i〉 clearly shows nonanalytical behavior at the QCPs,
and the counterpart 〈σx

2i−1σ
x
2i〉 is smooth. One can notice that a

singular behavior can be detected by taking the first derivative
of 〈σx

2i−1σ
x
2i〉 and 〈σy

2iσ
y

2i+1〉 with respect to h.
Since QPTs are caused by nonanalytical behavior of

ground-state energy, QCPs correspond to zeros of εk,2. The gap
vanishes as � ∼ (h − hc)νz, where ν and z are the correlation-
length and dynamic exponents, respectively. The gap is de-
termined by the condition ∂εk=k0,2/∂k = 0 and one finds
� = mink |εk,2|. This implies that the minimum is suited at
either k0 = 0 or π , depending which mode has a lower energy.
One finds the critical exponents satisfy νz = 1, as revealed
in Fig. 5(b). The expansion of the energy spectra at the criti-
cality around the critical mode k0, i.e., at �k ≡ k − k0  1,
∂εk,2 ∼ 2J3δ(�k)2/

√
(J1 + J2 cos k0)2 + 4δ2. The quadratic

dispersion in Fig. 2(b) suggests a dynamical exponent z = 2
and hence ν = 1

2 , which is different from the generic QCM in
the absence of three-site interactions [75,76].

Remarkably, the ground state develops weak singularities
at δ = 0. For δ = 0 the phase boundaries are pinpointed
at hc = ±J3 with an incommensurate critical momentum
k0 = cos−1(h/J3), as presented in Fig. 5(b). One can find
that the system transforms from the gapped phase to the
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h
-3 -2 -1 0 1 2 3

〈 
z 2i

-1
 〉 -
 〈

 z 2i
 〉

0.0

0.5

1.0

δ=1.5
δ=1.0
δ=0.5

(a)

FIG. 4. Effect of alternating magnetic field in the 1D compass
model (18): (a) the difference between odd-site and even-site magne-
tization for δ = 0.5, 1.0, and 1.5 with J3 = 1; (b) the nearest-neighbor
correlations 〈σα

i σ α
i+1〉 (α = x, y) on odd bonds and even bonds

with J3 = 2, δ = 0.5. The symbol � in (b) marks the position of
〈σ x

2i−1σ
x
2i〉 = 〈σ y

2i−1σ
y

2i〉 = 0. Other parameters are J1 = 1, J2 = 4.

gapless phase passing through an unconventional field-induced
QCP, where infinite-order QPTs occur by tuning h along the
path (Fig. 3, dashed line) to approach the QCPs, with no
broken-symmetry order parameter. We can identify that
hc = ± J3 are multicritical points, where h − δ = ±J3 and
h + δ = ± J3 meet [60]. One finds the critical exponents that
follow νz = 2 by observing the gap scaling. The dependence
of low-energy excitations on k shows that z = 2 in the gapless
phase while z = 4 at QCPs. It has been shown that z can
be extracted from the measurement of the low-temperature
specific heat and entropy in the Tomonaga-Luttinger liquid
phase [77].

V. QUANTUM COHERENCE MEASURES

In the representation spanned by the two-qubit product
states we employ the following basis:

{|0〉i ⊗ |0〉j ,|0〉i ⊗ |1〉j ,|1〉i ⊗ |0〉j ,|1〉i ⊗ |1〉j }, (20)

2

h
0

-2-2

0
δ

0.0

0.5

1.0

2

Δ
(b)

2

h
0

-2-2

0
δ

0.0

0.5

1.0

2

Δ

(a)

FIG. 5. Three-dimensional plot of the energy gap as a function
of h and δ for (a) J3 = 0 and (b) J3 = 1. Parameters are as follows:
J1 = 1, J2 = 4.

where |0〉 (|1〉) denotes spin-up (-down) state, and the two-site
density matrix can be expressed as

ρij = 1

4

3∑
a,a′=0

〈
σa

i σ a′
j

〉
σa

i σ a′
j , (21)

where σa
i stands for Pauli matrices {σx

i ,σ
y

i ,σ z
i } with a = 1,2,3,

and for a 2 × 2 unit matrix with a = 0. Since the Hamiltonian
has Z2 global phase-flip symmetry, the two-qubit density
matrix reduces to an X state

ρij =

⎛
⎜⎜⎜⎝

u+ 0 0 z−
0 w+ z+ 0

0 z∗
+ w− 0

z∗
− 0 0 u−

⎞
⎟⎟⎟⎠, (22)
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with

u± = 1

4

(
1 ± 〈

σ z
i

〉 ± 〈
σ z

j

〉 + 〈
σ z

i σ z
j

〉)
, (23)

z± = 1

4

(〈
σx

i σ x
j

〉 ± 〈
σ

y

i σ
y

j

〉)
, (24)

