
PHYSICAL REVIEW B 97, 224415 (2018)

Rare-earth/transition-metal magnets at finite temperature: Self-interaction-corrected relativistic
density functional theory in the disordered local moment picture
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Atomic-scale computational modeling of technologically relevant permanent magnetic materials faces two key
challenges. First, a material’s magnetic properties depend sensitively on temperature, so the calculations must
account for thermally induced magnetic disorder. Second, the most widely used permanent magnets are based on
rare-earth elements, whose highly localized 4f electrons are poorly described by standard electronic structure
methods. Here, we take two established theories, the disordered local moment picture of thermally induced
magnetic disorder and self-interaction-corrected density functional theory, and devise a computational framework
to overcome these challenges. Using this approach, we calculate magnetic moments and Curie temperatures of
the rare-earth cobalt (RECo5) family for RE = Y-Lu. The calculations correctly reproduce the experimentally
measured trends across the series and confirm that, apart from the hypothetical compound EuCo5, SmCo5 has
the strongest magnetic properties at high temperature. An order-parameter analysis demonstrates that varying the
RE has a surprisingly strong effect on the Co-Co magnetic interactions determining the Curie temperature, even
when the lattice parameters are kept fixed. We propose the origin of this behavior is a small contribution to the
density from f -character electrons located close to the Fermi level.
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I. INTRODUCTION

In solids, the 15 lanthanides (atomic numbers 57–71)
usually exist in a 3+ state, with three electrons (two of s and
one of d character) donated to the valence band. Grouping the
lanthanides with Y and Sc, which behave in the same way,
forms the group of elements known as the “rare earths” (REs)
[1]. The chemical variation within the REs originates from
their strongly localized 4f spin-up and -down subshells, which
vary from being totally empty (Sc/Y/La, 4f 0) to totally filled
(Lu, 4f 14). Lying at the center of the lanthanide block, Gd
(4f 7) has one completely filled and one completely empty spin
subshell, and marks the boundary between the “light” (Sc-Eu)
and the “heavy” REs (Gd-Lu). Notable anomalous lanthanides
include Ce, whose valence varies due to the relative ease that its
single 4f electron can delocalize; Pm, which is radioactively
unstable; and Eu and Yb which, rather than having a single hole
in a spin subshell associated with the 3+ state, usually prefer
to capture an additional 4f electron and adopt a 2+ state [1,2].

Aside from their uses in, e.g., catalysts, batteries, and
energy-efficient lighting [3], the excellent magnetic properties
of Sm-Co [4] and Nd-Fe-B [5,6] compounds have led to
REs becoming critical to many industries as components in
high-performance permanent magnets [7]. The key principle
underlying such magnets is that while elemental transition
metals (TMs) like Fe and Co remain strongly magnetic up
to very high temperatures (∼1000 K), they are relatively easy
to demagnetize with external fields [8]. Alloying the elemental
TMs with the REs largely retains their good high-temperature
properties while simultaneously providing a massive in-
crease in the coercivity (resistance to demagnetization) [8].
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The principal microscopic mechanism driving this increased
coercivity is the electrostatic interaction of the localized RE-
4f electrons with their environment (the crystal field) [9].
The magnetic moment associated with the RE-4f electrons
gains a strong directional preference, i.e., magnetocrystalline
anisotropy, which anchors the TM magnetism along the same
axis through the RE-TM exchange interaction. The benefits
of this alloying approach can be seen in SmCo5, whose Curie
temperature (TC) of 1020 K is comparable to pure Co (1360 K)
[8,10] but whose magnetocrystalline anisotropy energy density
is 20 times larger [11]. Indeed, over 50 years since its discovery
the high-temperature properties of SmCo5 remain hard to beat
[7].

This simple picture, that the RE provides the coercivity
and the TM provides the large magnetization and TC, is an
oversimplification since it neglects the contribution to the
magnetization from the REs themselves. A more coherent
picture of RE-TM intermetallics [9] models the RE as an array
of isolated 3+ ions interacting with the crystal field and an
effective magnetic field originating from the RE-TM exchange
interaction. Diagonalization of the crystal-field Hamiltonian
gives the RE contribution to the magnetization and anisotropy.
The TM contribution is deduced empirically from RE-TM
compounds with a nonmagnetic RE, like Y [12].

The crystal-field picture does an excellent job of explaining
the temperature dependence of magnetic quantities which are
heavily RE dependent, such as the low-temperature anisotropy
and magnetization [9,12]. However, the phenomenological
description of the TM limits the predictive power of the
theory, especially with regard to TC. Since a material rapidly
loses its magnetic properties at temperatures in the vicinity
of its Curie temperature, having a high TC is very useful
for practical permanent magnets. It is known experimentally
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FIG. 1. Schematic of the RECo5 crystal structure, showing the RE
(yellow) and Co sites (gray). The 2c sites (referred to as CoI in the text)
are in plane with the RE, and the 3g sites (CoII) lie above and below. An
isosurface plot representing the Sm-4f charge density, obtained as the
sum of the squared spherical harmonics with l = 3, m = 3,2, . . . ,−1
is also shown.

that TC is RE dependent: referring to the experimental review
of Ref. [10], SmCo5 has the highest TC of the compounds
that form stoichiometrically as RECo5 (1020 K), slightly
higher than GdCo5 (1014 K). Meanwhile, for the RE2Co7 and
RE2Co17 series of magnets it is RE = Gd which has the highest
TC (771/1218 K) with RE = Sm lower (713/1195 K). The fact
that Gd has the largest spin moment of the REs might suggest
some correlation of this quantity with TC, but the RE2Co7 series
provides the counterexamples of RE = Dy and Ho, whose
nominal spin moments are larger than Sm but whose TC is
smaller (640 and 647 K) [10]. Magnetostructural effects could
also play a role, with the RE modifying the lattice constants and
thus the magnetic interactions [13]. However, it is by no means
clear how these and other effects might combine to influence
TC.

A predictive, first-principles theory of the TC of RE-TM
magnets could provide insight into the physical processes
governing the high-temperature performance of these magnets,
and suggest strategies for further optimization. However, such
a theory is currently missing. Density functional theory (DFT)
[14] provides a practical framework to perform first-principles
studies of RE-TM magnets, but is faced with the challenge of
describing with sufficient accuracy (i) the finite-temperature
disorder of the magnetic moments and (ii) the complex interac-
tions between the localized RE-4f electrons and their itinerant
counterparts.

In this work, we introduce a theory which attacks these
two problems directly. Finite-temperature effects are modeled
within the disordered local moment (DLM) [15,16] picture,
which is reviewed in Sec. II. Meanwhile, the problematic
RE-4f electrons are treated within DFT using the local self-
interaction correction (LSIC) [17]. Previous modeling of REs
within this framework has been limited to Gd [18–21], but the
developments described in Sec. III now allow investigation of
the entire RE series for the same computational cost. We use
this theory to study the RECo5 family of magnets (Fig. 1),
exploring the evolution of magnetism from 0 K (Sec. IV) to TC

(Sec. V). We conclude with our analysis of why, as is observed
experimentally, the calculations find SmCo5 to have the highest
TC of the RECo5 magnets (Sec. VI).

II. DFT-DLM APPROACH

At finite temperature, the functional properties of all materi-
als are modified to some extent due to the thermal population of
excited vibrational states, e.g., thermal expansion or increased
electrical resistivity [22,23]. However, independent of lattice
vibrations, the magnetic properties of a material are extremely
sensitive to temperature. The disordered local moment (DLM)
picture of magnetism provides a conceptual basis to understand
this temperature variation [15]. Here, the material is modeled
as an array of microscopic magnetic moments (e.g., one
associated with each atom), of fixed magnitude but variable ori-
entation. This picture of local moments makes no assumption
that the electrons themselves are localized; for example, the
3d electrons responsible for magnetism in Fe, the prototypical
DLM metal, are completely itinerant [24]. Rather, the spin-spin
correlation between electrons near atomic sites can be strong
enough to establish magnetically polarized regions which exist
for much longer timescales than those associated with electron
motion [15]. These are the local moments.

