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Finite-barrier correction for the ferromagnetic resonance frequency of nanomagnets
with various magnetocrystalline anisotropies
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Finite-barrier corrections to the ferromagnetic resonance (FMR) frequency of nanomagnets are obtained in
closed integral form from the undamped deterministic equation of motion of the magnetization by averaging the
precession frequency as expressed by elliptic functions over all possible precessional trajectories inside a well.
The method is illustrated by determining the FMR frequency for nanomagnets with both uniaxial and biaxial
anisotropy subjected to a uniform external field and for nanomagnets with mixed cubic and uniaxial anisotropy.
The results agree with exact numerical calculations obtained from the magnetic Langevin equation via matrix
continued fractions.
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I. INTRODUCTION

A single-domain ferromagnetic nanoparticle is character-
ized by an internal magnetocrystalline anisotropy potential,
having several local states of equilibrium separated by potential
barriers between them. If the particle is small (∼100 Å) so
that the potential barriers are relatively low, the magnetization
vector M may cross over the barriers between one potential
well and another and vice versa due to thermal agitation.
The ensuing thermal instability of the magnetization results in
superparamagnetism [1], so prompting Brown [2] to formulate
a rigorous treatment of thermal fluctuations in nanoscale ferro-
magnets rooted in the general theory of stochastic processes.
Thus Brown proceeded by taking Gilbert’s equation for the
motion of M augmented by a random magnetic field h(t)
with Gaussian white noise properties which may be written
in standard Langevin form where the effect of damping and
fluctuations is represented by γ h(t) − αu̇(t) [2], viz.,

u̇(t) = −{u(t) × [γ H(t)+γ h(t) − αu̇(t)]}. (1)

Here u = M/MS is the unit vector directed along M, MS is
the saturation magnetization, γ is the gyromagnetic ratio, α is
the dimensionless damping parameter, H = −(μ0MS)−1∇V

is the effective magnetic field comprising the anisotropy
and external fields, μ0 = 4π×10−7 JA−2 m−1 in SI units, the
operator ∇ = ∂/∂u indicates the gradient on the surface of
the unit sphere, V (ϑ,ϕ) is the free-energy density, and the
angles ϑ and ϕ specify the orientation of M in spherical polar
coordinates. Brown [2] then was able to construct from the
magnetic Langevin equation (1) the accompanying Fokker-
Planck equation for the distribution function W (ϑ,ϕ,t) of
the magnetization orientations in configuration space. We re-
mark that although Brown’s coherent rotation or “macrospin”
approximation cannot completely explain the magnetization
dynamics of nanomagnets, nevertheless many qualitative

features needed to explain experimental data are satisfactorily
reproduced.

Consequently, many varied problems in superparamag-
netism have been analyzed via Brown’s model (for reviews,
see Refs. [3–5]). In particular, thermal fluctuations strongly
affect the ferromagnetic resonance (FMR) in nanomagnets
(see, e.g., Refs. [6–10]). However, only a few treatments of
FMR in nanomagnets exist. The first one is from Berger et al.
[6,7], who interpreted FMR spectra via the usual Landau-
Lifschitz formula [8] (which ignores thermal fluctuations) with
a modified anisotropy constant and saturation magnetization.
A similar method was suggested by de Biasi et al. [9–11] who
modified the well-known Smit-Beljers-Suhl formula for the
precession frequency ωA, viz. [12–14],

ωA = γ

μ0MS sin ϑ

√
∂ϑϑV ∂ϕϕV − (∂ϑϕV )2

∣∣∣∣
ϑ=ϑA
ϕ=ϕA

(2)

(where ϕA,ϑA are the angular coordinates of the minimum A
of the free-energy density), with suitably adapted anisotropy
constant and saturation magnetization. Furthermore, Noginova
et al. [15,16] calculated the FMR absorption spectra of nano-
magnets in the manner of paramagnetic resonance theory, i.e.,
as a superposition of transitions between all allowed states. The
FMR in an assembly of noninteracting magnetic nanoparticles
was also studied by Sukhov et al. [17], Raikher et al. [18–21],
and Kalmykov and Coffey [22] using Brown’s model based on
numerical and analytical methods of solution of Eq. (1).

Now to evaluate the characteristic FMR frequency of a
nanomagnet, i.e., the salient parameter of the problem, we
consider a magnetic dipole placed in a potential well created
by the magnetocrystalline anisotropy V (ϑ,ϕ). Moreover, we
use the fact that for very low damping (α < 0.01), where the
energy loss per cycle (due to Brownian motion) of a precessing
magnetization is very much less than the thermal energy, the
energy trajectories diffuse very slowly; therefore they differ,
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but little from those of the undamped precessional motion in
a well. In other words the dynamics of the magnetization in a
well of the potential V (ϑ,ϕ) are effectively deterministic for the
purpose of calculating the FMR frequency and in consequence
are described by Eq. (1) without damping and noise; i.e., they
are simply governed by the deterministic Larmor-like equation,

u̇(t) = γ [H(t) × u(t)]. (3)

Now the FMR frequency 	r can be approximately calcu-
lated as the bottom precession frequency ωA at the bottom of
the deepest potential well, which is given by Eq. (2). This
equation allows one to accurately estimate 	r in the zero-
temperature limit, T → 0, corresponding to effectively infinite
potential barriers between the metastable states. Unfortunately,
Eq. (2) leads to substantial errors in 	r for shallow potential
wells with relatively small potential barriers (∼3–5 kT). More-
over, Eq. (2) cannot be used for anisotropies with flat potential
wells, where the factor

