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Spin glass in the bond-diluted J1- J2 Ising model on the square lattice
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We use Monte Carlo (MC) methods to simulate a two-dimensional (2D) bond-diluted Ising model on the square
lattice, which has frustration between nearest-neighbor interaction J1 and next-nearest-neighbor interaction J2.
In this study, we use the parallel tempering algorithm to study thermodynamics for different diluted ratios x

[where x = N (J2)diluted/2N , where N denotes the system volume] and present a phase diagram. The presence
of frustration and disorder results in a spin-glass phase, which exists between the stripe antiferromagnetic phase
and Néel phase. We present a ground-state energy of T → 0 and the size dependence of the Edwards-Anderson
(EA) order parameter for the spin-glass phase. By scaling the mean energy and EA order parameter from the
simulated annealing with the Kibble-Zurek mechanism, we obtain two different dynamic exponents, zE and zq ,
for the spin-glass phase. Experimentally, this model has a close relationship with the FeAs plane of the iron-based
superconductor BaFe2(As1−xPx)2, where a spin-glass-like phase was found.
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I. INTRODUCTION

Considerable theoretical and experimental efforts have been
dedicated to studying the properties of a spin glass [1], in
which spins are frozen and disordered. A theoretical model
of spin glasses was proposed by Edwards and Anderson [2].
Spin-glass models, such as the Edwards-Anderson model and
Sherrington-Kirkpatrick model [3], were originally studied by
mean-field theory. Initially, replica symmetry breaking was not
considered in spin glasses until the Almeida-Thouless line [4]
was discovered. In experiment, several of the characteristic
phenomena, such as the rather sharp cusp in the frequency-
dependent susceptibility in low fields [5] and remanence [6,7]
and hysteresis below the freezing temperature [8,9], have been
observed in spin glass. The behavior of spin glass can be
observed through methods such as nuclear magnetic resonance
(NMR) and neutron scattering (NS). Among the spin-glass
systems, the two-dimensional (2D) Ising spin glass (ISG) is a
special kind because these systems exist only at temperature
T = 0 [10]. The commonly discussed 2D ISG models, such
as the square lattice with Gaussian or bimodal couplings, con-
tain randomly distributed ferromagnetic and antiferromagnetic
interactions. In recent years, numerous studies [11–15] have
focused on low-temperature behavior and phase transition in
the 2D ISG.

In addition to the frustrated interactions, disorder, such
as dilutions, plays an important role in spin glass. Bond
dilution can be realized by changing the interactions between
two spins. Site dilution can be achieved by removing or
changing a certain portion of the spins on the lattice. Numerous
investigations [16–19] have been conducted to locate the
transition point and critical behavior by using renormalization-
group and Monte Carlo (MC) methods. Diluted spin models
can be realized in many materials. For example, FexZn1−xF2
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and MnxZn1−xF2 are prepared by substituting nonmagnetic
isomorph ZnF2 into the magnetic FeF2(MnF2) and can be
described as a three-dimensional diluted Ising model [20].
The modulation of a pairing symmetry with bond dilution in
iron-based superconductors was studied in Ref. [21]. In the
present study, we study a 2D bond-diluted Ising model with
the nearest-neighbor interaction J1 and next-nearest-neighbor
interaction J2 on the square lattice, which is similar to the FeAs
plane of the iron-based superconductor BaFe2(As1−xPx)2. The
spin size of the Fe atoms is generally large, and the magnetic
transitions in undoped BaFe2As2 are found to be in the 2D
Ising universality class [22,23]. Therefore, we use Ising spins
to describe magnetism. The random distribution of P atoms
can lead to an effective J2 dilution on the square lattice. A
spin-glass-like behavior in BaFe2(As1−xPx)2 [24] was found
by NMR and triple-axis spectrometer (TRISP) measurements,
where the superconductivity also occurs [25,26]. However, a
systematic study on magnetism was lacking.

Fundamentally, understanding the thermodynamics of the
2D bond-diluted J1-J2 Ising model, which is different from the
clean J1-J2 Ising model [27–30], is also interesting. Our study
confirms that the system has a spin-glass phase, which can be
controlled by bond dilution and frustration.