A DLM magnetic microstate is specified by the orienta-
tions {êi } = {ê1, . . . ,êN} of the N local moments. The grand
potential energy �({êi }) is a function of these local moment
orientations, and the (classical) statistical mechanics of the
system is determined by the partition function

Z =
∫

d ê1d ê2 . . . d êN exp [−β�({êi })], (1)

where 1/β = kBT , and T and kB are the temperature and
Boltzmann constant. Experimental measurements correspond
to thermal averages over the magnetic microstates. For in-
stance, a magnetization measurement probes the average ori-
entations of the local moments,

〈ê j 〉T = 1

Z

∫
ê j d ê1d ê2 . . . d êN exp [−β�({êi })]. (2)

The DLM paramagnetic state corresponds to each orientation
averaging to zero, 〈ê j 〉T = 0, and the highest temperature at
which 〈ê j 〉T �= 0 corresponds to the Curie temperature TC.

In principle, DFT provides a pathway to a first-principles
DLM theory through the possibility of evaluating the grand
potential energy �({êi }), although finding a sufficiently accu-
rate approximation for the exact exchange-correlation func-
tional remains an ongoing and formidable challenge [25,26].
Specifically, �({êi }) could be obtained from constrained DFT
calculations, with the applied constraints forcing the local mag-
netizations to point along designated local moment directions
{êi }) [15]. In practice however, any direct attempt to perform
statistical mechanics would soon be faced with the problem of
covering the huge phase space spanned by {êi }, requiring an
effectively infinite supercell to contain all N local moments.

A popular method of circumventing this problem is to
replace the “exact” � with a model, e.g., a Heisenberg model
based on pairwise interactions between local moments. The
model parameters are extracted from DFT calculations, e.g.,
from the Liechtenstein formula [27] or constrained DFT [28].
TC is then obtained from the simpler statistical mechanics of the
model, which might be solved through a mean field approach,
the random-phase approximation, or Monte Carlo integration
[29–33].
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These schemes require striking a balance between a model
which is sufficiently complex to capture the necessary mag-
netic interactions, yet simple enough for the statistical mechan-
ics problem to be tractable. The most popular pairwise model
should, as its name suggests, only apply when the interaction
between two local moments is independent of the alignments
of all other local moments in the system. This picture is not
particularly intuitive in a metal where one would expect a
cooperative effect, i.e., magnetic interactions being reinforced
when the material is in a global ferromagnetic state and
weakened in the paramagnetic state. Practically, this issue leads
to the question of whether one should parametrize the pairwise
model for the ferromagnetic or paramagnetic state [27], and
what to do at intermediate temperatures [34].

The DFT-DLM theory described in [15] approaches the
problem in a different way. Instead of approximating the grand
potential energy, one instead introduces an auxiliary quantity
�0({êi }) with a known functional form

�0({êi }) = −
∑

i

hi · êi , (3)

where the “Weiss fields” {hi } are obtained self-consistently.
Specifically, the thermodynamic inequality

F (T ) � F0(T ) + 〈�〉0,T − 〈�0〉0,T (4)

provides a relation between the exact free energy F (T ) and the
free energy of the auxiliary system F0(T ) = −kBT ln Z0, with

Z0 =
∏

i

∫
d êi exp[λi · êi ] =

∏
i

4π

λi

sinh λi (5)

and λi = βhi . Crucially, the thermal averages 〈. . .〉0,T appear-
ing in the inequality (4) are calculated with respect to the
auxiliary system, e.g.,

〈�〉0,T = 1

Z0

∏
j

∫
d ê j exp[λ j · ê j ]�({êi }). (6)

The Weiss fields are chosen to minimize the right-hand side of
the inequality (4). Then,

hi = − 3

4π

∫
d êi 〈�〉êi

0,T êi . (7)

The partial average 〈�〉êi
0,T integrates over all the degrees of

freedom in Eq. (6) except the single local moment orientation
êi . The Weiss fields have the periodicity of the magnetic unit
cell, i.e., the number of distinct Weiss fields equals the number
of magnetic sublattices.

As indicated by Eq. (7), the Weiss fields are temperature
dependent. The DFT-DLM estimate of TC is the temperature
at which all the Weiss fields vanish. Alternatively, one can
introduce local order parameters

mi (T ) ≡ 〈êi 〉0,T = λ̂iL(λi) (8)

with L(λi) = coth(λi) − 1/λi . These quantities vary between
1 at zero temperature and 0 at TC.

We stress that the key quantities in the DFT-DLM theory,
the Weiss fields {hi }, are calculated with the full grand
potential energy �, without any assumption on the nature of
the underlying interactions, e.g., pairwise, four-spin, etc. [18].
Furthermore, through the averaging in Eq. (7) the magnitudes

of the Weiss fields are indeed influenced by the degree of global
order in the system, ensuring self-consistency between {hi } and
the “reference state” used to calculate them.

The partial average 〈�〉êi
0,T appearing in Eq. (7) still presents

a challenge to the most widely used implementations of
DFT, which solve the Kohn-Sham equations to determine
single-particle wave functions [14]. However, the Green’s-
function-based Korringa-Kohn-Rostoker multiple-scattering
formulation of DFT, in combination with the coherent potential
approximation (KKR-CPA) [35], allows the partial average to
be recast as an impurity problem. This impurity problem, which
sees each local moment sitting in an effective medium designed
to mimic the averaged properties of the disordered system,
can be solved using the same KKR-CPA techniques originally
developed to tackle compositional disorder in the simulation
of alloys [36]. The DFT-DLM theory has undergone a number
of developments from its original formulation, and is being
applied to an increasingly wide range of magnetic systems
[19–21,37,38]. The practical steps to calculating self-
consistent Weiss fields and the key multiple-scattering equa-
tions are described in Refs. [16,19,39].

The fact that the DFT-DLM theory is rooted in KKR-CPA
has both advantages and disadvantages. Thermally averaged
quantities, e.g., spin and orbital moments, can be calculated
relatively easily by tracing the relevant operators with the
Green’s function. The calculations include both core and
valence electrons explicitly, and the structure of the KKR-CPA
equations allow for a very high degree of numerical precision,
e.g., in evaluating integrals over the the Brillouin zone [40].
However, the formalism generally involves making a shape
approximation to the Kohn-Sham potential (here we use the
atomic sphere approximation, ASA) which, although allowing
a compact angular momentum basis to be used to describe the
Green’s function and scattering matrices, is not expected to
perform equally well for cubic and noncubic crystal structures
[41]. In addition, we note that DFT-DLM is a mean field theory,
with the Weiss fields in Eq. (3) driving the magnetic ordering
and vice versa. With these caveats in mind, we expect trends
calculated across a series to be more robust than absolute values
of specific quantities.

III. SOLVING THE KOHN-SHAM-DIRAC EQUATION
WITHIN THE LSIC-LSDA

A. Relativistic DFT-DLM calculations

The large atomic number of the REs necessitates the use
of relativistic (R) DFT-DLM theory to describe the spin-orbit
coupling inherent in RE-TM magnets as well as mass-velocity
and Darwin effects. Practically, our RDFT-DLM calculations
involve two steps. In the first step, a self-consistent, scalar-
relativistic DFT calculation is performed for a reference mag-
netic state. This reference magnetic state may be fully ordered
(e.g., a ferromagnetic arrangement of spins) or fully disordered
(the DLM/paramagnetic state). The output of this calculation
is a set of atom-centered potentials. In the second step, these
potentials are fed into the fully relativistic Kohn-Sham-Dirac
(KSD) equation, thus treating spin-orbit coupling nonpertur-
batively. Combining the solutions of the KSD equation with
the full KKR-CPA machinery allows the Weiss fields and TC to
be computed. Although not a methodological necessity [42],
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the potentials here are kept “frozen” in the second step, i.e.,
the density derived from the Green’s function of the partially
ordered system is not used to update the potentials.

