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The magnetic phase diagram of the quaternary borocarbide TbNi2B2C is investigated by direct means and
by studying magnetically induced modifications of the crystal structure. Detailed superconducting quantum
interference device measurements reveal a complex phase diagram with five distinct magnetic phases. The phase
boundaries are mapped out comprehensively. Synchrotron hard x-ray measurements in applied magnetic fields are
employed to probe the magnetoelastic distortions throughout the phase diagram. The determination of the wave
vectors of these field-induced lattice deformations suggests a range of commensurate spin-slip-type magnetic
structures at low temperatures with wave vectors of the form (q,0,0) with q = 6/11 and 5/9. The proposed
magnetic structures yield values of magnetization well in-line with observations. The scattering intensity due to
the magnetoelastic deformations exhibits a drastic jump at the phase boundary at 1.3 T and low temperatures.
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I. INTRODUCTION

Since its discovery [1–4] the family of quaternary nickel
borocarbides RNi2B2C (R = Y and the rare earths) have
attracted attention for a variety of reasons. Displaying a
great abundance of superconducting and magnetic phases
with similar energy scales for the two phenomena, the nickel
borocarbides have been a diverse testing ground for studying
the interplay between the two [5,6]. Specifically, the coex-
istence of superconductivity and magnetism is found in the
systems where R is Dy, Ho, Er, or Tm [1,3], where the
superconducting transition temperature scales inversely with
the de Gennes factor, dG = (gJ − 1)2J (J + 1), indicative of
competing magnetic and superconducting order parameters
[5]. ErNi2B2C is of special interest, exhibiting a supercon-
ducting transition at Tc = 11 K [5], antiferromagnetic (AFM)
ordering at TN = 6 K, and weak ferromagnetism (WFM)
below TWFM = 2.3 K [7–10]. ErNi2B2C is thus one of the
rare instances of microscopic coexistence of ferromagnetism
and superconductivity [11,12], a recurring topic in condensed
matter physics [13,14]—also found in the case of UGe2 [15]
and in crystalline superconducting nanowires [16].

A further testament to the complexity of the nickel boro-
carbides is the presence of a magnetoelastic coupling, where
the AFM order parameter gives rise to lattice distortions
[17–19]. Several of the borocarbides systems exhibit spin
density wave (SDW) magnetic order with propagation vec-
tor q ∼ (0.55,0,0) [20,21]. The recurrence of this ordering

vector is likely due to the indirect Ruderman-Kittel-Kasuya-
Yoshida (RKKY) coupling in cooperation with a Fermi surface
nesting producing a maximum of the generalized electronic
susceptibility at q ∼ (0.6,0,0) [22,23]. In TmNi2B2C, for
instance, field-dependent lattice distortions were discovered
using hard x-ray diffraction in longitudinal fields [24]. The
distortions are prominent above 2 T in a phase with magnetic
ordering vector (0.484,0,0), in contrast to the weaker coupling
observed in the low field magnetic phase with ordering vector
(0.094,0.094,0) [25]. In Ref. [24], the field dependency of the
lattice distortions was shown to be the result of a quadrupolar
phase, where magnetoelasticity is enchanced by a soft phonon
mode �4, important for the electron-phonon coupling and
hence superconductivity in the nickel borocarbides [26–28].

TbNi2B2C is nonsuperconducting, at least, above 300 mK
[29,30]. The crystal structure is tetragonal at room temper-
atures with lattice parameters a = b = 3.5435 Å and c =
10.4295 Å [31]. The Tb3+ ion has a 7F6 ground state with
S = 3, L = 3, J = 6, and gJ = 3/2. Below TN = 15 K a spin
density wave (SDW) sets in, polarized along a parallel to the
magnetic modulation vector q = (q,0,0) [20,21,32–34]. The
magnetic modulation varies from 0.552 at 15 K to q � 0.545
at 2.3 K, where the SDW is significantly squared up [20].
TbNi2B2C develops weak ferromagnetism below TWFM = 8 K
[20,29,35–37]. At the Néel temperature, the system undergoes
a structural phase transition from tetragonal to orthorhombic
crystal structure [38]. For fields along [100], the phase diagram
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of TbNi2B2C is exceedingly complex [19]. The crystal studied
in Ref. [37] was found to be divided in two magnetic domains
in the weak ferromagnetic phase below 8 K at zero applied
field. The ordering wave vector q = (0.545,0,0) is constant in
the dominating domain, whereas in the smaller one, q depends
on temperature being about (0.548,0,0) at TWFM and equal to
(0.550, ± 0.002,0) in the zero temperature limit.