In this study, we use the highly efficient MC methods
(i.e., parallel tempering and simulated annealing) to study
the 2D bond-diluted J1-J2 Ising model. We investigate the
thermodynamics of the ordered phase as the dilution ratio x. A
spin-glass phase is found between the stripe antiferromagnetic
phase and Néel phase. In the spin-glass phase, we find two
different dynamic exponents, which are obtained from the
simulated annealing results of the mean energy and Edwards-
Anderson (EA) order parameter. This unusual behavior is
similar to the results of the 2D ±J ISG model in Ref. [15].
The phase diagram can help in understanding the experimental
phase diagram of BaFe2(As1−xPx)2.

The rest of this paper is organized as follows. In Sec. II
we introduce the model and methods. Numerical results are
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FIG. 1. Two-dimensional square-lattice Ising model with two
types of interaction. The thick solid line represents the nearest-
neighbor interaction J1. The blue double line indicates the next-
nearest-neighbor interaction J2. J2 constantly comes in pairs in a
plaquette and can be broken in pairs (i.e., bond dilution), as denoted
by the red dashed lines.

presented in Sec. III, including the spin-glass phase and its
dynamic properties. In Sec. IV we discuss a comparison of
our results and the experimental results. Conclusions are given
in Sec. V. The Appendix provides additional results, which
discuss the connections with the 2D ±J ISG model.

II. MODEL AND METHODS

A. Model

We study a bond-diluted J1-J2 Ising model on the 2D square
lattice, as illustrated in Fig. 1. The structure of this model is
similar to the FeAs plane of the iron-based superconductor
BaFe2(As1−xPx)2. The Hamiltonian of the model is as follows:

H = J1

∑
〈i,j〉

σiσj + J2

∑
〈i ′,j ′〉

δi ′j ′σi ′σj ′ , σi = ±1, (1)

where J1 is the nearest-neighbor interaction, J2 denotes the
next-nearest-neighbor interaction, and δi ′j ′ represents the bond
dilution (1 indicates the existence of a J2 bond; 0 refers to the
bond dilution, as depicted in Fig. 1). J2 constantly comes in
pairs in a plaquette and can be broken in pairs. We define the
bond dilution ratio as x = N (J2)diluted/2N , where N is the
system volume. Here, we set J1 = J2 = 1.

In BaFe2(As1−xPx)2, magnetism and superconductivity oc-
cur in the FeAs plane, where the As atoms sit alternatively
above and below the center of each plaquette on the square
lattice which is formed by the Fe atoms, as demonstrated
in Fig. 2. In the FeAs plane, the P atoms can be randomly
substituted for the As atoms.

In our study, we consider the spin magnetism of the Fe
atoms. The spins on the Fe atoms are regarded as Ising spins
because the spin size of the Fe atoms is generally large, and the
magnetic transitions in undoped BaFe2As2 are found to be in
the 2D Ising universality class [22,23]. The nearest-neighbor

FIG. 2. FeAs plane of BaFe2(As1−xPx)2. Fe atoms form a square
lattice. Here, x is the doping ratio of BaFe2(As1−xPx)2. Parts of the
As atoms are substituted by the P atoms when x > 0.

interaction between the Fe atoms is defined as J1. The As atoms
generate the superexchange interactions between the Fe atoms,
while the P atoms cannot. An As atom constructs a pair of J2

among four Fe atoms. J2 is broken in pairs when the As atom is
substituted for the P atom. x is the doping ratio of the P atoms
and equals the diluted ratio that we defined.

In this model, a competitive relationship occurs when J1

and J2 exist simultaneously because these interactions are
antiferromagnetic and form a triangular structure. Our random
dilution results in a disordered distribution of J2, similar to
the disordered doping in the BaFe2(As1−xPx)2 material. The
competitive interactions cause frustration, and the disorder
is introduced into the system by random dilution. Our study
obtains an interesting discovery considering the combination
of frustration and disorder.

B. Parallel tempering

For complex systems, the energy landscape has numerous
separated local minima. The simulation of complex sys-
tems through the conventional MC method typically requires
an extensive relaxation time. In conventional MC studies,
simulations of high temperatures are generally sampled in
large volumes of phase space, whereas the low-temperature
ones may be trapped in the local energy minima during the
timescale of a typical computer simulation. To solve this
problem, several MC methods, such as parallel tempering [31],
population annealing [32], and simulated annealing [33], have
been discussed. The form of parallel tempering MC, which is
frequently used, dates back to Geyer [34]. In the developmental
process, parallel tempering has many similar forms, such as
replica Monte Carlo [35], simulated tempering [36], and the
expanded ensemble method [37]. All of these methods simulate
complex systems over a wide temperature range, thereby
helping complex systems to escape from metastable states and
speeding up the equilibrium process.