√
∂ϑϑV ∂ϕϕV − (∂ϑϕV )2 is exactly

equal to zero, because the paraboloidal approximation for V in
the vicinity of the minimum A, which is used in the derivation
of Eq. (2), is no longer valid. In such cases, the precession
frequency of the magnetization depends (in typical nonlinear
fashion) on the energy of the magnetic moment, which we can
write in nondimensional form as E(ϑ,ϕ) = vV (ϑ,ϕ)/(kT ),
where v is the volume of the nanoparticle, k is Boltzmann’s
constant, and T is the temperature. The distribution of energy
in the well is given by the Boltzmann law Z−1

A e−E(ϑ,ϕ), where

ZA =
∫∫

E<EC

e−E(ϑ,ϕ) sin ϑdϑdϕ

is the well partition function and EC = vV (ϑC,ϕC)/(kT ) is a
saddle (barrier) point energy. The precession frequency ωE =
2πP −1

E is obtained from the precession period PE at a given E
and so is determined by the line integral [23],

PE = γ −1
∮

E

|[H×M]|−2([H×M] · dM), (4)

which in the spherical polar coordinate system becomes

PE = μ0MS

γ

∮
E

sin ϑ ∂V
∂ϑ

dϕ − 1
sin ϑ

∂V
∂ϕ

dϑ

1
sin2ϑ

(
∂V
∂ϕ

)2 + (
∂V
∂ϑ

)2 . (5)

At the bottom of the well [at energy EA = vV (ϑA,ϕA)/
(kT )], the precession frequency which is now ωA ≡ 2πP −1

EA

reduces to Eq. (2) in the paraboloidal approximation. In
writing the general Eqs. (4) and (5), it is assumed [23–25]
that one may parametrize the instantaneous magnetization
direction by the slow energy variable E and the fast precessional
variable running uniformly along a closed Stoner-Wohlfarth
orbit [26] of energy E. Thus, only the purely gyromagnetic
term without damping and noise torques need be considered in
Eq. (1) (see Refs. [23–25] for details). In thermal equilibrium,
the FMR frequency 	r of a nanoparticle may be estimated
from the energy-dependent precession frequency ωE of the
magnetization vector in the well as averaged over all possible
precessional trajectories inside the well so that

	r = 1

ZA

∫∫
E<EC

ωE(ϑ,ϕ)e
− E(ϑ,ϕ) sin ϑdϑdϕ. (6)

C

A

A

FIG. 1. 3D plot of the dimensionless free energy E(ϑ,ϕ)/σ ,
Eq. (7), for h = 0.5.

The integral in Eq. (6) is calculated via the precession period
PE , Eq. (4), along the lossless energy trajectories, i.e., the
Stoner-Wohlfarth orbits. Now in certain cases (low potential
barriers or flat wells), 	r may considerably differ from the
bottom precession frequency, Eq. (2).

Therefore, we use Eq. (6) here in order to evaluate the
effects of thermal fluctuations on the FMR frequency of nano-
magnets with uniaxial, biaxial, and mixed (cubic + uniaxial)
anisotropies. The accuracy of the results for 	r as obtained
from Eq. (6) is ascertained for these potentials by comparing
them with independent calculations of the FMR frequency
from the spectra of the transverse component of the dy-
namic susceptibility tensor of a nanoparticle via numerical
solution of the magnetic Langevin equation (1) based on
the matrix continued fraction method ([5], Chap. 9; see also
Appendix A).

II. FMR FREQUENCY FOR UNIAXIAL ANISOTROPY
WITH A TRANSVERSE MAGNETIC FIELD

First, we determine the FMR frequency for a uniaxial
nanomagnet subject to a uniform dc magnetic field H0 applied
perpendicular to the easy axis, therefore characterised by the
dimensionless free energy

E(ϑ,ϕ) = σ (sin2ϑ − 2hsinϑ cos ϕ), (7)

where σ = vKu/(kT ) is the dimensionless anisotropy (inverse
temperature) parameter,Ku is the uniaxial anisotropy constant,
and h = μ0MSH0/(2Ku) is the external field parameter. The
potential Eq. (7) has two equivalent wells with minima EA =
−σh2 at n+

A and n−
A separated by a potential barrier �E =

EC − EA = σ (1 − h)2 with a saddle point at EC = σ (1 − 2h)
at nC (see Fig. 1). The saddle point lies in the equatorial region,
while n+

A and n−
A lie in the north and south polar regions,

respectively. In general, E(ϑ,ϕ) from Eq. (7) retains its bistable
form for 0 � h < hc, where hc = 1 is the critical value of
h, where E(ϑ,ϕ) loses its bistable character. The details of
the numerical treatment of the problem have been given by
Coffey et al. [5,27,28], Kennedy [29], Kalmykov and Titov
[30], and Fukushima et al. [31,32]. Furthermore the nonaxially
symmetric double well potential, Eq. (7), is very useful as an
illustrative example of how 	r may be calculated from Eq. (4).
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h

r

FIG. 2. FMR frequency 	r vs the dc field parameter h for
various anisotropy (inverse temperature) parameters σ = vKu/(kT ).
Solid line: continued fraction solution [22]; filled circles: averaged
precession frequency Eq. (6); stars: precession frequency at the
bottom of the well [Eq. (13)].