ω± = 1

4

(
1 ± 〈

σ z
i

〉 ∓ 〈
σ z

j

〉 − 〈
σ z

i σ z
j

〉)
. (25)

Note that the formula can be simplified when the system
is translation invariant, i.e., 〈σ z

i 〉 = 〈σ z
j 〉 for arbitrary i and

j , such that ω+ = ω−. Under the staggered magnetic field,
the magnetization densities {〈σ z

2i−1〉} at odd sites and {〈σ z
2i〉}

at even sites are inequivalent. As is disclosed in Fig. 4(a),
the difference of the z-axis magnetizations is nonvanishing in
the gapless regions and dimer phase. By means of the Wick
theorem, it is well known that two-site correlation functions
can be expressed as an expansion of Pfaffians [78,79]. One
easily finds that

S(ρij ) = −
∑

m=0,1

ξm log2 ξm −
∑
n=0,1

ξn log2 ξn, (26)

where

ξm = 1

4

{
1 + 〈

σ z
i σ z

j

〉 + (−1)m
[(〈

σx
i σ x

j

〉 − 〈
σ

y

i σ
y

j

〉)2

+ (〈
σ z

i

〉 + 〈
σ z

j

〉)2
]1/2}

, (27)

ξn = 1

4

{
1 − 〈

σ z
i σ z

j

〉 + (−1)n
[(〈

σx
i σ x

j

〉 + 〈
σ

y

i σ
y

j

〉)2

+ (〈
σ z

i

〉 − 〈
σ z

j

〉)2
]1/2}

. (28)

Recently, diagonal discord was proposed to be an econom-
ical and practical measure of discord [80], which compares
quantum mutual information with the mutual information
revealed by a measurement that corresponds to the eigenstates
of the local density matrices. As long as the local density op-
erator is nondegenerate, diagonal discord is easily computable
without optimization over all possible local measurements,
which make the discordlike quantities unamiable. The reduced
density matrix for a single ith qubit has a local eigenbasis∏

η = |η〉〈η|when 〈σ z
i 〉 �= 0, and then a local measurement fol-

lows πi(ρij ) = ∑
η(

∏
η ⊗Ij )ρij (

∏
η ⊗Ij ). Diagonal discord

D̄i(ρij ) characterizes the reduction in mutual information
induced by πi(ρij ) and takes a similar form to the relative
entropy as D̄i(ρij ) = S(ρij ||πi(ρij )).

In terms of the two-qubit X state in Eq. (22), D̄i(ρij ) is
identical to Cre(ρij ). Without the loss of generality, we mainly
use Cre(ρ) hereafter although it has twofold implications in
quantum correlations. Besides, the l1 norm quantum coherence
can be simplified to

Cl1 (ρ) = max
{∣∣〈σx

i σ x
j

〉∣∣,∣∣〈σy

i σ
y

j

〉∣∣}. (29)

For our purposes, the correlation and coherence measures in the
ground state of the quantum compass chain under an alternating
transverse magnetic field for two spins are investigated in the
following for comparison. Figures 6 and 7 display the results

FIG. 6. Quantum coherence measures on (a) odd bonds and (b)
even bonds for increasing magnetic field h with J1 = 1, J2 = 4,
J3 = 2, δ = 0.5. The legend shown in (b) is the same with (a).
The symbol � marks the position of h� = −3.647. The dashed lines
correspond to positions of ±|J3 ± δ|. Inset in (a) shows the second-
order derivative of the ground-state energy e0.

for the relative entropy, the l1 norm quantum coherence, and the
JS divergence of two qubits in the ground state of the compass
chain. We find Cl1 (ρ) � Cre(ρ) holds, as was conjectured in
Ref. [27]. The conjecture was proved only for the pure state
and not yet proven for mixed state, and our findings indicate
its validity.

Looking at the relative entropy, the l1 norm quantum
coherence and the JS divergence on the odd bonds presented
in Fig. 6(a), three measures become zero simultaneously at
h� = − 3.647. The relative entropy shows a smooth local
minimum at this special point, which is different from non-
analytical behaviors of its counterparts. The null point of

h
-5 0 5

0.0

0.2

0.4

C
l
1

C
JS

C
re

FIG. 7. Quantum coherence measures of next-nearest-neighbor
qubits for increasing magnetic field h with J1 = 1, J2 = 4, J3 = 2,
δ = 0.5. The dashed lines mark the positions of ±|J3 ± δ|.
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coherence measures corresponds to a factoring point, where
the intersite correlators on the weak bonds 〈σx

2i−1σ
x
2i〉 and

〈σy

2i−1σ
y

2i〉 vanish [see Fig. 4(b)]. As a consequence, the density
matrix (22) becomes diagonal in the orthogonal product bases.
This factoring point is found to be δ independent, and such an
accidental inflexion will be absent in the quantum coherence
measures for the even bonds [see Fig. 6(b)] and the next-
nearest-neighboring qubits (see Fig. 7). One finds the quantum
coherence on even bonds is larger than that on odd bonds, and
the next-nearest-neighbor coherence is a little smaller.