The parallel tempering method used here allows the system
to exchange the complete configuration among different tem-
peratures, thus ensuring that the low-temperature system can
access a set of representative regions of phase space. We briefly
summarize the sampling procedure of the parallel tempering
method. The operation is implemented in two stages, namely,
the simple single-temperature MC stage and parallel tempering
stage. In the simple MC stage, N noninteracting replicas
of the system are simulated simultaneously by performing a
single-temperature Metropolis update at N temperatures, e.g.,
T1,T2, . . . ,TN . The parallel tempering stage conducts replica
exchange, where two replicas at neighboring temperatures
swap the complete configuration. The swapping probability
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pswap between two neighboring temperatures, Ti and Ti+1, is
defined by

pswap = min

{
1,exp

[(
1

Ti+1
− 1

Ti

)
(Ei+1 − Ei)

]}
, (2)

where Ei and Ei+1 are the energies of the replica at tempera-
tures Ti and Ti+1, respectively.

Currently, the parallel tempering MC is widely regarded as
a powerful method for studying complex systems. In this study,
we aim to use the improved form, which adjusts the steps of the
two stages or the distribution of the temperatures [38–40], for
example, mainly adjusting the temperature distribution around
the critical value to increase the effective data volume. These
improvements can make the computation more efficient.

C. Simulated annealing

The method is called simulated annealing because it is
similar to physical annealing [41]. In physical annealing,
a crystal is heated and then cooled slowly until achieving
common crystal lattice structures so that the defects of the
crystal can be removed. If cooling is sufficiently slow, then
the final configuration can approach a superior structure.
Numerically, simulated annealing establishes the connection
between the thermodynamic behavior of physical annealing
and the search for the global minima of a discrete optimization
problem [33,42].

For spin systems with a rough energy landscape, simulated
annealing is a sequential MC process. In the beginning, finding
the equilibrium state at the initial temperature by using the
standard Metropolis update is necessary. Then, the temperature
is slowly decreased to the critical temperature, with updat-
ing the system in the temperature of every step. Simulated
annealing is a powerful algorithm for exploring the energy
landscape of complex systems and is capable of escaping from
the local minima. Simulated annealing and parallel tempering
play a similar role in detecting the ground states of complex
systems [43], but their differences are distinct. Simulated
annealing is a nonequilibrium process, which does not provide
any meaningful results during the annealing process except for
the nonequilibrium results obtained from the critical tempera-
ture. The nonequilibrium results acquired after the annealing
process are related to the annealing velocity and system size.
The study of phase transitions with simulated annealing is
based on the Kibble-Zurek (KZ) mechanism [44,45], which
was originally used in the nonequilibrium scaling of the defect
density in condensed-matter physics and is successfully used
at present to describe nonequilibrium physics at classical and
quantum phase transitions.

III. NUMERICAL RESULTS

A. Ordered phase

From the Hamiltonian, we can easily find that the ground
state of the system is the Néel state when the dilution ratio
x = 1, which implies that the system has no J2 interaction. The
antiferromagnetic interactions J1 and J2 exist simultaneously
when the dilution ratio x = 0, thereby introducing frustration
into the system. However, the J1 and J2 bonds are distributed in
an ordered pattern; thus, the ground state of the system exhibits

the stripe antiferromagnetic order. In this section, we focus
on the change in the ground state as a function of x. Under
different dilutions, we investigate the critical temperature of
the transition from ordered phases to the paramagnetic phase.
We use an order parameter ms [28] to describe the stripe
antiferromagnetic order, which can be defined as

m2
s = m2

x + m2
y,

m2
x = 1

N

N∑
i=1

σi(−1)xi ,

m2
y = 1

N

N∑
i=1

σi(−1)yi . (3)

The Néel order parameter is calculated as

mN = 1

N

N∑
i=1

σi(−1)xi+yi . (4)

To locate the critical temperatures, we define the Binder
cumulant [46] as

Bm = 〈m4〉
〈m2〉2

, (5)

where m represents ms or mN . Specific heat C is also computed
to study the phase transition from an ordered state to the
paramagnetic state. We exhibit the results of x = 0.1 in Fig. 3
and perform the same analysis for the rest of x. For the
same dilution of x, the disorder distribution can be reset
before each simulation considering the influence of disorder
on the system. We average over thousands of independent
disordered distributions to determine the converged values of
these physical quantities.