Now for E(ϑ,ϕ) as given by Eq. (7), the Larmor-like
gyromagnetic Eq. (3) can be rewritten in terms of the Cartesian
components (uX, uY , uZ) of the unit vector u = M/MS as

τ0
d

dt

⎛
⎝uX

uY

uZ

⎞
⎠ =

⎛
⎝ −uZ(t)uY (t)

uZ(t)(uX(t) − h)
huY (t)

⎞
⎠, (8)

where

τ0 = μ0MS

2γKu

(9)

is a precession time constant. For γ = 2.2×105 mA−1 s−1,
MS ≈ 1.4×106 A m−1, and Ku ≈ 2×105 J m−3 (cobalt), we
have the estimate τ0 ≈ 2×10−11 s.

Furthermore, the line integral Eq. (4) can also be rewritten
explicitly in terms of the Cartesian components (uX, uY , uZ)
as

PE =
∮

E

u̇XduX + u̇Y duY + u̇ZduZ

u̇2
X + u̇2

Y + u̇2
Z

. (10)

Here (uX, uY , uZ) are obviously given by the deterministic
gyromagnetic equation of motion of the magnetization, Eq. (8).
Thus, as shown in Appendix B, the periodic time of the
magnetization precession, Eq. (10), takes on the final explicit
form

РE = 8τ0K(mE)

pE

√
(e1 − e3)(e2 − e4)

, (11)

where K(m) is the complete elliptic integral of the first kind
[33,34] and the parameters pE, e1, e3, e2, e4, and mE are given
in Appendix B by Eqs. (B2), (B9), and (B11), respectively.
In the particular case of zero external field, h = 0, Eq. (11)
becomes

PE = 2πτ0√
1 − E/σ

. (12)

The averaged precession frequency 	r , Eq. (6), as a
function of the dc field parameter h is shown in Fig. 2 for
various parameters σ = vKu/(kT ). Here 	r as determined
from Eq. (6) is compared with independent calculations of
the FMR frequency from the FMR absorption spectra via
numerical solution of the magnetic Langevin equation (1) (for
details, see [5,21]). Figure 2 shows that Eqs. (6) and (11) used in
combination yield an accurate solution for the FMR frequency
both at high (σ < 10) and low (σ < 25) temperatures for a
wide range of the external dc field. Moreover, for large σ , i.e.,
high barriers (low temperatures), the FMR frequency 	r is
accurately approximated by the precession frequency ωA at
the bottom of the well, namely,

ωA = 1

τ0

√
1 − h2. (13)

The latter result is obtained by directly substituting the free
energy given by Eq. (7) into that given by the parabolic approx-
imation, Eq. (2). Thus, Fig. 2 clearly illustrates that for low
barriers, �E < 5 (small particles and/or high temperatures),
the effect of thermal fluctuations on the FMR frequency may
exceed 10%.

III. FMR FREQUENCY FOR BIAXIAL ANISOTROPY

Next, we consider a biaxial anisotropy potential as aug-
mented by the Zeeman term due to an external magnetic field
H0. The dimensionless free-energy density E(ϑ,ϕ) of magnetic
nanoparticles taken in standard form including the dc bias field
H0 is then [5,35]

E(ϑ,ϕ) = σ [δsin2ϑcos2ϕ − cos2ϑ − 2h(γ3 cos ϑ

+ γ1 sin ϑ cos ϕ + γ2 sin ϑ sin ϕ)], (14)

where σ = vKu/(kT ) is the dimensionless anisotropy
parameter,Ku is the anisotropy constant, δ is the dimensionless
biaxiality parameter accounting for both the magnetizing and
magnetocrystalline effects, γ1, γ2,γ3 are the direction cosines
of the field vector H0, and h = μ0MSH0/(2Ku) is as before the
external field parameter. We remark that biaxial anisotropy may
yield an appreciable contribution to the free-energy density of
magnetic nanoparticles [5]. In particular, the bistable potential

TABLE I. The bottom precession frequency.

Potential Position of minimum Bottom precession frequency ωA

γ3 = 1, γ1 = γ2 = 0 ϑA = 0 and ϑA = π τ−1
0

√
(1 + h)(1 + h + δ)

γ1 = 1, γ2 = γ3 = 0 ϕA = 0 and sin ϑA = ± h

1+δ
τ−1

0

√
1 + δ − h2

1+δ

γ2 = 1, γ1 = γ3 = 0 ϕA = π/2 and sin ϑA = ±h τ−1
0

√
(1 − h2)(1 + δ)
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FIG. 3. 3D plots of σ−1E(ϑ,ϕ) (a) Eq. (16), (b) Eq. (18), and (c) Eq. (17) for δ = 0.6 and h = 0.3.

is used to describe the free-energy density of a spheroidal
nanoparticle, with the axis of symmetry inclined at a certain
angle to the easy anisotropy axis of the particle as well that
of elongated particles, where easy- and hard-axis anisotropy
terms are present [5]. Furthermore, the bistable potential is
commonly used in spintronic applications [5,36] to represent
the free-energy density of a nanopillar in the standard form of
superimposed easy-plane and in-plane easy axis anisotropies.