The low energy�4 mode was detected in TbNi2B2C[39,40],
and shown to exhibit significant softening when cooling from
300 to 30 K [40]. This testifies to an electron-phonon coupling
in TbNi2B2C of similar magnitude as in the superconducting
counterparts. In Ref. [40], it was therefore suggested that the
lack of superconductivity in TbNi2B2C is due to pair breaking
caused by the strong magnetic coupling, rather than a result of
a weak electron-phonon coupling.

Here we investigate the possible impact of the �4 mode
on the lattice distortions, by probing the magnetoelastic phase
diagram of TbNi2B2C. Using VSM and superconducting quan-
tum interference device (SQUID) magnetometry, we study the
complex magnetic phase diagram of TbNi2B2C for fields along
[100]. We proceed to probe the magnetoelastic distortions, and
find a weak modulated lattice distortion at 2q = (1.091,0,0)
below 1 T at the lowest temperatures. Upon crossing a phase
boundary at 1.3 T, this magnetoelastic response increases
drastically. Via a first-order phase transition at about 2.1 T,
TbNi2B2C enters yet another magnetic phase, where strong
distortions at a slightly different wave vector 2q = (1.110,0,0)
is detected. The lattice displacements are not along the c

axis as found in the quadrupolar phase of superconducting
TmNi2B2C, but along the a axis. So while �4 is crucial for
understanding the magnetoelastic deformations in TmNi2B2C,
the magnetoelastic Hamiltonian in TbNi2B2C looks to be more
similar to that of ErNi2B2C [19,41].

II. EXPERIMENTAL DETAILS

For magnetization measurement, initial investigations were
performed on a CRYOGENIC cryogen free measurement
system (CFMS) by performing vibrating sample magneti-
zation (VSM) measurements. A high-quality single crystal
measuring 1 × 1 × 3 mm3 was used to perform magnetization
measurements in the temperature interval 2–30 K and field
interval 0–5 T along the a axis. After identifying the regions of
interest and recognizing the complexity of the phase diagram,
we turned to using a superconducting quantum interference
device (SQUID). The crystal size was 1 × 1 × 2 mm3. In the
temperature scans, all transitions were continuous, and we used
the second derivative d2M

dT 2 to estimate phase boundaries. In the
field scans, the phase transitions were estimated as being of
first order, and accordingly we used peaks in the first derivative
dM
dH

to estimate the phase boundaries. In the case of the field
scans, the only exception is the phase boundary to the saturated
paramagnetic phase, where we used the saturation point as a
criterion. This is due to the fact that the saturated phase is
defined as containing no AFM component. An example of a
field scan is shown in Fig. 1 while the phase diagram measured
by magnetization is shown in Fig. 2.

The magnetoelastic response in the form of structural distor-
tions was examined in TbNi2B2C as a function of temperature
and magnetic field along [100] in the whole phase diagram,
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FIG. 1. Magnetization of TbNi2B2C as function of magnetic field
applied along the a axis after cooling to 2 K. There are four magnetic
phase transitions before gradual saturation occurs above 2.8 T. The
errorbars are smaller than the width of the curve.

using elastic synchrotron x-ray diffraction. The experiments
were performed on the triple-axis diffractometer beamline
BW5 at DESY in Hamburg. The sample was a single crys-
tal TbNi2B2C of approximate dimensions 1 × 1 × 3.5 mm3

(weight ∼25 mg) and placed in a 10 tesla horizontal cryo-
magnet with the (ab) plane as scattering plane. The analyzer
and monochromator were (111) Si/Ge-gradient crystals set to
reflect photons of energy 99.818 keV (λ = 0.1242 Å).

The measurements consisted of several field and tempera-
ture scans. For each temperature and field we would first align
by centering on the (2,0,0) Bragg peak using ω and θ−2θ scans
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FIG. 2. Magnetic phase diagram of TbNi2B2C as determined
from magnetization measurements, for magnetic fields along the [100]
axis. Five magnetic phases are evident below the saturation field of
μ0H = 2.8 T. All temperature scans are field cooling and all field
scans are for increasing field from 0–5 T (zero field cooling). Lines
are guides to the eye based on the analysis of the raw data.