When constructing the potentials in the first step, in common
with all DFT calculations it is necessary to make an approx-
imation for the exchange-correlation energy. The local-spin-
density approximation (LSDA) [14,43] performs rather well in
describing the magnetism of itinerant electrons, but struggles
to describe the strongly localized 4f states which characterize
REs [44]. Furthermore, the orbital moments of transition
metals are generally smaller than observed experimentally
when calculated within the LSDA [45]. As a result, it is
imperative to go beyond the LSDA exchange correlation when
modeling RE-TM magnets.

B. Treating RE-4 f electrons

Recent computational works performed at zero temperature
have employed charge-self-consistent dynamical mean field
theory (DMFT) [46], in particular using the Hubbard-I
approximation [47], to calculate the magnetic moments of
REs [48] and RE-TM intermetallics like SmCo5 [49–51]
and NdFe12 [51]. The simpler, “open-core” scheme [52]
constrains the total spin density of the RE-4f electrons
to be that predicted by Hund’s rules [33,50,52–54]. Such
calculations, which provide much important insight into
RE-TM systems, bear some resemblance to crystal-field
theory in the sense that the RE-4f electrons are partitioned
from the rest of the material, with the amount of hybridization
they can undergo sensitive to how the calculation is set up
[51,53]. Alternative approaches like LDA/GGA+U [55–57],
the orbital polarization correction (OPC) [58], and the
self-interaction correction (SIC) [59] modify the potential at
the RE site but treat all electrons equally, in principle allowing
the RE-4f states to hybridize freely [55]. An advantage of
these schemes when studying trends across the RE-TM series
is that, beyond initial choices about how the schemes are
implemented, the calculations require minimal user input.
Indeed, the parameters entering the OPC and LDA/GGA+U

can be calculated from first principles, e.g., the Racah
parameters calculated from wave functions in the OPC [45],
or the U and J energies calculated from linear response [60]
or constrained random-phase approximation calculations [61].

The SIC, which we employ here, aims to ensure that
the exchange-correlation potential cancels the electrostatic
(Hartree) energy of a single electron interacting with itself,
which is not automatically realized in the LSDA [44]. While
the scheme becomes more complicated in extended systems,
the localized nature of the RE-4f electrons makes them
particularly suitable for the SIC [59]. Furthermore, the SIC
has already been formulated within the KKR-CPA theory as
the local self-interaction correction (LSIC) [17]. Indeed, the
LSIC has been previously used in DFT-DLM calculations to
study Gd [18–21,38]. However, in order to treat an arbitrary RE
it is necessary to generalize the formalism. Conveniently, this
same formalism allows the OPC to be also incorporated in the
RDFT-DLM framework, facilitating an improved description
of the Co orbital moments.

FIG. 2. Scheme to correct RE-4f states based on Hund’s rules.
Each triangle corresponds to a single spin and orbital angular mo-
mentum channel, i.e., σ,l(= 3),m. LSIC channels with σ = ↑ (↓) are
represented by yellow (blue) triangles. We also show the moments
obtained simply by adding the expectation values of the spin and
orbital operators acting on the individual corrected states.

C. An LSIC-LSDA scheme based on Hund’s rules

The LSIC formalism [17] is based on applying the self-
interaction correction to individual spin and orbital angular
channels, each characterized by the pair of quantum numbers
σL. σ labels spin, and L is a composite quantum number
which, in principle, labels a member of any complete set of
angular momentum states. In the original LSIC implementa-
tion, these angular momentum states have the same symmetry
as the nonmagnetic crystal [17]. However, since the orbital
moments are largely unquenched in the RE-TM compounds,
here we choose L to label the “atomic” (l,m) quantum
numbers associated with the complex spherical harmonics, i.e.,
eigenfunctions of the orbital angular momentum operator l̂z.
As such, states that are degenerate in the nonmagnetic crystal
may be split by the LSIC.

We must also choose which spin and orbital angular mo-
mentum channels we should apply the LSIC to. We propose
to follow the scheme illustrated in Fig. 2, which is inspired by
Hund’s rules. An extra LSIC channel is added for each RE-4f

electron, filling up σL combinations of the same spin (↓) first
with the largest available opposing m (e.g., m = +3 for Ce).
After entirely filling the ↓ channel at Gd, we start filling the
↑ channel, again starting with the largest available opposing
m (e.g., m = −3 for Tb) in accordance with the single-
electron tendency of orbital and spin momenta to antialign
[11]. As shown in Fig. 2, adding up the individual spin and
orbital angular momentum contributions associated with these
filled states gives quantities symmetric and antisymmetric,
respectively, about Gd.

D. Including the LSIC/OPC in the KSD equation

The LSIC scalar-relativistic calculation (the first step re-
ferred to in Sec. III A) proceeds as described in Ref. [17]. At
the second step in the RDFT-DLM procedure (and at variance
with previous work [18–21,38]) the atom-centered potentials
have a contribution which depends on angular momentum,
conveniently written as

VSIC(r) =
∑
L,σ

V σ
L (r)P̂Lσ . (9)
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Here, V σ
L (r) is the spherically symmetric correction to the

potential obtained in the scalar-relativistic calculation [17],
while P̂Lσ is a projection operator. In the Pauli representation
these operators are 2 × 2 matrices which are diagonal for spin
polarization along the z axis, whose elements project out states
with angular momentum character L.

The angular-momentum-dependent potentials result in a
modified KSD equation

[α̃ · pc + ṼSIC + Ĩ [V (r) −W ] + β̃(Ĩmc2 + σ̃zBXC(r))]� = 0.

(10)

Quantities with tildes are 4 × 4 matrices; � is a bispinor, and
W and m the electron energy and rest mass. Compared to the
usual KSD equation [62], Eq. (10) has an extra term ṼSIC,
simply related to VSIC in Eq. (9):

ṼSIC =
(

VSIC 0
0 VSIC

)
. (11)

We now follow the standard method of solving the radial KSD
equation in multiple-scattering theory [63], i.e., we investigate
the solutions

�
mj

ν (r) =
∑
κ1

(
g

mj

κ1ν(r)
∣∣χmj

κ1

〉
if

mj

κ1ν (r)
∣∣χmj

−κ1

〉
)

. (12)

The spin-angular functions |χmj

κ1 〉 are superpositions of the
products of Pauli spinors and spherical harmonics weighted
by Clebsch-Gordan coefficients [62]. They are characterized
by the quantum numbers κ1 and mj , and describe the angular
character of free-particle solutions of the KSD equation. κ1 is
related to j , the sum of spin and orbital angular momentum in
the spin-angular functions, with κ = −l − 1 for j = l + 1/2
and κ ′ = l for j = l − 1/2. As indicated, we reserve the label
κ for negative values and κ ′ for positive values of κ1. The label
ν denotes the different solutions required to build the Green’s
function in scattering theory, i.e., solutions with an asymptotic
free-electron character which are regular or irregular at the
origin [63].

After inserting the trial solution (12) into Eq. (10) and
performing a series of manipulations [62], we obtain coupled
equations for the radial functions f and g:

df
mj

κν

dr
= (κ − 1)

r
f

mj

κν + 1

h̄c
(V − E)g

mj

κν

+ 1

h̄c
Gmj

+ (κ,κ)g
mj

κν + 1

h̄c
Gmj

+ (κ,κ ′)gmj

κ ′ν,

dg
mj

κν

dr
= − (κ + 1)

r
g

mj

κν + 1

h̄c
(E − V + 2mc2)f

mj

κν

+ 1

h̄c
Gmj

− (−κ,−κ)f
mj

κν . (13)

Here, E = W − mc2. The differential equations for f
mj

κ ′ν and
g

mj

κ ′ν are obtained from Eqs. (13) simply by interchanging κ

and κ ′. Crucially, compared to previous calculations which
only included BXC, the basic structure of the coupled equations
(13) is unchanged by the addition of VSIC. The difference is in

the coupling functions

Gmj

± (κ1,κ2) = 〈
χ

mj

κ1

∣∣(σzBXC ± VSIC)
∣∣χmj

κ2

〉
. (14)

BXC(r) is now augmented by a linear combination of the LSIC
potentials V(l,m)σ (r) weighted by Clebsch-Gordan coefficients.
We give the explicit form of these coupling functions in
Appendix A, but here just show an example of Gmj

± (κ,κ) with
κ = −4, mj = 1

2 :

G1/2
± (−4,−4) = 1

7BXC ± [
4
7V

↑
(3,0) + 3

7V
↓

(3,1)

]
. (15)

We see that the coupling functions can mix occupied, SI-
corrected channels with unoccupied, non-SI-corrected chan-
nels, as discussed more in Appendix B.