For the biaxial anisotropy potential, Eq. (14), the gyromag-
netic equation, Eq. (3), can again be written for the Cartesian
components (uX, uY , uZ) of the unit vector u = M/MS as a
system of differential equations:

τ0
d

dt

⎛
⎝uX

uY

uZ

⎞
⎠ =

⎛
⎝ −uY uZ − hγ3uY + hγ2uZ

(1 + δ)uZuX − hγ1uZ + hγ3uX

−δuXuY − hγ2uX + hγ1uY

⎞
⎠. (15)

We consider now three separate cases. These are where
the external magnetic field is applied along the easy axis of
magnetization [case (a): H0 ‖ Z, γ3 = 1, γ1 = γ2 = 0], along
the hard axis of magnetization [case (b): H0 ‖ Y , γ2 = 1, γ1 =
γ3 = 0], and along the intermediate axis of magnetization
[case (c): H0 ‖ X, γ1 = 1, γ2 = γ3 = 0] (see Fig. 3). The
free-energy density for each of the three cases becomes

(a) E(ϑ,ϕ) = σ (sin2ϑ + δsin2ϑcos2ϕ − 2h cos ϑ), (16)

(b) E(ϑ,ϕ) = σ (sin2ϑ + δsin2ϑcos2ϕ − 2h sin ϑ cos ϕ),
(17)

(c) E(ϑ,ϕ) = σ (sin2ϑ + δsin2ϑcos2ϕ − 2h sin ϑ sin ϕ).
(18)

The free-energy density E(ϑ,ϕ) from Eqs. (16) and (17)
has two wells [which may be either nonequivalent, Eq. (16),
or equivalent, Eqs. (17) and (18)] and one or two equivalent
saddle points (see Fig. 3). The oscillation frequencies for the
deepest well ωA, Eq. (2), for each of the three potentials (16)
and (17) are given in Table I.

Case γ3 = 1, γ1 = γ2 = 0. As shown in Appendix B, the
magnetization precession period, Eq. (10), now becomes

РE = 2τ0K(mE)

pE

√
(δ + 1)(1 + e+)(1 − e−)

, (19)

where K(m) is the complete elliptic integral of the first
kind [33,34] and the parameters pE,e±, and mE are given
by Eqs. (B15), (B16), and (B19), respectively. The FMR
frequency 	r as a function of the field parameter h and
anisotropy (inverse temperature) parameter σ = vKu/(kT ) is

shown in Fig. 4. Here 	r as given by Eq. (6) is compared
with independent calculations of the FMR frequency from the
dynamic susceptibility spectra of the nanoparticle obtained via
numerical solution of the magnetic Langevin equation (1) (for
details, see [35]). The dependence of the FMR frequency on
both the dc field parameter h and the biaxiality parameter δ is
shown in Fig. 4. For high barriers, the parabolic approximation
solution rendered by Eq. (2) is accurate while the weighted 	r

from Eq. (19) also yields an accurate solution [see Fig. 4(b)].
However, for low barriers (small particle and/or high tempera-
tures), the effect of thermal fluctuations on the FMR frequency
may be substantial [more than 10%; see Fig. 4(a)].

Case γ2 = 1, γ1 = γ3 = 0. Here, the energy-dependent
period РE of the magnetization precession, Eq. (10), becomes

h

r

h

r

FIG. 4. FMR frequency 	r vs the dc field parameter h for γ3 = 1,

γ1 = γ2 = 0, and various anisotropy parameter values σ = vKu/

(kT ) (a) and δ (b). Solid line: the FMR frequency calculated via
continued fraction solution [35]; filled circles: averaged precession
frequency [Eqs. (6) and (19)]; stars: precession frequency at the
bottom of the deepest well (see Table I).
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h

r

h

r

FIG. 5. FMR frequency 	r vs the dc field parameter h for γ2 = 1,

γ1 = γ3 = 0, and various anisotropy parameter values σ (a) and δ (b).
Solid line: the FMR frequency calculated from the continued fraction
solution [35]; filled circles: averaged precession frequency [Eqs. (6)
and (20)]; stars: precession frequency at the bottom of the well ωA

from Eq. (2) (see Table I).

(see Appendix B)

РE = 4τ0K(mE)

pE

√
δ(1 + e+)(1 − e−)

, (20)

where K(m) is the complete elliptic integral of the first
kind [33,34] and the parameters pE,e±, and mE are given
by Eqs. (B20), (B24), and (B28), respectively. The FMR
frequency 	r as a function of the dc field parameter h is shown
in Fig. 5. Clearly the small oscillation solution, Eq. (2), is again
accurate for high barriers (low temperatures).

Caseγ1 = 1, γ2 = γ3 = 0. The periodic time, Eq. (10), now
becomes (see Appendix B)

РE = 4τ0

pE

√
δ

[
K

(
m−1

E

)
√

2(e+ − e−)
− K(mE)√

(1 + e+)(1 − e−)

]
, (21)

where the parameters pE,e±, and mE are given by Eqs. (B29),
(B34), and (B38), respectively. The dependence of the FMR
frequency on the dc field parameter h is shown in Fig. 6.
Clearly, the small oscillation solution is again accurate at
high barriers [Fig. 6(b)]. However, for low barriers (i.e.,
small particles and high temperatures) the effect of ther-
mal fluctuations on the FMR frequency may be significant
[see Fig. 6(a)].

h

r

h

r

FIG. 6. FMR frequency 	r vs the field parameter h for γ1 = 1,

γ2 = γ3 = 0, and various anisotropy parameter values σ (a) and δ

(b). Solid line: the FMR frequency calculated via continued fraction
solution [35]; filled circles: averaged precession frequency from
Eqs. (6) and (21); stars: precession frequency at the bottom of the
well ωA from Eq. (2) (see Table I).