For δ = 0 the system undergoes a BKT phase transition,
and the quantum coherence exhibits a local maximum; see
Fig. 10(a) in Ref. [60]. For δ �= 0, the transitions for increasing
hbelong to second-order phase transitions, as is verified in inset
of Fig. 6(a). In this respect, we find that the coherence measures
exhibit either a nonanalytical behavior or an extremum across
QCPs, indicating sudden changes take place.

After a closer inspection, we find the l1 norm quan-
tum coherence displays anomalies at QCPs hc = −J3 − δ,
±(J3 − δ), but it misses the QCP at hc = J3 + δ. We also
observe that there are superfluous kinks of the l1 norm of
coherence in regions around h = 0, as shown in Figs. 6(a)
and 7. The artificial turning points can be ascribed to the
definition of l1 norm quantum coherence in Eq. (1). Further,
this norm does not exhibit any anomaly on the strong bonds, as
shown in Fig. 6(b). From such a comparison one can find that
relative entropy [Eq. (2)] can faithfully reproduce quantum crit-
icality. Despite their formal resemblances, the JS divergence
and the l1 norm quantum coherence, as different perspectives
of quantum coherence, embody infidelity of density matrix and
are insufficient to read out the locations of QCPs.

VI. DISCUSSION AND SUMMARY

In this paper, we consider a one-dimensional Hamiltonian
with short-range interactions that includes three-site interac-
tions and alternating magnetic fields. The one-dimensional
quantum compass model is a paradigmatic scenario of quantum
many-body physics, which is more subtle than the Ising model,
and hence hosts richer phase diagrams. For a second-order
quantum phase transition from a gapped Néel phase to a gapped
paramagnetic phase, tools of quantum information theory can
always be employed to characterize successfully the transition
points. Usually achieving a complete and rigorous quantum-
mechanical formulation of a many-body system as desired
is obstructed by the complexity of quantum correlations in
many-body states.

The spin chain in the present model is efficiently solvable
using the standard Jordan-Wigner and Bogoliubov transforma-
tion techniques. Adopting the exact solvability, we describe
the phase diagram of the model as a function of its parameters.
The perpendicular Zeeman field and and three-site interactions
spoil the intermediate symmetry in the generic compass model,
and thus they destroy the ground-state degeneracy of the quan-
tum compass chain. The tunability of the staggered magnetic
field entails the ground state can be among paramagnetic phase,
dimer phase, and spin-liquid phases, in which the number of
Fermi points falls into two categories. Except the multicritical
points, the phase transitions are of second order. The critical
exponents can be extracted from low-energy spectra and gap

scalings. Our investigations show a uniform magnetic field
can drive the spin-liquid phase to the paramagnetic phase
through the Berezinskii-Kosterlitz-Thouless transition, where
a multicritical point is found.

Since a quantum phase transition is driven by a purely
quantum change in the many-body ground-state correlations,
the notion of quantum coherence appears naturally and is suited
to probe quantum criticality. To this end, we provide a study of
associated exhibited quantum correlations in this model using a
variety of quantum information theoretical measures, includ-
ing the relative entropy and the l1 norm quantum coherence
along with the Jensen-Shannon divergence. These alternative
frameworks of coherence theory stem mainly from different
notions of incoherent (free) operations. It is thus desirable and
interesting to find any interrelation between them.

We then compare the respective kinds of insights that they
provide. We have found that the continuous phase transitions
occurring in this model can be mostly faithfully detected by
examining quantum information theoretical measures. We also
discern some differences. The l1 norm quantum coherence
(defined as the sum of absolute values of off diagonals in
the reduced density matrix) of odd bonds develops a singular
behavior at noncriticality, which is caused by the absolute
operator in the definition (29). Moreover, the l1 norm quantum
coherence of even bonds does not exhibit any anomaly across
the critical points. A closer inspection reveals that the l1 norm
quantum coherence of even bond shows an inflection point
and the transition point can be easily captured looking at its
derivative with respect to h, which would display an extremum.
On the contrary, the relative entropy and the Jensen-Shannon
divergence show pronounced anomalies, either a sharp local
maximum or a turning point. That is to say that they faithfully
sense the rapid change of quantum correlation, resulting in a
clear identification of quantum phase transitions. Also, the l1
norm quantum coherence and the Jensen-Shannon divergence
become nonanalytical at exception points. Despite formal
similarity, different measures of quantum coherence have their
respective scope for detecting the quantum criticality. From
such comparison, we believe that the relative entropy is more
credible than others.