It should be noted that, when deriving the coupled equations
(13), additional coupling functions of the form Gmj

± (−κ,κ + 1)
are introduced by both σz and VSIC. Follow previous work [63]
we neglect these terms, which would otherwise result in an
infinite ladder of couplings between orbital angular momenta
l, l ± 2, l ± 4, etc. [64].

The coupled equations (13), containing the appropriately
weighted LSIC potentials, are solved numerically to give the
scattering matrices and regular and irregular contributions to
the Green’s function. From these quantities, the entire RDFT-
DLM computational machinery [39] can be applied without
further modification.

The OPC enters the KSD equation in exactly the same way
as the LSIC. This is most easily seen by writing the OPC
analogy of Eq. (9) as [54,64]

VOPC(r̂) =
∑
l=2

∑
m,σ

−Blσm〈l̂z〉σ P̂lmσ , (16)

where Blσ is a Racah parameter, and 〈l̂z〉σ is the spin-resolved
expectation value for the relevant atom (we have anticipated
applying the OPC to the d channel). Thus, the OPC can be
considered a special case of the LSIC where the potential
is independent of r , entering Gmj

± (κ1,κ2) weighted by the
coefficients in Appendix A. We stress that, since they only
modify the coupling functions, the computational cost of
including the LSIC or OPC is negligible.

E. Technical details

We generated the atomic-centered potentials in the fully
ordered (zero-temperature) state in self-consistent scalar-
relativistic LSIC-LSDA calculations [17,43] within the ASA,
as implemented in the HUTSEPOT code [65]. Angular mo-
mentum expansions were truncated at lmax = 3, and the full
Brillouin zone sampled on a 20 × 20 × 20 grid with state
occupancies determined by a Fermi-Dirac distribution with
an electronic temperature of 400 K. The calculations were
performed using experimental lattice constants [10,13], which
are listed in Table I together with the ASA radii for the three
nonequivalent sites in the RECo5 structure. We used the same
relations between ASA radii as in our previous work on YCo5

and GdCo5 [19].
For the RDFT-DLM calculations, apart from the inclusion

of the LSIC described above we used the same computational
setup (angular mesh, energy contour, electronic temperature)
as in [19], including an adaptive sampling of the Brillouin
zone [40]. We applied the LSIC to the RE-4f electrons and
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TABLE I. Experimental lattice constants, taken from
Refs. [10,13]. The ASA radii for the three nonequivalent sites
(RE/CoI/CoII) are also given. All units are in Å.

a c rASA Ref.

YCo5 4.94 3.98 1.83/1.39/1.42 [13]
LaCo5 5.11 3.97 1.91/1.40/1.44 [10]
CeCo5 4.93 4.01 1.83/1.39/1.42 [13]
PrCo5 5.01 3.99 1.86/1.40/1.43 [13]
NdCo5 5.01 3.98 1.86/1.40/1.43 [13]
SmCo5 4.97 3.98 1.85/1.39/1.42 [13]
GdCo5 4.96 3.97 1.85/1.39/1.42 [13]
TbCo5 4.94 3.97 1.84/1.39/1.42 [13]
DyCo5 4.91 3.98 1.82/1.38/1.41 [13]
HoCo5 4.91 3.97 1.82/1.38/1.41 [13]
ErCo5 4.87 4.00 1.81/1.38/1.41 [10]
TmCo5 4.86 4.02 1.81/1.38/1.41 [10]

the OPC to the Co-3d electrons. The magnitude of the OPC
was determined iteratively at 0 K with the magnetization
aligned along the c axis, updating 〈l̂z〉σ at each iteration to
self-consistency. The Racah parameters were calculated scalar
relativistically. The same OPC was used for all temperatures,
consistent with the frozen-potential approach.

IV. ZERO-TEMPERATURE CALCULATIONS

A. RECo5 moments

We first use the RDFT-DLM formalism to calculate the
magnetic moments of the RECo5 series at zero temperature. To
illustrate the trend across the lanthanide block, we consider all
members of the RE = Y-Lu series, including the nonforming
RE = Pm, Eu, Yb, and Lu compounds. Here, we fix the lattice
parameters to those of GdCo5; using the appropriate experi-
mental RECo5 lattice parameters (where available) produces
very similar zero-temperature moments (Appendix C). For Ce,
Pr, and Nd we also performed calculations without applying
the LSIC (i.e., treating the f electrons as itinerant).

FIG. 3. Magnetic moments calculated at zero temperature with
(squares) and without (crosses) the LSIC applied, compared to
experimental values reported in Refs. [10] (circles) and [13] (stars).
Faint symbols were calculated to be energetically unfavorable. The
gray horizontal line at 8.78μB corresponds to the calculated YCo5

moment.

In Fig. 3 we show the calculated RECo5 moments and
compare them to low-temperature experiments [10,13]. Here,
the Co moments are aligned along the c axis, which defines the
positive direction. A negative moment in Fig. 3 therefore means
that the RE contribution to the magnetization is larger than that
from the Co moments and is pointing in the opposite direction
(RE dominated). Usually, experimental measurements (e.g., on
powdered samples) only measure the absolute magnetization.
However, as we show below, RECo5 compounds which are RE
dominated at 0 K show a compensation point (minimum) in
their magnetization versus temperature curves, and Ref. [10]
reports compensation temperatures for Tb, Dy, and HoCo5.
Accordingly, we plot the experimental moments of these three
compounds with minus signs.

Considering the calculations without the LSIC first (crosses
in Fig. 3) we see relatively small variation for different REs,
with the moments fluctuating around the YCo5 value (shown as
the gray horizontal line). We do observe a reduction in moment
on moving from YCo5 to LaCo5, despite both elements having
an empty 4f shell. In fact, the moment of YCo5 is much
closer to that of LuCo5, whose 4f shell is totally filled.
This behavior echoes that of quantities like melting points,
electronegativities, and ionization energies, which follow more
naturally a Sc-Y-Lu series compared to Sc-Y-La [66].

Applying the LSIC (squares in Fig. 3) has a dramatic effect
on the magnetization, for instance increasing the moment of
CeCo5 by 2μB/formula unit (FU). Now, a strong variation
with RE is observed, with PrCo5/DyCo5 achieving the largest
TM/RE-dominated moments, respectively. The transition from
TM- to RE-dominated magnetization occurs between Gd and
Tb, and back to TM dominated between Er and Tm.

In order to decide whether the calculations with or without
the LSIC should be used to describe a given RE, we examine
the total energies calculated at the scalar-relativistic level
omitting spin-orbit coupling effects. This approach follows,
e.g., Refs. [17,67], where the comparison of SIC total energies
was used to determine the volume triggering the α → γ

transition in Ce or the valency of the rare earths and their
sulphides. We find that applying the LSIC to PrCo5 and NdCo5

lowers the total energy, i.e., it is energetically favorable. Indeed,
for heavier REs the non-LSIC calculations become difficult to
converge. However, applying the LSIC to CeCo5 increases the
scalar-relativistic total energy, indicating that the single Ce-4f

electron would prefer to be delocalized in this compound.
Using this total energy as our criterion, we do not apply the
LSIC to CeCo5. Indeed, the picture of the itinerant Ce-4f

electron has already been established in previous theoretical
work [68]. Other nonenergetically favorable calculations are
shown in Fig. 3 as faint symbols.