We obtain the critical temperatures Tc(L) from the crossing
points of the curves for L and 2L. We obtain the critical
temperature Tc for the thermodynamic limit by performing
the power-law fitting. In Fig. 4, we present an instance with
x = 0.1.

We can obtain a series of critical points when changing
the dilution ratio x. In Fig. 5(a), the critical temperature of
the system decreases continuously to zero, where the long-
range order disappears, with the increase in disorder. We can
see that the stripe antiferromagnetic phase has xc = 0.31(1)
and the Néel phase has xc = 0.73(2) by sweeping the whole
range of x in [0,1]. The phase diagram obtained here can
help us to understand the experimental phase diagram of
BaFe2(As1−xPx)2, as discussed in Sec. IV.

B. Spin-glass phase

We study the spin-glass phase, which appears in the interme-
diate region of x (0.31 < x < 0.73). The EA order parameter
q [2] is defined as

q = 1

N

N∑
i=1

σ
(1)
i σ

(2)
i , (6)

which measures the autocorrelation of spin σi between the
two replicas. In Ref. [2], the spin glass should have the
characteristics of the magnetization |m| = 0 and EA order
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FIG. 3. Results of x = 0.1, where the dilution of the system
is insufficient to change the order of the ground state. (a) Order
parameter indicates that the ground state has a stripe antiferromagnetic
order. The results of the Binder cumulant are presented in (b), and
(c) corresponds to the specific heat. We obtain the crossing points,
which correspond to the critical temperature Tc(L), by polynomial
fitting to the data.

FIG. 4. Tc(L) obtained from the specific heat C and Binder
cumulant Bm. The system has long-range order when x = 0.1. We
can extrapolate Tc(L) to an infinite size and finally obtain the
corresponding critical temperature Tc(∞) of x by using the form
Tc(L) = Tc(∞) + a/Lb. Here, a and b are the fitting parameters, and
the critical temperature Tc(∞) = 1.708(9).

FIG. 5. (a) The phase diagram. We obtain two smooth phase
boundaries by computing the critical temperature through a series
dilution ratio x. The system is in the stripe antiferromagnetic phase
or the Néel phase below the critical temperatures, whereas the upper
region is the paramagnetic phase. The critical temperature gradually
decreases when x changes from the two sides to the middle until
the critical point cannot be measured given the disappearance of the
long-range order. The xc at T = 0 is obtained by extrapolating from
the neighboring points because we cannot find the xc value of T = 0
through classical MC. Here, xc of the stripe antiferromagnetic phase
is 0.31(1), and xc of the Néel phase is 0.73(2). (b) Results of order
parameters m2

s and m2
N . T = 0.00003 is used. The solid points indicate

the results of m2
s , and the open points correspond to m2

N .

parameter |q| > 0. The magnetization here is ms or mN , which
is used as the order parameter of the ordered phase. Figure 5(b)
illustrates the results of ms and mN . Section III B 1 describes
the results of the EA order parameter and presents the existence
of the spin-glass phase.

1. Equilibrium finite-size scaling

Here, we discuss the differences among the 2D ISG models.
From the perspective of the energy landscape, the 2D ISG
model with Gaussian coupling has a nondegenerate ground
state, thereby implying the EA order parameter |q|T =0 = 1,
whereas the 2D ±J ISG model has infinitely degenerate
ground states. From this perspective, our model is similar to
the 2D ±J ISG model, in which |q| can be expressed as a
function of size when T = 0 [15].

As mentioned previously, the 2D ISG exists only at T = 0;
thus, achieving the exact zero-temperature results is difficult
for classical MC simulations. However, the 2D ISG properties
can still be obtained by considering the weak dependence of the
EA order parameter on temperature when T → 0, as depicted
in Fig. 6(a).