224417-2



MAGNETOELASTIC PHASE DIAGRAM OF TbNi2B2C PHYSICAL REVIEW B 97, 224417 (2018)

(Q, 0, 0) [r.l.u.]
1.07 1.08 1.09 1.1 1.11 1.12 1.13

I [
ct

s/
s]

0

200

400

600

800

1000 T = 2 K µ0 H = 1.8 T
µ0 H = 2 T
µ0 H = 2.2 T

FIG. 3. X-ray scattering intensity along a scan in reciprocal space
(Q,0,0) at T = 2 K for H ‖ a. For fields below 2 T, a single peak
appears at Q1 = (1.091,0,0). Above 2 T the peak position has shifted
to Q2 = (1.110,0,0), though at 2 T both peaks are present.

to ensure the correct relative position between instrument and
sample. Then followed a longitudinal scan along (Q,0,0) to
identify the satellite peaks arising from magnetoelastic distor-
tions. Upon discovering a peak, we performed a transverse scan
around the peak position to record the intensity. The sample
was zero-field cooled down to the desired temperature from
above TN (typically from 20 K). Keeping the temperature
constant we would then ramp the field to its target, and at
the target field perform the scanning procedure described
above. This was done for several fields up to 3 tesla, where
the satellite peaks were no longer observed. All temperature
scans were performed under field cooling conditions. For every
measurement we would extract the positions and integrated
intensities of the peaks by fitting the (Q,0,0)-scan with
Gaussian peak shapes, as illustrated in Fig. 3.

III. MAGNETIC PHASE DIAGRAM

To probe the complex phase diagram of TbNi2B2C, a
dense set of field and temperature scans were performed on
the SQUID device. The measured Néel temperature of TN �
14.8 K and the weak ferromagnetic transition at TWFM � 7.5 K
is in good agreement with those reported in Ref. [37]. Field
scans from 0–5 T (zero field cooled) were performed in the
temperature interval 2–15 K (see Fig. 1). All field scans
revealed a very complex phase diagram below TWFM � 8 K and
a simple one for T > TWFM. At 2 K, four magnetic transitions
are evident, while for all field scans at temperatures above
T = 9 K, only the transition to the high-field paramagnetic
phase occurs. In the temperature interval 2–9 K, between 3
and 5 phase transitions are evident in the field scans.

The phase diagram of TbNi2B2C as determined from the
SQUID measurements is shown in Fig. 2. The phase bound-
aries presented here are consistent with those presented in
Ref. [19] where the low field boundary below 0.5 T is added by
our studies. The complexity of the phase diagram of TbNi2B2C
is limited to temperatures below 9 K, above which the field-
and temperature dependencies are similar to those of a simple

antiferromagnet. In Ref. [19], the phase transition at 2.1 T was
conjectured to be due to a change in the modulation of the
magnetic structure. This proposition is supported by our x-ray
measurements presented in the next section.

IV. X-RAY EXPERIMENTS

To investigate the magnetoelastic response of TbNi2B2C,
we performed x-ray diffraction experiments focusing on wave
vectors related to the magnetic ordering wave vector q =
(0.545,0,0) determined at 2 K in Ref. [37]. Following the
approach in Ref. [24], we searched for peaks at positions
(nq,0,L), wheren andL are integers. In contrast to TmNi2B2C,
no intensity was found at (q,0,8). For L = 0 and n = 2,
however, we found a peak of strongest intensity at 2q =
(1.091,0,0) ≡ Q1 below 2 T. Above 2 T, the position of the
satellite peak position shifted to 2q = (1.110,0,0) ≡ Q2 at 2
K, indicative of magnetic ordering vector of q = (0.555,0,0)
above 2 T. The uncertainty in the determination of the peak
position along a∗ is around 0.002. Since the resolution of the
hard x-ray diffractometer is relaxed in the plane perpendicular
to the scattering vector, any peaks with a small b∗ component
of the order of ±0.002 are picked up in the scans along
(Q,0,0). Since it is unresolved by our experiment, we omit
this component in our description of the wave vectors. As
shown in Fig. 3, the two wave vectors, Q1 and Q2, coexist
in a narrow interval around the first-order transition at 2 T.
Since the x-ray diffraction cross section only probes lattice
distortions along the scattering vector (Q,0,0), the modulated
distortions observed are along a in TbNi2B2C and not along
c as in TmNi2B2C. The low-field data showed no sign of
the smaller domain at q = (0.550, ± 0.002,0) observed at
zero field in Ref. [37] at 2 K. However, the observed peak
position at Q1 = (1.091,0,0) in low fields predicts a magnetic
ordering wave vector, which is in perfect agreement with the
commensurable value q = 6

11 = 0.54545 derived in Ref. [37]
for the main magnetic domain at zero field.