The variation in RECo5 moment calculated with the LSIC
largely follows the simple picture presented in Fig. 2. In
general, the antiferromagnetic RE-TM exchange interaction
causes the RE spin moments to point in the opposite direction
to the Co moments [69], but whether or not the total RE
moment aligns parallel or antiparallel depends on the sign and
magnitude of the orbital contribution [70]. The lightest REs
have large orbital components pointing opposite to their spin
which leads to parallel alignment of the total moments, whereas
the spin and orbital moments of the heavy REs always reinforce
each other to give antiparallel alignment.
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TABLE II. Decomposition of zero-temperature moments. All quantities are in μB. For comparison, we include the calculations for CeCo5

with the LSIC applied (*) even though it is energetically unfavorable.

RE moment Scalar rel. Co moment
(spin/orbital/total) spin (f /spd) (spin/orbital/total) Total moment/FU Exp. [10] Exp. [13]

YCo5 −0.31/0.04/−0.28 −0.31 (0.00/−0.31) 7.54/1.25/8.78 8.50 7.52 8.3
LaCo5 −0.30/0.04/−0.26 −0.30 (−0.04/−0.25) 7.11/1.19/8.30 8.04 7.3
CeCo5 −0.92/0.51/−0.41 −0.86 (−0.57/−0.29) 7.07/1.40/8.47 8.06 6.5 6.5
CeCo5* −1.37/2.97/1.60 −1.37 (−1.07/−0.30) 7.19/1.14/8.33 9.93 6.5 6.5
PrCo5 −2.46/4.88/2.42 −2.47 (−2.13/−0.34) 7.25/1.06/8.31 10.73 9.95 10.5
NdCo5 −3.56/5.74/2.18 −3.58 (−3.22/−0.37) 7.33/1.02/8.35 10.53 10.6 10.5
PmCo5 −4.63/5.60/0.97 −4.71 (−4.32/−0.39) 7.38/0.97/8.35 9.32
SmCo5 −5.63/4.55/−1.08 −5.82 (−5.41/−0.40) 7.36/0.85/8.21 7.13 7.3 8.7
EuCo5 −6.60/2.60/−4.01 −6.90 (−6.48/−0.42) 7.36/0.95/8.32 4.31
GdCo5 −7.50/0.03/−7.47 −7.49 (−7.00/−0.49) 7.43/1.27/8.70 1.23 1.37 1.6
TbCo5 −6.42/−2.96/−9.38 −6.41 (−5.98/−0.44) 7.44/1.28/8.72 −0.67 −0.68 −0.6
DyCo5 −5.33/−4.93/−10.26 −5.32 (−4.93/−0.39) 7.46/1.28/8.75 −1.52 −1.1 −1.2
HoCo5 −4.26/−5.88/−10.14 −4.20 (−3.86/−0.34) 7.51/1.29/8.80 −1.34 −1.49 −0.9
ErCo5 −3.28/−5.89/−9.17 −3.09 (−2.78/−0.31) 7.40/1.27/8.67 −0.50 1.28
TmCo5 −2.27/−4.92/−7.19 −2.00 (−1.71/−0.29) 7.32/1.25/8.57 1.38 2.2
YbCo5 −1.26/−2.95/−4.22 −0.92 (−0.65/−0.27) 7.30/1.24/8.53 4.32
LuCo5 −0.29/0.04/−0.25 −0.30 (−0.03/−0.27) 7.59/1.29/8.88 8.63

B. Decomposition of RECo5 moments

In Table II we resolve the calculated moments into spin and
orbital contributions from the RE and TM. We also give the
spin moments calculated at the scalar-relativistic level, which
are further resolved into contributions of different angular
momentum (f or spd) character.

Concentrating first on the RE contribution to the mag-
netization, we see that the spin moments roughly track the
expected spin of the LSIC channels, peaking at Gd. The scalar-
relativistic decomposition shows the spin moments have an
spd component which increases from 0.25μB for La to 0.49μB

for Gd. However, the f components of the spin moment are
not simply integers. Based on the simple picture of Fig. 2, this
observation is surprising since we would expect each localized
RE-4f electron to contribute ±1μB to the magnetization.
Instead, we see that for each additional LSIC channel the
change in f components is closer to ±1.1μB, until the elements
with filled spin subshells (GdCo5 and LuCo5) are reached.
This behavior indicates that the nominally unoccupied RE-4f

states, which do not have the LSIC applied, are affecting the
calculated properties.

The RE orbital moments also follow the general trend of
Fig. 2, but are better described by μo = (2 − gJ )J , where
gJ is the Landé factor [71]. This textbook expression is
obtained by projecting the orbital moment onto the total
angular momentum direction, which is valid for strong spin-
orbit coupling. It is therefore natural to ask whether the spin
RE moments should in fact be described by μs = 2(gJ − 1)J ,
which is the corresponding projection for spin [71]. However,
in our calculations the principal interaction affecting the
spin moments is the scalar-relativistic exchange, which can
be confirmed by noting the close agreement between the
RDFT-DLM and scalar-relativistic spin moments in Table II.
Therefore, the spin-orbit interaction plays a relatively minor
role in determining the spin moment and the considerations
leading to μs do not apply. We note that this situation is

qualitatively different to the open-core scheme [52], which
fixes the RE spin moments to μs .

Now, considering the TM contribution to the magnetization,
the most striking feature in Table II is the different behavior
of the light and heavy RECo5 compounds. The Co moments
exhibit relatively small variations for the heavy REs except for
LuCo5 which, as already noted, behaves similarly to YCo5.
However, the variations for the light REs are much larger.
Moving from La to Eu, the Co spin and orbital moments
increase and decrease, respectively, and in general the total Co
moments are smaller than for the heavy RECo5 compounds.
As we discuss in Sec. V, a qualitative difference in light and
heavy RECo5 behavior is also observed in TC.

C. Comparison to experiment

When comparing to experiment, it is important to note
that there is a sizable scatter in the published data. We have
taken experimental low-temperature moments from the review
articles of Refs. [10,13] which agree reasonably well with
each other except for YCo5 and SmCo5, which deviate by
approximately 1μB. Also, we note that the RE = Tb-Tm
compounds do not form with exact RECo5 stoichiometry.
Instead, due to defects where the RE is substituted with
pairs (dumbbells) of Co atoms [72], the compounds become
increasingly Co rich. For example, the actual stoichiometry of
the RE = Tm compound reported in Ref. [10] is TmCo6.

With these limitations in mind, the calculations compare
reasonably well to experiment in Fig. 3. Certainly, a number
of qualitative features are reproduced, e.g., a drop in moment
from Y to La, a large increase from Ce to Pr, and RE-dominated
magnetization for Tb-Ho.

For the special case of CeCo5, we note that the energetically
unstable LSIC calculation gives a moment which is in qualita-
tive disagreement with the experimental trend. Interestingly,
however, while the LSDA+OPC calculations are closer to
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FIG. 4. Magnetization per formula unit calculated at different
temperatures for the (a) light and (b) heavy RECo5 compounds.
Calculations were performed at the GdCo5 lattice parameters.

experiment, they still overestimate the CeCo5 moment. Not
including the OPC on the Co atoms rather improves the
agreement (Ref. [68] and Appendix C), suggesting that (like
for the LSIC) there might be a criterion based on energetics to
decide whether or not the OPC should be applied.

Apart from the cases of ErCo5 and TmCo5 where the
experiments are Co rich, the remaining compound where the
discrepancy between calculations and experiment is quite large
is SmCo5, specifically compared to the value of 8.7μB/FU in
Ref. [13]. Interestingly, a recent neutron diffraction experiment
reported even larger local moments in SmCo5, which add up
to give a resultant magnetization in excess of 12μB/FU [73].
Studies employing DMFT and open-core calculations have
reported smaller Sm total moments of approximately −0.3μB,
which would bring the total SmCo5 moment closer to 8μB/FU
[49–51]. Earlier GGA+U calculations found a much larger
total moment of 9.9μB/FU due to a ferromagnetic alignment
of Sm and Co spins. The scatter in theoretical and experimental
data hints at the richness of the physics of SmCo5 which, as
we show next, is also seen in TC.