The EA order parameter is an important criterion for
defining and describing the spin glass. Here, we show the 〈q2〉
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FIG. 6. (a) The equilibrium 〈q2〉 of different system sizes vs T

when x = 0.5. In the region of T → 0, 〈q2〉 has a weak temperature
dependence, and the values continue to decrease with the increase in
size. (b) Results of 〈q2〉 vs x; we use the dashed lines to mark the
spin-glass region. The minimum value appears at x = 0.5. L = 24
and T = 0.00002 are used.

values within the spin-glass region in Fig. 6(b). We use the fixed
value x = 0.5 as a sample in the following discussion because
the minimum of 〈q2〉 appears at x = 0.5, which represents the
most disordered state of the model.

We use the finite-size scaling relation [15] A(T ,L) =
L−κ�s f (T L�s ), where �s is the entropy exponent. The value
of �s in the 2D ±J ISG model [47] is obtained by scaling
the spin-glass correlation function. We obtain the same result
�s

∼= 0.5 by performing the same scaling used by Ref. [47]
in our model demonstrated in the Appendix. Therefore, we
include a finite-size correction term [15] to find the value of
〈q2

eq〉 in the thermodynamic limit as follows:〈
q2

eq(L)
〉 − 〈

q2
eq(∞)

〉 ∝ L−�s . (7)

In Ref. [48], the ground-state energy of the spin glass is
expressed by the finite-size correction, which is eventually
written as E(L)0 − E(∞)0 ∝ L−(d+1/ν). The ν of the case that
we studied here is discussed in the Appendix. Thus, we obtain
ν → ∞, thereby leading to the correction of the ground-state
energy being written as

〈E0(L)〉 − 〈E0(∞)〉 ∝ L−2 (d = 2). (8)

From the correction of the EA order parameter and the ground-
state energy, we obtain the size-dependent relationship and the
thermodynamic limit of 〈q2

eq(L)〉 and 〈E0(L)〉 as displayed in
Fig. 7. Here, we obtain 〈q2

eq(∞)〉 = 0.649(4) and 〈E0(∞)〉 =
−1.4279(2). In accordance with the characteristic of the spin
glass, which is |m| = 0 and |q| > 0, we can confirm that the
spin-glass phase exists between the two ordered phases because
the value of 〈q2

eq(∞)〉 is greater than zero.
For x = 0.4 and 0.65, the same calculations are performed

by using Eqs. (7) and (8) with the same exponents �s and ν.
The exponents here have universality in the spin-glass phase.

2. Kibble-Zurek scaling

In the calculations, numerous updates are required to ap-
proach the equilibrium state, especially as T → 0. Therefore,

FIG. 7. Equilibrium results (a) 〈q2
eq(L)〉 and (b) 〈E0(L)〉 for

x = 0.5 and T → 0. We obtain the results 〈q2
eq(∞)〉 = 0.649(4) and

〈E0(∞)〉 = −1.4279(2) by extrapolating the data to an infinite size
using the form of the size correction.

we consider the model at x = 0.5 by using simulated anneal-
ing, which allows us to anneal the system to T = 0 quickly
and obtain the nonequilibrium results.

For nonlinear annealing [49,50], we define

T = υ(tmax − t)r , (9)

where υ is the annealing velocity. υ can be defined as υ =
(Tini − Tc)/trmax, where tmax denotes the total MC annealing
steps from an initial temperature Tini to the critical temperature
Tc, which is zero for the 2D ISG. The critical annealing velocity
can be obtained from the KZ mechanism and expressed
as υKZ(L) ∝ L−(zr+�s ). The KZ scaling form of a singular
quantity can be written by using the annealing velocity and
system size when the annealing velocity υ is slower than the
critical velocity υKZ(L):

A(υ,L) = L−κ�s F (υ/υKZ) = L−κ�s F (υLzr+�s ), (10)

where z is the dynamic exponent defined by the relaxation time
τ and equilibrium spatial correlation length ξ ,

τ ∝ ξz. (11)

We regenerate the distribution of J2 before each annealing
to ensure the correctness of the annealing results. We use a
sufficiently high Tini = 5 to ensure that the annealing process
starts from the paramagnetic state. In accordance with Eq. (9),
we perform the annealing from the initial temperature to
zero temperature. For accurate results, numerous statistics are
necessary; thus, we perform thousands of annealing processes
to average the results.
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FIG. 8. (a) We can obtain the result of zr + �s when r = 1 by
rescaling 〈q2〉 by 〈q2〉/〈q2

eq〉 and fitting the data. (b) reflects the results
of zr + �s vs r . We can obtain zq = 7.68(4) and �s = 0.48(4) by
annealing with different values of r .