IV. MIXED ANISOTROPY: BREAKDOWN
OF THE PARABOLOID APPROXIMATION

The origin of Eq. (2) lies in the paraboloid approximation for
the free-energy density E(ϑ,ϕ) near the bottom of a potential
well. However, there are certain situations, where the well
frequency ωA is zero. This obviously incorrect result may
occur if the paraboloid approximation fails. The breakdown of
that approximation in the well is encountered, for example, for
E(ϑ,ϕ) with flat well bottoms. An example is mixed uniaxial
and cubic anisotropy [37,38],

E(ϑ,ϕ) = σ

[
sin2ϑ + ζ

4
(sin4ϑsin22ϕ + sin22ϑ)

]
, (22)

where σ = vKu/(kT ) is the dimensionless anisotropy
parameter,Ku denotes the uniaxial anisotropy constant, and ζ

is the cubic-to-uniaxial anisotropy ratio, which may be either
positive or negative. For ζ = −1 (see Fig. 7), the anisotropy
energy Eq. (22) becomes

E(ϑ,ϕ) = σ

8
sin4ϑ(cos 4ϕ + 7). (23)

This value of ζ is of interest, since Eq. (2) cannot now be
used to estimate the FMR frequency. Indeed, here the well
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FIG. 7. 3D plots of the mixed anisotropy potential, Eq. (22), for
ζ = −1 (flat wells).

frequency is

ωA = γ

μ0MS sin ϑ

√
∂ϑϑV ∂ϕϕV − (∂ϑϕV )2

∣∣∣∣
ϑ=ϑmin
ϕ=ϕmin

≡ 0. (24)

For the anisotropy potential, Eq. (22), the gyromagnetic
equation (3) can also be written in terms of the Cartesian
components (uX, uY , uZ) of the unit vector u as

τ0
d

dt

⎛
⎝uX

uY

uZ

⎞
⎠ =

⎛
⎝−uY uZ

(
1 − u2

Z + u2
Y

)
uZuX

(
1 − u2

Z + u2
X

)
uXuY

(
u2

Y − u2
X

)
⎞
⎠. (25)

The energy-dependent period, Eq. (10), then becomes
(see Appendix B)

РE = 2τ0

∫ e4

e3

du√
[(1 − u2)2 − E/σ ][4E/σ − 3(1 − u2)2]

,

(26)

where the parameters e3 and e4 are given by Eq. (B45) in
Appendix B. The FMR frequency as a function of the parameter
σ = vKu/(kT ) is shown in Fig. 8. Clearly the definition of 	r

via Eq. (6) in combination with the closed Eq. (26), provides
a good approximation to the FMR frequency for σ > 10.

Finally at low potential barriers, σ < 5, comparison of
	r from Eq. (6) with the matrix continued fraction solution

r

FIG. 8. FMR frequency 	r vs the anisotropy (inverse temper-
ature) parameter σ for ζ = −1 (flat wells). Solid line: continued
fraction solution [38]; filled circles: averaged precession frequency
inside the well 	r from Eqs. (6) and (26).

becomes rather complicated as the FMR peak in the spectrum
of the imaginary part of the transverse dynamic susceptibility
χ⊥(ω) then becomes asymmetric and very large due to the
inhomogeneous broadening.

V. CONCLUSION

We have evaluated the effects of thermal fluctuations on
the average FMR frequency of a magnetic nanoparticle for a
variety of anisotropy potentials showing that for an acceptable
solution all that is actually required is a knowledge of the
deterministic dynamics governed by the simple gyromagnetic
equation and the Boltzmann equilibrium distribution. The
calculations clearly illustrate that for low barriers, �E < 5
(corresponding to small particles and/or high temperatures),
the effect of thermal fluctuations on the FMR frequency may be
substantial (more than 10%). In this respect, the determination
of the FMR frequency is rather similar to the calculation of the
underdamped Kramers’ escape rate [4], which is also obtained
from the deterministic dynamics of the magnetization. This
similarity is unsurprising given that the underdamped escape
rate and the FMR frequency are intrinsically linked to each
other since they are both aspects of the same phenomenon,
namely, the very lightly damped periodic motion in the wells
of the magnetocrystalline anisotropy potential. In other words,
at low frequencies the effect of the slightly damped librational
motion of spins with energy near the barrier energy is to give
rise to overbarrier (Néel) relaxation, while at high frequencies
the effect of the precessional motion deep in the well is to give
rise to ferromagnetic resonance. Moreover, the linking of the
frequency resonant process with the low-frequency overbarrier
one is yet another example [39] of the original Kramers concept
of oscillations in a potential well of Brownian particles with
energy equal to the separatrix energy before escape as both
are simply limiting cases of the same family of librational
dynamical processes in a well. The salient difference between
the inertial Brownian motion case pertaining to particles and
rigid rotators and the magnetic case is that in the former the
low damping process is due to inertial effects while in the latter
that process arises from geometry.