V. FINITE-TEMPERATURE CALCULATIONS

A. Magnetization vs temperature curves

We now include local moment disorder within the RDFT-
DLM picture. Figures 4(a) and 4(b) show the magnetization
versus temperature (MvT ) curves calculated for light and

heavy RECo5 compounds. These calculations were performed
at the GdCo5 lattice constants (Table I). The light REs
show behavior associated with ferromagnets, i.e., a monotonic
decrease in magnetization with increasing temperature. By
contrast, the heavy RECo5 compounds have magnetizations
which initially become more positive (TM dominated) as the
temperature increases, before reducing at higher temperatures.
As we have shown previously by comparing YCo5 and GdCo5

[19], this contrasting behavior is due to the RE moments
disordering more quickly with temperature compared to the
antiferromagnetically aligned Co sublattice. As a result, the
strong negative contribution to the total magnetization from
the heavy RE diminishes quickly, leaving the positive Co
magnetization.

In the case that the zero-temperature magnetization is RE
dominated, there is a compensation temperature at which
the strongly disordered RE magnetization cancels the weakly
disordered Co magnetization. Our calculated compensation
temperatures are 84 K (TbCo5), 85 K (DyCo5), 45 K (HoCo5),
and 19 K (ErCo5). Reference [10] reports experimental com-
pensation temperatures of 110 K (TbCo5), 123 K (DyCo5), and
71 K (HoCo5).

We note that the calculated MvT curves have finite slopes
at T = 0 K, while experimentally measured curves tend to
be flat [19]. The origin of this discrepancy is the classical
statistical mechanics used in the DLM picture [Eq. (3)], which
does not give an energy barrier between the zero-temperature
arrangement of local moments and an excited state where the
moments have undergone infinitesimal rotations.

B. RE order parameters

In order to analyze the RE contribution to the magnetization
in more detail, in Figs. 5(a) and 5(b) we plot the temperature
evolution of the RE order parametermRE [Eq. (8)]. The heaviest
REs Ho, Er, and Tm disorder very quickly with temperature,
losing 50% of their ordering below 200 K. By contrast, the Sm
sublattice retains its ordering to much higher temperatures,
e.g., 50% ordering at 650 K. Although part of the reason for
this behavior is the higher TC of SmCo5, plots of the order
parameter against reduced temperature T/TC (not shown)
demonstrate that even when this factor is accounted for, Sm
orders the most strongly.

Having an ordered RE at high temperature is useful for
permanent magnets since the magnetocrystalline anisotropy
decays faster than mRE [9]. Therefore, SmCo5 has a double
advantage of having a high magnetocrystalline anisotropy
at low temperature, and a strong RE ordering to retain this
anisotropy at high temperature.

C. Curie temperatures

In Fig. 6(a) we compare the calculated Curie temperatures
TC (extracted from Fig. 4) to the experimental values reported
in Ref. [10]. We include TC calculated for the nonforming Pm,
Eu, Yb, and LuCo5 compounds. We remind the reader that
experimental values are for Co-rich heavy RECo5 compounds,
for which we would expect an increased TC. For instance, the
measured TC of Gd2Co17 is 200 K higher than GdCo5 [10].
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FIG. 5. RE order parameters mRE [Eq. (8)] from the calculations
of Fig. 4 on the light (a) and heavy (b) RECo5 compounds.

Figure 6(a) clearly shows the contrasting behavior of the
light and heavy RECo5 compounds. Apart from YCo5 and
CeCo5, the TC of the light RECo5 compounds increases
monotonically with the number of RE-4f electrons. Indeed,
applying the energetically unfavorable LSIC to the Ce-4f

electron also causes CeCo5 to follow this trend [faint square in
Fig. 6(a)]. Of the experimentally known RECo5 compounds,
SmCo5 is calculated to have the highest TC (942 K), but the
TC of the nonforming EuCo5 compound is found to be even
higher, at 973 K.

The trend in calculated TC of the heavy RECo5 compounds
is less obvious. In general, filling the remaining subshell causes
a reduction in TC, but a secondary peak is observed at HoCo5.
This peak in TC coincides with a slight peak in Co moments for
HoCo5 at zero temperature (Table II). Also, the TC of LuCo5

is very close to that calculated for YCo5 (850 and 839 K,
respectively).

The calculations and experiments agree on a number of
qualitative features. First, there is a substantial drop in TC

on moving from YCo5 to LaCo5, and another from LaCo5 to
CeCo5. As already noted, the drop for CeCo5 is not observed if
the Ce-4f electron is localized with the LSIC. Second, SmCo5

has the highest TC of all the experimentally attainable RECo5

compounds. Finally, the Co-rich heavy RECo5 compounds do
show a secondary peak in TC like the calculations, although
at Er not Ho. The heavy RE2Co17 compounds, whose stoi-
chiometry is better defined, also show a secondary peak around
Ho/Er/Tm followed by a sharp upturn for Lu [10].

FIG. 6. (a) TC calculated for RECo5 using the GdCo5 lattice
parameters, compared to the experimental values reported in Ref. [10]
(circles). Squares and crosses are calculated with and without the
LSIC, respectively, and the faint square is the energetically unfavor-
able LSIC calculation for CeCo5. (b) Comparison of TC calculated
for GdCo5 using RECo5 lattice parameters (circles), RECo5 using
GdCo5 lattice parameters (squares), and RECo5 using RECo5 lattice
parameters (crosses). The faint gray lines separate light and heavy
REs.

The calculated variation in TC shown in Fig. 6(a) is only
due to changing the RE. In order to quantify the magnetostruc-
tural effect of varying the lattice, we also calculated TC for
the RECo5 compounds using experimentally reported lattice
parameters (Table I). We further performed calculations where
we varied the lattice but fixed the RE to Gd, i.e., GdCo5 on
different RECo5 lattices. We compare the three different sets
of calculations in Fig. 6(b).

First considering the calculations with the RE fixed to Gd
[red circles in Fig. 6(b)], we observe a decrease in TC across
the lanthanide block. The exception is CeCo5, which shows a
strong magnetostructural effect; as shown in Table I, CeCo5

has an anomalously small a parameter. These calculations do
not reproduce experimental trends, e.g., predicting LaCo5 to
have the highest TC.

If instead we vary both the RE and the lattice parameters
[blue crosses in Fig. 6(b)] we find an almost identical trend
in TC as if we had kept the lattice parameters fixed at
GdCo5 (green squares). Using the RECo5 lattice parameters
accentuates the drop in TC for CeCo5. Unfortunately, the
experimentally observed difference in TC between YCo5 and
LaCo5 is no longer calculated, which can be seen as a can-
cellation of competing green and red symbols in Fig. 6(b). In
general, the calculations find magnetostructural effects to play
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a less important role in determining TC than explicitly varying
the RE.

D. Order-parameter expansion of the free energy

Returning to the calculations with the lattice constants fixed
to GdCo5, to gain further insight into the calculated TC we
expand the RDFT-DLM potential energy 〈�〉0,T in terms of
the order parameters mRE, mCoI , and mCoII [19]. The labels I
and II distinguish between the inequivalent Co positions in the
RECo5 structure (Fig. 1), i.e., the two Co atoms in plane with
the RE (CoI, Wyckoff position 2c) and the three out-of-plane
Co atoms (CoII, Wyckoff position 3g). In this expansion, the
Weiss field at each site (hRE,hCoI ,hCoII ) is given by the equation

⎛
⎝ hRE

2hCoI

3hCoII

⎞
⎠ =

⎛
⎝JRE-RE JRE-CoI JRE-CoII

JRE-CoI JCoI-CoI JCoI-CoII

JRE-CoII JCoI-CoII JCoII-CoII

⎞
⎠

⎛
⎝mRE

mCoI

mCoII

⎞
⎠.

(17)
The prefactors in the Weiss fields account for the site multi-
plicities. The expansion of Eq. (17) is valid for small m, i.e.,
close to TC. The coefficients JXY are obtained by least-squares
fitting of RDFT-DLM calculations. As discussed in Ref. [19],
diagonalization of the matrix in Eq. (17) gives the RDFT-DLM
TC, thus allowing the variation shown in Fig. 6(a) to be
understood in terms of the strength of the interactions between
different magnetic sublattices.