Summarizing, our results suggest that the diagonal entries of
the density operator are indispensable to extract information
across the quantum critical points. In other words, quantum
phase transitions are cooperative phenomena where competing
orders induce qualitative changes in many-body systems. The
figures of merit of these measures might be crucial to the
optimizing basis. Furthermore, we proposed an experimental
scheme using superconducting quantum circuits to realize the
compass chain with alternating magnetic fields.

ACKNOWLEDGMENTS

We thank Wojciech Brzezicki for insightful discussions. W.-
L.Y. acknowledges NSFC under Grants No. 11474211 and No.
61674110. Y. Wang acknowledges China Postdoctoral Science
Foundation Grants No. 2015M580965 and No. 2016T90028.
C. Zhang acknowledges NSFC under Grants No. 11504253
and No. 11734015. A.M.O. kindly acknowledges support by
Narodowe Centrum Nauki (NCN, National Science Centre,
Poland) under Project No. 2016/23/B/ST3/00839.

224420-8



QUANTUM COHERENCE IN A COMPASS CHAIN UNDER AN … PHYSICAL REVIEW B 97, 224420 (2018)

APPENDIX: DIAGONALIZATION OF THE HAMILTONIAN

We are considering a 1D quantum compass model with
the three-site (XZX + YZY ) terms under staggered magnetic
fields in Eq. (18), which can be rewritten as

H =
N/2∑
i=1

(
J1σ

x
2i−1σ

x
2i + J2σ

y

2iσ
y

2i+1

)

+
N/2∑
i=1

(h1 ẑ · �σ2i−1 + h2 ẑ · �σ2i)

+ J3

N∑
i=1

(
σx

i−1σ
z
i σ x

i+1 + σ
y

i−1σ
z
i σ

y

i+1

)
. (A1)

Here, J1 and J2 denote the coupling strength on odd and
even bonds, respectively. h1 and h2 are the transverse external
magnetic fields applied on odd and even sites, respectively.
Finally, J3 is the strength of (XZX + YZY )-type three-site
exchange interactions.

First, we use a Jordan-Wigner transformation which maps
explicitly a pseudospin model to a free-fermion system whose
properties can always be computed efficiently as a function of
system size [78]:

σ z
j = 1 − 2c

†
j cj ,

σ x
j = eiφj (c†j + cj ), (A2)

σ
y

j = ieiφj (c†j − cj ),

with φj being the phase accumulated by all earlier sites, i.e.,
φj = π

∑
l<j c

†
l cl . Consequently, we have a simple bilinear

form of Hamiltonian in terms of spinless fermions:

H=
N/2∑
i=1

{J1[(c
†
2i−1c2i − c2i−1c

†
2i)+(c†2i−1c

†
2i − c2i−1c2i)]

+ J2[(c†2ic2i+1 − c2ic
†
2i+1) − (c†2ic

†
2i+1 − c2ic2i+1)]

+h1(1 − 2c
†
2i−1c2i−1) + h2(1 − 2c

†
2ic2i)

+ 2J3(c†2j−1c2j+1 + c
†
2j c2j+2 + H.c.)}. (A3)

The fermion version of this model corresponds to a dimerized
p-wave superconductor, in which the electrons also generate
next-nearest-neighbor hopping. Such a two-component 1D
Fermi gas on a lattice is realizable with current technology, for
example, on an optical lattice by using a Fermi-Bose mixture
in the strong-coupling limit [81].

Following the standard Jordan-Wigner transformation, we
rewrite the Hamiltonian in the momentum space by taking a
discrete Fourier transformation for plural spin sites with the
periodic boundary condition (PBC)

c2j−1 =
√

2

N

∑
k

e−ikj ak, c2j =
√

2

N

∑
k

e−ikj bk, (A4)

with discrete momenta as

k= 2nπ

N
, n = −

(
N

2
− 1

)
, −

(
N

2
− 3

)
, . . . ,

(
N

2
− 1

)
.