At zero field we observed no peak intensity below 5 K, while
above 5 K a weak intensity peak was found at (Q,0,0), with Q

between 1.09 and 1.11, moderately growing with temperature
until TN , where the intensity dropped to zero. At T = 2 K, a
magnetoelastic distortion appears at μ0H = 0.25 T, leading
to a weak reflection at the Q1 position. The intensity grows
slightly with field until the phase transition at μ0H = 1.3 T,
where the intensity of the x-ray peak drastically increases (see
Fig. 4). The intensity remains roughly constant with field up to
the phase boundary at 2 T, where the structural ordering wave
vector changes from Q1 to Q2, indicative of a shift in the
magnetic ordering vector from q ∼ ( 6

11 ,0,0) to q ∼ ( 5
9 ,0,0).

The abruptness of the change and the constancy of the wave
vectors on both side of the transition strongly indicated that this
is a first-order transition between two commensurably ordered
magnetic phases. The maximum in the scattering intensity,
corresponding to 2.6 in the intensity units applied in Figs. 4
and 5, is estimated to correspond to a relative displacement of
the Tb ions by E11(2q) = 7 · 10−4, where the modulated strain
of the Tb ion at site Ri is defined by

E11(Ri) = u1(Ri)

a/2
= E11(2q) cos(2q · Ri + φ) (1)
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FIG. 4. Intensity I of the x-ray peaks (at T = 2 K), signifying
the magnitude of the magnetoelastic lattice distortion at 2q plotted
alongside the magnetization M (at T = 1.7 K) as measured by the
VSM system, as a function of applied magnetic field H ‖ a. A drastic
increase in intensity is evident at the magnetic phase transition at 1.3 T,
whereas the ordering wave vector changes abruptly at the transition
at 2 T (see Fig. 3). The errorbars on both datasets are smaller than the
markers.

in terms of the displacement vector component along the 1
axis parallel to a divided by the distance a/2 between the (bc)
layers of Tb ions.

The similar first-order magnetoelastic transition, at about
2 T at 2 K, is also observed at 4 and 6 K, albeit the possible
commensurability of the underlying magnetic order above 2 T
becomes less obvious the higher the temperature is. The results
obtained at 6 K are shown in Fig. 5. At TWFM = 8 K and above,
no such phase transition is evident, as both intensity and wave
vector varies continuously as shown in Fig. 5. This underlines,

that the magnetoelastic phases at low temperatures correspond
to the magnetic phases determined via magnetometry. This
is confirmed by detailed studies of the field and temperature
dependence of the magnetoelastic response with x rays in
the entire phase diagram. During the course of several x-ray
experiments, we monitored both the modulation and peak
intensity as a function of field and temperature. The results are
summarized in Fig. 6 and are compared with the phase lines
depicted in Fig. 2. This comparison shows a strong correlation
between changes in both the position, Fig. 6(a), and in the
intensity, Fig. 6(b), of the x-ray scattering peak with the phase
transitions identified in the SQUID measurements.

V. DISCUSSION

TbNi2B2C like ErNi2B2C exhibits the so-called “four-state
clock”-behavior in the (ab)-plane at low temperatures, where
the moments are confined to be along either an a or a b

axis, with a high-field magnetization along [110] roughly√
2 smaller than along [100] [35]. Thus, both the magnetic

anisotropies and the magnetic ordering vectors are similar
in the two systems. The classical dipole-dipole interaction
favors the polarization of the ordered moments to be transverse
to an ordering vector along a∗, and this is the polarization
observed in ErNi2B2C [9,41]. It is therefore highly surprising
that the magnetic polarization is found to be longitudinal in the
case of TbNi2B2C [37]. The classical dipole-dipole interaction
relative to the Heisenberg interaction is the factor 1.56/6.25
smaller in TbNi2B2C than in ErNi2B2C, but still important.
Thus, to explain the longitudinal polarization in TbNi2B2C, all
the way up to TN , an anisotropic spin-spin interaction larger
than 10% of the Heisenberg interaction is needed to overrule
the classical dipole-dipole interaction. The magnetoelastic
coupling responsible for the orthorhombic distortion does not
distinguish between a longitudinal or a transverse polarization
of the magnetic moments in the (ab) plane. It is two to
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FIG. 5. Field scans for H ‖ a. (Top) Integrated satellite peak intensities at three example temperatures. The vertical lines mark the magnetic
phase boundaries determined by the magnetization measurements. The error bars are smaller than the marker sizes. (Bottom) Field dependence
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three times stronger in TbNi2B2C than in the Er compound
[38], but still relatively small, energetically, compared to the
crystal-field anisotropies or the exchange interaction.