APPENDIX A: MATRIX CONTINUED FRACTION
SOLUTION OF THE MAGNETIC LANGEVIN

EQUATION (1)

For arbitrary magnetocrystalline anisotropy, which can be
written in terms of spherical harmonics Ylm(ϑ,ϕ) as

V (ϑ,ϕ) =
∞∑

R=1

R∑
S=−R

AR,SYRS(ϑ,ϕ), (A1)

by an appropriate transformation of variables and by direct
averaging, the magnetic Langevin equation (1) can always
be reduced to an infinite hierarchy of differential-recurrence
equations for the statistical moments 〈Ylm〉 (the expectation
values of the spherical harmonics), viz. (details are in Ref. [5],
Chap. 9),

d

dt
〈Ylm〉 =

∑
s,r

el,m,l+r,m+s〈Yl+rm+s〉, (A2)
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where Ylm(ϑ,ϕ) are defined by

Ylm(ϑ,ϕ) =
√

(2l + 1)(l − m)!

4π (l + m)!
eimϕP m

l (cos ϑ),

and P m
l (x) are the associated Legendre functions defined as

P m
l (cos ϑ) = (−1)m

2l l!
(sin ϑ)m

dl+m

(d cos ϑ)l+m
(cos2ϑ − 1)l .

Furthermore, we can always transform [5] the moment
systems, Eq. (A2), into the tridiagonal vector differential-
recurrence equation

Ċn(t) = Q−
n Cn−1(t) + QnCn(t) + Q+

n Cn+1(t) (n > 0), (A3)

where Cn(t) are the column vectors arranged in an appropriate
way from the statistical moments 〈Ylm〉(t) and the matrices
Q±

n ,Qn are formed from the elements el,m,l′,m′ . As shown in
Ref. [5], Chap. 9 (see also Refs. [4,28,35,36,38]), Eq. (A3)
can then be solved via matrix continued fractions for 〈Y10〉(t)
and 〈Y1±1〉(t). Having determined 〈Y10〉(t) and 〈Y1±1〉(t), we
have the Cartesian components of the average magnetization
〈Mi〉(t), i = X,Y,Z, as

〈MX〉(t) = MS

√
2π

3
[〈Y1−1〉(t) − 〈Y11〉(t)],

〈MY 〉(t) = iMS

√
2π

3
[〈Y1−1〉(t) + 〈Y11〉(t)],

〈MZ〉(t) = MS

√
4π

3
〈Y10〉(t).

In particular, by evaluating the ac stationary response of
the magnetization to an ac driving field H (t) = H cos ωt ,
we can evaluate the transverse component χ⊥(ω) of the
dynamic susceptibility tensor of a nanoparticle, and, hence, the
frequency of the FMR peak in the spectrum of the imaginary
part of χ⊥(ω) [5]. In practical applications, matrix continued
fractions due to their rapid convergence are very well suited to
numerical calculations.

APPENDIX B: PERIODS OF THE PRECESSIONAL
MOTION FOR VARIOUS ANISOTROPIES

1. Uniaxial nanomagnet subject to a uniform dc magnetic field
applied perpendicular to the easy axis

By substituting Eq. (8) into Eq. (10), we have

PE = τ0

∮
E

−uZuY duX + (uZuX − huZ)duY + huY duZ

u2
Zu2

Y + u2
Z(uX − h)2 + h2u2

Y

.

(B1)

To calculate this formal integral analytically in terms of el-
liptic integrals, we rearrange it by using the obvious constraints
of energy conservation E = const. and normalization |u| = 1,

so that

1 − E/σ = u2
Z + 2huX = p2

E = const., (B2)

u2
X + u2

Y + u2
Z = 1, (B3)

where we recall that in the well −h2 < E/σ < 1 − 2h, so
p2

E > 0 for 0 < h < hc = 1. Next, we introduce a new func-
tion u(t) related to uX(t), uY (t), and uZ(t) via

uX = p2
E

2h
(1 − u2), (B4)

uY =
√

1 − p2
Eu2 − p4

E

4h2
(1 − u2)2

, (B5)

uZ = pEu. (B6)

Thus, the line integral, Eq. (B1), can be expressed in terms of
the single variable u. Therefore, on substituting Eqs. (B4)–(B6)
into Eq. (B1), we simply have the period of the precessional
motion in the well,

PE = 2τ0

pE

∮
E

du√
�(u)

, (B7)

where

�(u) = 4h2

p4
E

− 1 +
(

2 − 4h2

p2
E

)
u2 − u4

= (e1 − u)(u − e2)(u − e3)(u − e4) (B8)

and the roots of the fourth-order polynomial �(u) are given by

e1,2 = −e3,4 =

√√√√√1 − 2h2

p2
E

⎛
⎝1 ±

√
1 + 1 − p2

E

h2

⎞
⎠. (B9)

Moreover, e1 � e2 � e3 � e4 for external field parameter
values 0 < h < hc = 1. Note that in one well u varies in the
interval e1 � u � e2 while in the other u varies in the interval
e3 � u � e4 (see Fig. 9). Noticing that∫ e4

e3

dx√
(e1 − x)(x − e2)(x − e3)(x − e4)

= 2K(mE)√
(e1 − e3)(e2 − e4)

, (B10)

where K(m) is the complete elliptic integral of the first kind
[33,34] and the modulus

mE = (e1 − e2)(e3 − e4)

(e1 − e3)(e2 − e4)
, (B11)

we have Eq. (11) for the period of the precessional motion.