Before fitting the results, we rewrite the KZ scaling form of
the EA order parameter as

〈q2(υ,L)〉 = 〈
q2

eq(L)
〉
F (υLzr+�s ), (12)

where 〈q2
eq(L)〉 is given by the previous equilibrium finite-size

scaling form in Eq. (7). 〈q2(υ,L)〉 → 〈q2
eq(L)〉 when υ → 0.

In Fig. 8(a), we define 〈q2
r 〉 = 〈q2〉/〈q2

eq〉, and the results can
be fitted well on a straight line for υ < υKZ(L). We obtain the
results for z and �s from zr + �s by setting r = 1,2,4, as
shown in Fig. 8(b).

The KZ scaling form of the mean energy can be written as

〈E(υ,L) − E0(∞)〉 = L−2F (υLzr+�s ). (13)

Figure 9 illustrates the annealing results of the mean energy,
which are analyzed using the same technique presented in
Fig. 8.

We obtain two dynamic exponents, zq and zE , for the mean
energy and EA order parameter, respectively, by checking the
finite-size corrections to the scaling form of the EA order pa-
rameter and mean energy. Figures 8 and 9 show that the results
of different annealing velocities and sizes can be rescaled in
accordance with Eqs. (12) and (13), respectively. The results
zr + �s of annealing paths r = 1,2,4 are consistent with the
entropy exponent obtained from zqr + �s and zEr + �s , thus
confirming �s

∼= 0.5.
A similar situation is found in the 2D ±J ISG model

described in Ref. [15], where a detailed explanation is provided
by using droplet theory. Here, we discuss this atypical situation
from the characteristics of spin glass. Spin glass has short-
range order and long-range disorder, thereby implying that
spin glass has several ordered clusters, whereas the clusters
have no correlation with one another. The EA order parameter

FIG. 9. (a) Mean energy minus the equilibrium ground-state
energy of infinite size multiplied by L2. Here, the results of r = 1 are
presented. (b) Results of zr + �s vs r . We perform the same treatment
demonstrated in Fig. 8(b), but the results are different: zE = 8.44(2)
and �s = 0.51(3).

begins to access the stabilized value when the ordered clusters
emerge. Considering the energy landscape of a spin glass, the
clusters are ordered in the ground state and the metastable
state (local minima). In the annealing process with the slow
velocity, the system first enters the metastable state where
the value of the EA order parameter begins to stabilize,
but the energy continues to change until the system finally
reaches the ground state. Therefore, the relaxation time τ is
shorter for the EA order parameter than for the energy, and
hence, the dynamic exponent zq is smaller than zE for the
same system (with the same correlation length ξ ).

Simultaneously, we perform simulated annealing with r =
1 for x = 0.4 and 0.65 to obtain the dynamic exponents zq

and zE . We find that the values of the dynamic exponents are
increasing and the difference between zq and zE becomes large
for x = 0.4,0.5,0.65. These results show that the energy land-
scape of the spin-glass phase in our model is not immutable,
and its complexity varies with the change in x.

IV. DISCUSSION

The model we study here has a structure similar to
the FeAs plane of the iron-based superconducting material
BaFe2(As1−xPx)2, as detailed in Sec. II A. The superconduct-
ing behavior of BaFe2(As1−xPx)2 has been studied in previous
experiments [24–26]. Our study focuses on the magnetism
but still has important implications for real materials. We can
obtain a certain interesting coincidence by comparing Fig. 5(a)
with the experimental phase diagrams for superconductivity of
BaFe2(As1−xPx)2 in Refs. [24–26].