The strong confinement at low temperatures of the moments
to be along [100] or [010] implies that the magnetic moments
are ordered in linearly polarized square waves, which structures
favor the ordering wave vector to lock-in to values commensu-
rable with the lattice. In ErNi2B2C a range of commensurate
structures were found throughout the phase diagram with
wave vectors q parallel to the a axis [9]. These consist of
alternating ferromagnetic (bc)-layers with moments pointing
either parallel ↑ or antiparallel ↓ to the b axis. A simple q = 1

2
structure is described as ↑↑↓↓↑↑↓↓ and so on. Structures
with larger q are formed by replacing a number of ↑↑ (↓↓)
double layers with a single ↑ (↓) layer, the so-called spin-slip
structures [42].

The Er compound shows a transition to weak ferromag-
netism at TWFM(Er) � 2.3 K, which was found to be a transition
between two different commensurable spin-slip structures with
the same period of 40 layers [7,41]. In the case of TbNi2B2C,
the zero-field neutron diffraction experiments [37] show that
the ordering wave vector q = (q,0,0) changes linearly with
temperature, from q � 0.552 at TN until q locks-in to the
value 0.545 at TWFM staying constant below this temperature.
Hence, the transition at TWFM is a transition from a phase
with a continuously varying, incommensurable ordering wave
vector to a phase with a constant, commensurable q = 6

11 . Two
relevant possibilities [43] for the commensurable q = 6

11 struc-
ture, named q2(↑ , ↑) and q2(↑ , ↓), are presented in Ref. [37].
Different spin-slip structures with the same period are the more
stable the more uniform the spin-slips are distributed. This
general principle indicates that q2(↑ , ↑) should be the stable
one of the two structures. This choice agrees with that derived
from the analysis of the diffraction results including all higher
harmonics, when assuming the structure to be completely
squared up [37]. The second, smaller domain, which becomes
visible below 10 K in the diffraction experiment [37], is less
well-defined. q changes with temperature all the way down to
1 K, and the scattering peak from the fifth harmonic is smaller
and broader than the one deriving from the main domain.

The minority domain might very well be ordered in spin-slip
structures, but with an irregular distribution of the spin-slip
layers. The irregularities would allow a smooth variation of
q and would explain the broadening of the scattering peak.
We remark, that it is very unlikely that the two ordering wave
vectors, q = (0.545,0,0) and q = (0.550, ± 0.002,0) at 1 K,
derive from a double-q structure in a single domain. There are
no similarities between the temperature dependencies of the
two wave vectors, and the strong four-state clock anisotropy
only allows the moments to jump from being along one 〈100〉
direction to the next, nothing like the smooth rotation of the
moments required to stabilize a double-q structure [44].

The present experiments at 2 K show a step-wise behavior
of the magnetization with two plateaus below 2 T, where the
ordering wave vector is locked to the value q = 0.545 (see
Figs. 1 and 5). The combination of the results for the magneti-
zation and for the field dependence of the ordering wave vector
indicates the following sequence of commensurable magnetic
structures at 2 K:

Between 0.3 and 1.3 T:

WFM6/11 = |↓↑↑↓↓↑↑↓↓↑↑ 〉, M � 0.9μB

Tb3+ ,

Between 1.3 and 2.1 T:

SFP6/11 = |↓↑↑↓↑↑↑↓↓↑↑ 〉, M � 2.6μB

Tb3+ , (2)

Between 2.1 and 2.8 T (at ∼ 2.3 T):