(A5)

Next, the discrete Fourier transformation for plural spin sites is
introduced for the PBC. The Hamiltonian takes the following
form which is suitable to apply the Bogoliubov transformation:

H =
∑

k

[Tka
†
kbk − T ∗

k akb
†
k + Tka

†
kb

†
−k − T ∗

k akb−k

+Fk(a†
kak + b

†
kbk) + 2δ(a†

kak − b
†
kbk) + Nh], (A6)

where Tk = J1 + J2e
ik and Fk = 2J3 cos k − 2h. After the

Fourier transformation, H is then transformed into a sum of
commuting Hamiltonians Ĥk describing a different k mode
each. Then, we write the Hamiltonian in the BdG form in terms
of Nambu spinors:

H = 1

2

∑
k

ϒ
†
k Ĥkϒk, (A7)

where

Ĥk =

⎛
⎜⎝

Fk + 2δ Tk 0 Tk

T ∗
k Fk − 2δ −T−k 0
0 −T ∗

−k −Fk − 2δ −Tk

T ∗
k 0 −T ∗

k −Fk + 2δ

⎞
⎟⎠,

(A8)

and ϒ
†
k = (a†

k,b
†
k,a−k,b−k). In momentum space, time-reversal

(TR) symmetry and particle-hole (PH) symmetry of the BdG
Hamiltonian Ĥk are implemented by antiunitary operators
T and C. For spinless fermions TR operator T is simply
a complex conjugation K and operator C = τxK as the PH
transformation. The system (A8) belongs to topological class
BDI with topological invariant Z in one dimension, which
satisfies Ĥ (−k)C = −CĤ (k). Here, C = τ x ⊗ σ 0K, where τ x

and σ 0 are the Pauli matrices acting on PH space and spin
space, respectively.

The diagonalized form of Ĥk can be achieved by a four-
dimensional Bogoliubov transformation which connects the
original operators {a†

k,b
†
k,a−k,b−k}, with two kinds of quasi-

particles, {γ †
k,1,γ

†
k,2,γ−k,1,γ−k,2}, as follows:⎛

⎜⎜⎜⎝
γ
†
k,1

γ
†
k,2

γ−k,1
γ−k,2

⎞
⎟⎟⎟⎠ = Ûk

⎛
⎜⎜⎝

a
†
k

b
†
k

a−k

b−k

⎞
⎟⎟⎠. (A9)

Ĥk is diagonalized by a unitary transformation (A9):

H =
∑

k

ϒ
†
k ÛkÛ

†
k ĤkÛkÛ

†
k ϒk =

∑
k

ϒ
′†
k Dkϒ

′
k. (A10)

The obtained four eigenenergies {εk,j } (j = 1, · · · ,4)

εk,1(2) =
√

|Tk|2 + F 2
k ±

√
|Tk|2 + 4δ2,

(A11)

εk,4(3) = −
√

|Tk|2 + F 2
k ∓

√
|Tk|2 + 4δ2

in the diagonalized Hamiltonian matrix Dk = Û
†
k ĤkÛk are

the excitations in the artificially enlarged PH space where the
positive (negative) ones denote the electron (hole) excitations.
The ground state corresponds to the state in which all hole
modes are occupied while the electron modes are vacant. The
PH symmetry indicates here that γ †

k,4 = γ−k,1 and γ
†
k,3 = γ−k,2.
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So, the spectra consist of two branches of energies εk,j (with j = 1,2), and

Ĥk = 1

2
εk,1(γ †

k,1γk,1 − γ−k,1γ
†
−k,1) + 1

2
εk,2(γ †

k,2γk,2 − γ−k,2γ
†
−k,2)

=
2∑

j=1

εk,j

(
γ
†
k,j γk,j − 1

2

)
. (A12)

Two-point correlation functions for the real Hamiltonian (A1) can be expressed as an expansion of Pfaffians using the Wick
theorem

〈
σx

i σ x
j

〉 =

∣∣∣∣∣∣∣∣
G−1 G−2 · Gi−j

G0 G−1 · Gi−j+1
...

...
. . .

...
Gj−i−2 Gj−i−3 · G−1

∣∣∣∣∣∣∣∣
, (A13)

〈
σ

y

i σ
y

j

〉 =

∣∣∣∣∣∣∣∣
G1 G0 · Gi−j+2

G2 G1 · Gi−j+3
...

...
. . .

...
Gj−i Gj−i−1 · G1

∣∣∣∣∣∣∣∣
, (A14)

〈
σ z

i σ z
j

〉 = 〈
σ z

i

〉〈
σ z

j

〉 − Gj−iGi−j , (A15)

where Gr = 〈(c†0 − c0)(c†r + cr )〉 and r = j − i represents the distance between the two sites in units of the lattice constant.
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