The calculated coefficients JXY are shown in Fig. 7. A
negative JXY indicates a tendency for the spins of species X

and Y to align antiferromagnetically. Comparing Figs. 6(a) and
7, we see that the behavior of TC is mirrored by the largest
JXY coefficient JCoI-CoII , which describes the interlayer Co
interaction. The next-largest coefficient JCoII-CoII , describing
the intralayer interactions of the pure Co layer, behaves
similarly except that no drop at CeCo5 is observed. It is not
surprising either that TC tracks the largest JXY coefficients or
that these coefficients describe Co-Co interactions, in line with
the picture that the TM is responsible for the high TC in RE-TM
magnets. What is less intuitive is that these coefficients should
be so strongly affected by the RE.

As found for TC, there is clear distinction between light
and heavy RECo5 compounds for JCoI-CoII and JCoII-CoII . By
contrast, JCoI-CoI undergoes a general decrease from La-Lu,
with slight fluctuations around Ho and a dip at Ce. The Co
interactions are very similar for Y and Lu, consistent with their
similar TC.

The JRE-Y coefficients which quantify RE interactions are
smaller in magnitude. JRE-RE is particularly weak and corre-
lates with the size of the spin moment of the RE. The strongest
RE-Co interactions are interplanar, RE-CoII. Interestingly,
neither JCoII-CoII nor JRE-CoII show any strong anomaly at
CeCo5, indicating that it is only the CoI interactions which
are affected by the itinerant Ce-4f electron.

Again comparing the light and heavy REs, we note that
the in-plane interaction quantified by JRE-CoI actually becomes
ferromagnetic for DyCo5, HoCo5, and ErCo5, which coincides
with the secondary peak in TC [Fig. 6(a)]. Also, we observe that
the strongest RE-Co interactions occur not for GdCo5, which
has the largest RE spin moment, but rather EuCo5.

FIG. 7. Different JXY parameters [cf. Eq. (17)] calculated for
RECo5 on the GdCo5 lattice. Note that the Ce calculation was
performed without the LSIC, i.e., assuming that the Ce f electron
is itinerant. We highlight JXY for YCo5 as crosses with horizontal
dashed lines.

VI. DISCUSSION

A. RE-TM interaction

Our calculations have found that the strength of magnetic
interactions between Co moments in RECo5 is affected by the
RE, even when the lattice parameters are held fixed. As a result
of this variation, TC depends heavily on the RE. To explain
this behavior, we first recall the theory of RE-TM interactions
described in Ref. [69], which explains the antiferromagnetic
spin coupling in terms of hybridization between RE-5d and
TM-3d states. Figure 8 is a schematic representation of
the theory. The magnetic properties of Co originate from
almost-full and almost-empty 3d bands of opposing spins. The
minority spin Co-3d band lies closer in energy to the RE-5d

bands than the majority Co-d band, and therefore hybridizes
more strongly. The preferential occupation of the lower-energy
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FIG. 8. Schematic of antiferromagnetic RE-Co interaction, after
Fig. 2 of Ref. [69]. Wide/narrow rectangles symbolize strong/weak
RE-Co hybridization in a given spin channel.

hybridized spin states causes the RE-5d bands to develop a
spin polarization in the direction of the Co minority spin,
i.e., an antiferromagnetic coupling. Then, onsite RE 4f -5d

interactions polarize the RE-4f spins in the same sense.
In this picture, the RE-TM interaction varies according to

the strength of the 4f -5d interaction, which is expected to scale
with the spin moment of the RE. Accordingly, the strongest RE-
TM interactions are expected for Gd. However, any effects on
the TM magnetization are expected to proceed via the Co-3d–
RE-5d hybridization, with no direct link to the RE-4f states.

B. Magnetostructural effects

Within the picture of Fig. 8, any variation in TC implies that
the RE-5d states are not the same for all REs. Of course, the
RE-5d orbitals do vary across the lanthanide block in terms
of their spatial extent, as can be seen from the experimental
lattice parameters in Table I. The lattice parameter a of LaCo5

is 3% larger than GdCo5, while for YCo5 the difference is less
than 0.5%. The experimental lattice parameters of LuCo5 are
not known, but the ionic radius of Lu is much closer to Y than
La [74]. Correspondingly, the TC values calculated at GdCo5

lattice parameters are much closer for YCo5 and LuCo5 (11 K)
than YCo5 and LaCo5 (80 K).

So, independent of any arguments based on the RE-4f

states, the calculations on YCo5, LaCo5, and LuCo5 suggest
that the size of the RE-5d orbitals affects the Co magnetism.
Indeed, we could have reached a similar conclusion from our
calculations on GdCo5 with variable lattice parameter. Using
the lattice parameters of lighter (heavier) RECo5 compounds
for GdCo5 corresponds to expansion (compression) of a (Ta-
ble I). From the red line of Fig. 6(b), we see that expansion of a

is correlated with an increased TC, while compression reduces
it. Inversely, using GdCo5 lattice parameters for the light and
heavy RECo5 compounds corresponds to compression and
expansion of a, respectively. Comparing the green and blue
symbols in Fig. 6(b) confirms that compression reduces TC

(green lower than blue for La-Gd) while expansion increases
TC (green higher than blue for Gd-Tm).

This magnetostructural effect makes some contribution to
the overall variation of TC. Interestingly, the coefficients in
Fig. 7 which quantify the CoI-CoI interaction (blue symbols)
resemble the behavior of TC calculated for GdCo5 with

different lattice parameters [red symbols in Fig. 6(b)]. Taken
together with the fact that these CoI atoms sit in plane with
the RE atoms (Fig. 1), we assert that the variation JCoI-CoI is
magnetostructural in origin, with the RE-5d orbitals affecting
the in-plane Co-3d interactions.

However, magnetostructural effects cannot really explain
the observed variation in TC. First, they do not account for
the qualitative difference in behavior between light and heavy
RECo5 compounds. Second, the JCoI-CoI coefficients which are
sensitive to the structure do not play a major role in determining
TC, compared to JCoI-CoII and JCoII-CoII . For example, LaCo5

has the largest JCoI-CoI but the second lowest TC [Fig. 6(a)].
Therefore, we look for an additional explanation.

C. Densities of states

In Fig. 9(a) we plot the DFT Kohn-Sham density of states
(DOS) of SmCo5. The DOS was calculated just below TC

(i.e., at an almost completely disordered state), using GdCo5

lattice parameters, and has been resolved into contributions
from the RE, CoI, and CoII sublattices. The wide energy scale
of Fig. 9(a) was chosen to show explicitly the energy position of
the occupied Sm-4f states, 11 eV below the Fermi level EF .
Zooming in on the region around EF [Fig. 9(b)] shows the
Co-3d band (bandwidth ∼4 eV) hybridized with the RE-5d

states. However, an additional prominent feature is observed
in the RE DOS, which is a narrow peak above EF . The weight
of this peak is approximately two electrons, and corresponds to
the two unoccupied RE-4f states in the ↓ spin channel (Fig. 2).

A similar peak can be observed in the DOS of all the RECo5

compounds. For REs with almost empty 4f spin subshells,
the peak is located at high energy, and comes closer to EF

as the subshell becomes filled.1 We stress that in our DFT
description, states aboveEF make no contribution to calculated
properties. However, the tail of this unoccupied RE-4f peak
does extend below EF and therefore contributes to the density.
In fact, this tail is the origin of the noninteger contribution to
the f -resolved spin moments pointed out in Sec. IV B when
discussing Table II.

As indicated in Fig. 9(b), we can extract the energy corre-
sponding to the center of this unoccupied peak (dashed line).
Then, in Fig. 9(c) we plot the calculated TC as a function
of this peak position. The light REs show an apparently
strong correlation, with TC increasing as the unoccupied peak
becomes closer to EF . By contrast, the heavy REs do not show
any particular correlation. The possible exception is HoCo5,
which as well as having a higher TC than its neighbors also has
the unoccupied RE-4f peak closest to EF .