2. Biaxial nanomagnet subject to a uniform dc magnetic field

Case γ3 = 1, γ1 = γ2 = 0. Here, the solutions of Eq. (15)
are again subject to the general constraints of energy conserva-
tion E = const. and normalization |u| = 1. The possible value
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e ee

u

e

FIG. 9. The function �(u), Eq. (B8), for h = 0.4 and pE = 0.95.

of the normalized free energy of the magnetization in the well
is limited by the conditions EA � E � EC . If |h| < hc = 1,
two nonequivalent wells with minima EA = σ (−1 ∓ 2h) at
ϑA = 0, π and two equivalent saddle points at EC = σh2 at
ϑC = π/2, ϕC = π/2 and ϕC = 3π/2 exist [see Fig. 3(a)].
These constraints again allow us to formally introduce a new
function u(t) related to uX(t), uY (t), and uZ(t) via

uX(t) = pE

√
δ−1[e+ − u(t)][e− − u(t)], (B12)

uY (t) = pE

√
(1 + δ−1)[1 − u2(t)], (B13)

uZ(t) = pEu(t) − h(δ + 1)−1, (B14)

where

p2
E = δ − E/σ

δ + 1
+ h2

(δ + 1)2

=
[
uZ(t) + h

δ + 1

]2

+ δ

δ + 1
u2

Y (t) = const. (B15)

and

e± = 1

pE

(
− hδ

δ + 1
±

√
h2 − E

σ

)
(B16)

are the roots of the quadratic equation �(u) = 0, where the
polynomial �(u) is explicitly given by

�(u) = u2 + 2δh

pE(δ + 1)
u + δ

p2
E

[
1 − h2

(δ + 1)2

]
− δ − 1.

Using Eqs. (B12)–(B16), we have from Eq. (10),

PE = τ0

∮
E

[(1 + δ)uZ + h]uXduY − (uY uZ + huY )duX − δuXuY duZ

(uZ + h)2u2
Y + δ2u2

Xu2
Y + [(1 + δ)uZ + h]2u2

X

= − τ0

pE

√
δ + 1

∮
E

du√
(1 − u2)(u − e+)(u − e−)

. (B17)

Thus, we have once again expressed the integrand in terms
of the single variable u. Now because

∫ −1

e−

1√
(1 − u2)(u − e+)(u − e−)

du

= − 2√
(1 + e+)(1 − e−)

K(mE), (B18)

where

mE = (1 + e−)(1 − e+)

(1 + e+)(1 − e−)
, (B19)

we have for the precessional period, Eq. (19).
Case γ2 = 1, γ1 = γ3 = 0. The magnetization trajectories

of the precessional dynamics must once again fulfill the two
constraints, namely, |u| = 1 and conservation of energy so that

p2
E =

(
uY + h

δ

)2

+ δ + 1

δ
u2

Z = δ + 1 − E/σ

δ
+ h2

δ2

= const., (B20)

where E is the normalized free energy of the magnetization,
with possible values in the well limited by the conditions
EA � E � EC . If |h| < hc = 1, two equivalent wells exist
with minima EA = −σh2 at sin ϑA = ±h, ϕA = π/2, and
one saddle point at EC = σ (1 − 2h) at ϑC = π/2, ϕC = π/2

[see Fig. 3(c)]. As before, we can now introduce a new function
u(t) related to uX(t), uY (t), and uZ(t) via

uX(t) = pE

√
(1 + δ)−1[e+ − u(t)][u(t) − e−], (B21)

uY (t) = pEu(t) − h

δ
, (B22)

uZ = pE

√
δ

δ + 1
[1 − u2(t)], (B23)

where

e± = h(δ + 1)

δpE

±
√

h2 + E/σ

pE

(B24)

are the roots of the polynomial

�(u) = − 1

δ + 1
u2 + 2

h

pEδ
u + 1 − h2/δ2

p2
E

− δ

δ + 1
. (B25)

By substitution of uX(t), uY (t), uZ(t) given by Eqs. (B21)–
(B23) into Eq. (10), we obtain, following our previous method,

PE = τ0

∮
E

(h − uY )uZduX + (1 + δ)uXuZduY − (δuY + h)uXduZ

(h − uY )2u2
Z + (1 + δ)2u2

Xu2
Z + (δuY + h)2u2

X

= − τ0

pE

√
δ

∮
E

du√
(1 − u2)(e+ − u)(u − e−)

. (B26)
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e

-u u

e

FIG. 10. The function (1 − u2)�(u), Eq. (B25), for h = 0.2,
δ = 1, and pE = 1.3.