SFP5/9 = |↓↑↑↓↑↑↑↓↑↑↑↓↑↑↓↑↑↑ 〉, M � 4.2μB

Tb3+ ,

where SFP denotes the commensurate spin-flip states above
1.3 T. The magnetization, M , is estimated by assuming the
structures to be completely squared up with the length of the
moments being equal to the saturation value 9.5μB . These
proposed structures imply values for magnetization perfectly
in line with those observed and shown in Fig. 1. An additional,
small kink in the magnetization curves recorded between 3
and 5 K, indicates an intermediate phase between the SFP6/11

and SFP5/9 phases named I in Fig. 6, which is not detected
in the x-ray scattering experiments. We conjecture this to
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be a phase with the same wave vector, q = 5/9, but with
less spins flipped compared to the SFP5/9 phase. The path to
full magnetization for the 18-layer structure in the spin-flip
phase SFP5/9 would go through a successive reduction of
the number of antiparallel moments. The WFM6/11 structure
is the same as the weakly ferromagnetic q2(↑ , ↑) structure
derived from the neutron diffraction experiments at zero field
[37]. The magnetization data at 2 K shown in Fig. 1 are
obtained after cooling in zero field implying that the crystal
is divided into twinning domains, q may be along b∗ as well
as along a∗, before the field is applied, which domains are be-
ing stabilized by the corresponding orthorhombic distortions.
When applying the field along a, the SQUID measurements
indicate a gradual disappearance of the unfavorable domains
polarized along b and a transition to a single a domain at about
μ0H = 0.3 T, with a resulting plateau in magnetization. At
higher temperatures, above TWFM = 8 K, the modulation of the
magnetic structures becomes incommensurable, and as shown
in Fig. 6(a), 2q changes in a continuous way with both field
and temperature. This is accompanied by a smooth variation
of the magnetization as shown by the example at T = 10 K in
Fig. 1.

The orthorhombic distortion of TbNi2B2C below TN is
described by the following Hamiltonian [19,41,45] for the ith
Tb ion:

Hme
i = −Bγ (ε11 − ε22)iO

2
2 (i) + c11 − c12

4N
(ε11 − ε22)2

i . (3)

where O2
2 (i) = (J 2

x − J 2
y )i is the Stevens operator at the site i

with x̂ and ŷ being along, respectively, the a and b axis. The
magnetoelastic effects due to the uniform strain component
〈(ε11 − ε22)i〉 = 1 − b/a has been studied by El Massalami
et al. [19] Besides giving rise to the observed orthorhombic
deformation of the crystal in the ordered phase below TN ,
this Hamiltonian produces a longitudinal deformation E11(Ri),
corresponding to a modulation of ε11 when q ‖ a∗, where the
reduced elastic constant (c11 − c12)/2N should be replaced by
the one deriving from the corresponding elastic deformation.
If 〈Jx(i)〉 is described by a single wave vector q (no higher
harmonics) the modulated deformations, being proportional
to the squared moments, only occur at the wave vector 2q.
In the case where the higher harmonics become important,
other higher harmonics are also going to appear in the elastic
modulation of the crystal, but the second harmonic is likely
always going to be the dominating one, as is the case in the
present system. However, it is important to realize, that in
the limit of complete squaring up, the squared moments, or
〈O2

2 (i)〉, become independent of the site considered and the
modulated deformations vanish leaving only the uniform one.

Figure 6(b) shows the intensity of the x-ray diffraction
peak throughout the phase diagram, which intensity reflects
the square of the amplitude of the deformations. The high
intensity region is confined to the spin-flip phases SFP6/11 and
SFP5/9 at low temperatures and high fields. The amplitude of
the deformation at 2q is determined by the second harmonic of
〈O2

2 (i)〉 and the energy of the longitudinal phonon at this wave
vector. It seems unlikely that the optical, longitudinal phonon
close to (1,0,0) should become soft when applying a field. The
softening observed in the borocarbides is occurring around
(0.5,0,0) and involves dominantly the transverse polarization

of the phonons [40]. Hence, the large jump in the scattering
intensity at 1.3 T must reflect a large jump in the second
harmonic of 〈O2

2 (i)〉. This second harmonic vanishes in the
case of the simple ( 1

2 ,0,0) structure, or if the magnetic structure
is completely squared up. The WFM6/11 structure contains a
single spin-slip layer per 11 layers and is close to fulfill both
criteria at 2 K. The introducing of additional spin flips is going
to increase the second harmonic, because of the larger variation
in the size of the magnetic moments close to spin-slip layers
or layers where the spins are about to flip. Hence, an increase
of the second harmonic is expected to occur at the transition
from WFM6/11 to SFP6/11 and once again at the next transition
from SFP6/11 to SFP5/9. As shown in Fig. 4, the increase in
the scattering intensity at the last transition looks reasonable,
whereas the increase occurring at the first transition is an order
of magnitude larger than derived from any reasonable estimate.