The stripe antiferromagnetic phase in Fig. 5(a) (0 � x <

0.31) demonstrates a distribution similar to the phase obtained
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from the experiment, which has antiferromagnetic order. Even
the critical point of the stripe antiferromagnetic phase xc =
0.31(1) is similar to that of the experimental results. On the
right side of the phase diagram, we obtain a Néel phase
for 0.73 < x � 1. The Néel phase can possibly suppress the
appearance of superconductivity. Our spin-glass phase appears
at 0.31 < x < 0.73, where superconductivity exists but the
long-range magnetic order does not exist. The spin-glass phase
is a special magnetic phase which does not exhibit global
magnetism and long-range order. This character provides an
advantageous environment for the emergence of superconduc-
tivity. The simultaneous appearance of superconductivity and
spin glass was claimed in other superconducting materials [51].
For BaFe2(As1−xPx)2, spin-glass-like behavior was suggested
by the NMR and TRISP measurements for samples near the
optimal region [24].

V. CONCLUSIONS

In this study, we used two MC methods (parallel tempering
and simulated annealing) to investigate a bond-diluted J1-J2

Ising model by changing the dilution ratio x from 0 to 1.
Frustration and disorder were observed in the model. Various
thermodynamic quantities were calculated for different values
of x through the parallel temperature MC, and an interesting
phase diagram was found in which a spin-glass phase exists.
In the region 0 � x < 0.31, a stripe antiferromagnetic phase
is found due to the frustration, and the order of the system
is not completely broken. In the region of 0.73 < x � 1, the
system maintains the Néel order as in x = 1 until the dilution
ratio reaches the critical point. The spin-glass phase was found
in the region 0.31 < x < 0.73 and was discussed from the
equilibrium finite-size scaling where the scaling forms are
similar to those of the 2D ±J ISG model. We performed
simulated annealing at the typical value x = 0.5, from which
we obtained two dynamic exponents, zq and zE , of the mean
energy and EA order parameter, respectively, by using the
KZ mechanism. The determination of two different dynamic
exponents from the same annealing process is an atypical
phenomenon. Since we have obtained certain results similar
to those for the 2D ±J ISG model, we may connect our model
with the 2D ±J ISG model, which is a classical 2D ISG model,
although the distribution of interactions is different.

The magnetism of the iron-based superconducting material
BaFe2(As1−xPx)2 on Fe can be described by the model that
we studied here. In this material, the next-nearest-neighbor
interactions J2 are controlled by the As atoms, which can be
substituted by the P atoms. An interesting discovery is that our
phase diagram is similar to the experimental phase diagram of
BaFe2(As1−xPx)2, which helps us understand the magnetism
behind the material.
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APPENDIX: CONNECTIONS WITH THE
2D ±J ISG MODEL

The 2D ±J ISG model is a classical spin-glass model.
Section III B 1 states that the properties of the 2D ISG vary
in different models. We pay further attention to the scaling
form of the 2D ±J ISG model for other physical quantities
because the spin glass here has behavior similar to that of the
2D ±J ISG model with the EA order parameter.

Thomas et al. used droplet theory [52] to discuss the 2D
±J ISG model in Ref. [47]. These researchers provided a
scaling of the correlation function G(	r) at T → 0 by using
the entropy exponent �s . The correlation function G0(	r) =
[〈σ	0σ	r〉2

0] at large r behaved as

G0(	r) − G0(∞) ∼ r−�s , (A1)

where �s
∼= 0.5 and r represents the distance between two

spins.
We perform the same scaling for G0(	r), as shown in

Fig. 10(a), to determine the value of �s in the spin glass here.
From the scaling results, we find that �s

∼= 0.5 is applicable
here. Thus, in Eq. (7), we use 0.5 as the value of �s when we
perform the scaling of 〈q2〉.

Correlation length is a commonly used physical quantity in
the study of spin glass. The value of the critical exponent ν can
be determined by ξ ∼ |T − Tc|−ν . In the MC simulations, ξ

can be obtained from the susceptibility of the spin glass χSG,

χSG(k) = 1

N

∑
i,j

[〈σiσj 〉2]ave
ik·(Ri−Rj ), (A2)

ξL = 1

2 sin(|kmin|/2)

[
χSG(0)

χSG(kmin)
− 1

]1/2

, (A3)

where kmin = (2π/L,0).
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In the study of the 2D ±J ISG model, one of the points
is ν → ∞, like in Ref. [53]. We confirm that the correlation
length ξ in our study exponentially diverged by perform-
ing the same analysis conducted in Ref. [53]; Fig. 10(b)

displays the results. Therefore, we also determine the out-
come of ν → ∞ here. This finding is used for the equilib-
rium finite-size scaling form of the ground-state energy in
Eq. (8).
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