In the well, u varies in the interval e− � u � e+ (see
Fig. 10). Moreover, the sign of the integral is determined by the
direction along the closed trajectory with E = const. Because
the integration in interval e− � u � e+ corresponds to that
over a semiperiod and∫ e+

e−

du√
(1 − u2)(e+ − u)(u − e−)

= 2K(mE)√
(1 + e+)(1 − e−)

,

(B27)

where

mE = 2(e+ − e−)

(1 + e+)(1 − e−)
, (B28)

we have Eq. (20) for the precessional period.
Case γ1 = 1, γ2 = γ3 = 0. The magnetization trajectories

of the precessional dynamics must again fulfill the two con-
straints, namely, |u| = 1 and

p2
E =

(
uX − h

δ + 1

)2

+ 1

δ + 1
u2

Y

= E/σ

δ + 1
+ h2

(δ + 1)2 = const., (B29)

where the possible value of E in the well is limited by
the conditions EA � E � EC . If |h| < hc = 1 + δ, we have
two equivalent wells with minima EA = −σh2/(1 + δ) at

ee e

u
e

FIG. 11. The function �(u), Eq. (B44), for E = σ/2.

sin ϑA =±h/(1 + δ), ϕA = 0, and saddle points at

EC =
{

σ (1 − h2/δ) h � δ ϑC = π/2, cos ϕC = ±h/δ

σ (1 + δ − 2h) δ � h < 1 + δ ϑC = π/2, ϕC = 0

(B30)

[see Fig. 3(b)]. Exactly as before, we can introduce a new
function u(t) related to uX(t), uY (t), and uZ(t) via

uX(t) = pEu(t) + h

δ + 1
, (B31)

uY = pE

√
(δ + 1)[1 − u2(t)], (B32)

uZ(t) = pε

√
(1 + δ)−1[e+ − u(t)][u(t) − e−], (B33)

where

e± =
h ±

√
h2 + δ(1 + δ)

(
p2

E(1 + δ) − 1
)

pE(1 + δ)δ
(B34)

are the roots of the polynomial

�(u) = δu2 − 2h

pE(1 + δ)
u + 1 − h2/(1 + δ)2

p2
E

− δ − 1.

(B35)

By substitution of uX(t), uY (t), uZ(t) given by Eqs. (B31)–
(B33) into Eq. (10), we obtain

PE = τ0

∮
E

−uY uZduX + [(1 + δ)uX − h]uZduY + (h − δuX)uY duZ

u2
Y u2

Z + [(1 + δ)uX − h]2u2
Z + (h − δuX)2u2

Y

= − τ0

pE

√
(δ + 1)δ

∮
E

du√
(1 − u2)(u − e+)(u − e−)

.

(B36)

In the well, u varies in the interval −1 � u � 1. Now∫ 1

−1

du√
(1 − u2)(u − e+)(u − e−)

= 2K
(
m−1

E

)
√

2(e+ − e−)
− 2K(mE)√

(1 + e+)(1 − e−)
, (B37)

where

mE = 2(e+ − e−)

(1 + e+)(1 − e−)
. (B38)
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Because the integration in interval −1 � u � 1 again cor-
responds to that over a semiperiod and the sign of the integral
is determined by the direction taken along the closed trajectory
with E = const., we have for the precession period, Eq. (21).

3. Mixed anisotropy

For this anisotropy potential, the magnetization trajectories
of the precessional dynamics must again fulfill the two con-
straints, namely, |u| = 1, and

p2
E = 1 − E/σ = u2

Z + u2
Xu2

Y + u2
Xu2

Z + u2
Y u2

Z = const.,

(B39)

where EA � E � EC . Now two equivalent wells with minima
EA = 0 at ϑA = 0, π and four saddle points EC = 3σ/4 at
ϑC = π/2 and ϕC = πn/2, n = 0,1,2,3 (see Fig. 7) exist.
Since

u2
Y u2

X = u4
Z − 2u2

Z + 1 − E/σ

and (
u2

X − u2
Y

)2 = −3
(
u4

Z − 2u2
Z + 1 − 4E/3σ

)
,

we can therefore again introduce a new function u(t) related
to uX(t), uY (t), and uZ(t) via

uX =
√√√√1

2

[
1 − u2 ∓

√
4E

σ
− 3(1 − u2)

]
, (B40)

uY (t) =
√√√√1

2

[
1 − u2 ±

√
4E

σ
− 3(1 − u2)

]
, (B41)

uZ(t) = u(t). (B42)

By substituting uX(t), uY (t), uZ(t) given by Eqs. (B40)–
(B42) into Eq. (10), we have

PE = τ0

∮
E

−uY uZ

(
1 − u2

Z + u2
Y

)
duX + uZuX

(
1 − u2

Z + u2
X

)
duY + uXuY

(
u2

Y − u2
X

)
duZ

u2
Y u2

Z

(
1 − u2

Z + u2
Y

)2 + (
1 − u2

Z + u2
X

)2
u2

Zu2
X + (

u2
Y − u2

X

)2
u2

Xu2
Y

= −τ0

∮
E

du√
�(u)

, (B43)

where

�(u) = [(1 − u2)
2 − E/σ ][4E/σ − 3(1 − u2)

2
], (B44)

and u varies in the intervals e1 � u � e2 and e3 � u � e4 (see Fig. 11), where

e1,3 = ∓
√

1 − 2

√
E

3σ
, e2,4 = ∓

√
1 −

√
E

σ
(B45)

are the roots of the polynomial �(u). The sign of the integral is again determined by the direction along the closed trajectory with
E = const. Therefore, we have Eq. (26) for the precessional period PE .
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