We have done some calculations on a model, which should
give a reasonable description of TbNi2B2C. The model cor-
responds to the one applied in the case of ErNi2B2C [41],
except that the classical dipole-dipole interaction has been
replaced by an effective anisotropic dipole-dipole interaction
10 times smaller but with the opposite sign of the classical
one. This means that the cases of transverse and longitudinal
polarization of the ordered moments are nearly degenerate with
a slight favoring of the longitudinal polarization. Because of
the small difference between the two cases, the calculations
suggest another possibility for, for instance, the structure in
the intermediate phase at 2 K:

Between 1.3 and 2.1 T:

˜SFP6/11 =
∣∣∣∣Jx =↓↑↑ 0 0 ↑↑↓ 0 ↑ 0

Jy =0 0 0 ↓↑ 0 0 0 ↑ 0 ↓
〉
, M � 2.6μB

Tb3+ . (4)

This is a noncollinear structure, where the a-axis moments
in successive layers along the a axis are either ↑, ↓, or 0.
Whenever the a component is 0 the b component is either ↑ or
↓, elsewhere the b component is 0. Incidentally, the calculated
moments are not fully polarized nor exactly confined to be
along an a or b axis, but these modifications are not important
for the present arguments. The magnetization is the same in the
two structures, whereas the quadrupolar second harmonic is a
factor 10 larger in the˜SFP6/11 phase compared to that derived
for the collinear SFP6/11 structure. Hence, the drastic change
in the x-ray peak intensity at the transition at 1.3 T might be
explained by assuming that the moments above μ0H = 1.3 T
are ordered in noncollinear ways, like the one presented in
Eq. (4). However, the magnetostriction measurements made
by El Massalami et al. [19] disqualify this explanation. A
strong enhancement of the second harmonic is necessarily
going to be accompanied by a reduction of the uniform
component of 〈O2

2 (i)〉, by a factor estimated to be about 3 in
the present case. The forced magnetostriction measurements
made at 3–5 K show only small kinks, no large jumps, at the
transitions between the different phases [19]. These results
indicate that the x-ray peak intensities observed above 1.3 T
are in accordance with the collinear structures proposed in
Eq. (1), but that it is the intensity observed below 1.3 T which
is much smaller than should be expected. The maximum in
x-ray scattering intensity at 2 K is found to correspond to a
modulated strain E11(2q) of about 7 · 10−4, nearly a factor of
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10 smaller than the homogeneous strain 1 − b/a observed [37]
at this temperature. The ratio of 10 between the two strains is
close to the calculated ratio between the uniform component
and the second harmonic of the quadrupolar moment in the
SFP5/9 phase derived by the model calculations. The large
intensities observed above 1.3 T is actually quite reasonable,
when being compared to the large orthorhombic deformation of
the system. Hence, the absolute magnitudes of the intensities,
once more, indicates that it is the scattering intensity below
1.3 T which is unexpectedly small. The reason for this reduced
intensity is, either (i) the modulation of the ordered moments
at 2 K is much closer to a square wave than indicated by the
model calculations, or (ii) that the second-harmonic part of the
x-ray scattering intensity appears somewhere else at low fields.
There are indications that the crystal is divided in domains with
different ordering wave vectors and that q is rotated slightly
away from the a direction [37].

VI. CONCLUSION

In conclusion, we perform a thorough examination of the
magnetic and magnetoelastic phase diagram of TbNi2B2C.
Extensive SQUID measurements outline the magnetic phase
boundaries of this complex phase diagram to a previously

unmatched degree of detail. Synchrotron hard x-ray measure-
ments were used to measure the magnetoelastic deformations
throughout the phase diagram. The wave vectors of these
deformations strongly suggest that the magnetic structures
giving rise to them are commensurate spin-slip-type structure
similar to those found in ErNi2B2C. Suggestions for these
magnetic structures were made that give rise to both the correct
wave vectors of the elastic deformations and to the observed
magnetization. The rough field dependence of the amplitudes
of the deformations can be explained by the second harmonic of
the quadrupole moment, but the reason for the violent jump in
the x-ray scattering intensity at 1.3 T remains to be investigated
and is subject to further studies.
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