An explanation for the differing behavior of the light and
heavy RECo5 compounds in Fig. 9(c) relates to the spin
character of the unoccupied peak. For the light REs, the
unoccupied RE-4f peak closest to EF has the same ↓ spin
as the Co-3d minority spins, i.e., the states which hybridize
strongly with the RE-5d states and lead to antiferromagnetic
coupling (Fig. 8). By contrast, the unoccupied RE-4f peak
of the heavy REs has the same ↑ spin character as the Co-d

1For light REs, a second peak corresponding to the opposite spin
channel is also present, at much higher energies.
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FIG. 9. DOS calculated just below TC for SmCo5, resolved onto
the Sm, CoI, and CoII sublattices, shown (a) across a wide energy scale
and (b) around the Fermi energy. The vertical dashed line intersects
the center of the unoccupied 4f peak above the Fermi energy. (c) TC

plotted against the center of this unoccupied peak for the different
RECo5 compounds. Note that here the value of TC of CeCo5 was
calculated with the LSIC applied.

majority spins. The hybridization of these states with RE-5d is
weak due to the energy separation; also, it favors ferromagnetic
coupling. As noted when discussing Fig. 7, HoCo5 does
indeed have a positive JRE-CoI coefficient, corresponding to
a ferromagnetic RE-TM interaction. Indeed, the temperature
evolution of the order parameters in Fig. 5 shows how the
overall antiferromagnetic RE-TM coupling is weakened for
the heavy RECo5 compounds.

We therefore propose a mechanism where a small contribu-
tion of f -character RE states, located just below the Fermi
level, affects TC by modifying the Co-3d states, probably
indirectly through the RE-5d states. Such a mechanism could
explain why we calculate higher TC’s than GdCo5 for Pm,
Sm, and EuCo5, despite these elements having smaller spin

moments and being placed on a lattice with a compressed a

parameter. The effect is strong (weak) for the light (heavy)
RECo5 compounds, and favors antiferromagnetic (ferromag-
netic) RE-TM coupling as described above, consistent with the
behavior of JRE-CoI and JRE-CoII shown in Fig. 7.

We have already pointed out that the calculations have found
SmCo5 both to have the highest TC of the experimentally real-
ized RECo5 compounds and also a strong RE-TM interaction,
which enables Sm to stay ordered at high temperature. Within
the mechanism described here, the origin of this behavior is
Sm’s almost-filled 4f spin subshell. The hypothetical EuCo5

compound would have an even higher TC, but unfortunately
does not form. The total energies calculated at the scalar-
relativistic level find Eu to be more stable in the 3+ state than
2+, when forced to occupy the RECo5 structure. However,
we have not investigated the full compositional phase diagram
where different stoichiometries and structures might have a
lower free energy.

VII. OUTLOOK

We have devised a physically transparent theory to model
the magnetic properties of RE-TM compounds, with particular
emphasis on their finite-temperature properties. The magnetic
disorder is described with the disordered local moment picture
based on relativistic density functional theory, with the RE-
4f electrons treated with the local self-interaction correction
which encapsulates Hund’s rules. We used the theory to
calculate the zero- and finite-temperature properties of the
RECo5 family of magnets, comparing magnetic moments and
Curie temperatures to experimental measurements.

When presenting our theory we stated that, mainly as a result
of the spherical approximations and mean field nature of the
theory, we expected our approach to perform best in calculating
trends across a series. This statement has been borne out by
our comparisons with experimental data, where we were able
to reproduce a number of qualitative features. In particular, we
were able to track the behavior of TC, which to our knowledge
has never been accomplished from first principles before.

We identified interesting behavior from the calculations,
that even though TC is generally determined by TM-TM
interactions, these interactions were nonetheless affected by
the RE. We argued that while the varying spatial extent of
the RE-5d orbitals did affect the TM-TM interactions, this
effect was not sufficient to explain the variation in TC. Instead,
we proposed a mechanism based on a small f -character
contribution to the density around the Fermi level which, for
the light RECo5 compounds, strengthens both the RE-TM and
TM-TM interactions.

We note that more expensive DMFT calculations do not
provide an obvious pathway for a further exploration of this
mechanism, neither in being able to calculate TC, nor also since
we cannot make any assumptions about the hybridization of the
RE-4f electrons [51]. In terms of experimental evidence, we
currently have only the observation that SmCo5 has a higher
TC than GdCo5. To our knowledge, this observation has not
been explained before, but on its own cannot be considered
justification for the correctness of the LSIC. However, the
theory presented here opens the door to performing a more
detailed comparison with experimental measurements on the

224415-12



RARE-EARTH/TRANSITION-METAL MAGNETS AT FINITE … PHYSICAL REVIEW B 97, 224415 (2018)

temperature-dependent properties of any RE-TM compound,
as was already done for YCo5 and GdCo5 [19].

Beyond exploring the fundamental physics of RE-TM mag-
nets, our theoretical framework allows the study of practical
aspects. In particular, the CPA formalism allows the effects
of compositional disorder, e.g., substitution of RE or TM
elements, to be investigated. Furthermore, with a view to
optimizing high-temperature coercivity, it is highly desirable to
tackle the temperature dependence of the magnetocrystalline
anisotropy [37]. Such calculations require a careful incorpora-
tion of crystal-field effects into our ASA calculations [75] and
also special care regarding how the calculated quantities are
compared to experimental measurements, given the ferrimag-
netic nature of the RE-TM magnets [38]. Already, the current
calculations have found the high-temperature RE magnetic

ordering to be strongest in SmCo5, the best-performing magnet
in the RECo5 family.
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APPENDIX A: COUPLING INTRODUCED BY THE LSIC

Here, we list the formulas for the different coupling func-
tions which enter the coupled equations (13). Again, we em-
phasize that κ = −l − 1 and κ ′ = l. We have also introduced
the quantities l̄1 = l + 1 and l̄2 = l − 1:

Gmj

± (κ,κ) = 2mj

2l + 1
BXC ±

[
V

↑
l(mj −1/2)

(
l + mj + 1/2

2l + 1

)
+ V
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l(mj +1/2)

(
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2l + 1

)]
,
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l(mj −1/2)

(
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l(mj +1/2)
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2l + 1
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,

Gmj

± (κ,κ ′) = −
(

1 − m2
j

(l + 1/2)2

) 1
2
[
BXC ∓

V
↑
l(mj −1/2) − V
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2

]
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2l̄1 + 1

)
+ V
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(
l̄1 + mj + 1/2

2l̄1 + 1

)]
,

Gmj

± (−κ ′, − κ ′) = − 2mj

2l̄2 + 1
BXC ±

[
V

↑
l̄2(mj −1/2)

(
l̄2 − mj + 1/2
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+ V

↓
l̄2(mj +1/2)

(
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FIG. 10. Spin-resolved, zero-temperature DOS for SmCo5 (left) and DyCo5 (right), at energies corresponding to the majority-spin, SI-
corrected states. The majority- and minority-spin contributions are plotted with positive and negative signs, respectively, and the lower plots
zoom in on the minority contribution. Note the larger scale for DyCo5.
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APPENDIX B: RELATIVISTIC COUPLINGS BETWEEN
DIFFERENT SPIN-ORBITAL CHANNELS

As indicated by Eq. (15), the spin-orbit interaction mixes
different (σ,m) channels, including those which do and
do not have the LSIC applied. In general, since there is
a large energy separation between corrected and uncor-
rected states (∼10 eV), the energy denominator that ap-
pears in the perturbative expansion of the state is large
and thus the mixing is small. Nonetheless, the mixing can
be seen by examining the zero-temperature, spin-resolved
DOS at energies around the occupied (majority spin) 4f

electrons.
This quantity is plotted in Fig. 10 for SmCo5 and DyCo5.

In the scalar-relativistic calculation, the occupied 4f electrons
are spin pure, but on performing the relativistic calculation
a small contribution appears in the minority-spin channel
(negative scale in Fig. 10), due to the mixing described
above. This contribution is bigger for DyCo5 than SmCo5

(note change of scale) because there are two SI-corrected
minority-spin states located 4 eV above the majority-spin
peak which mix more strongly. For SmCo5, the mixing only
occurs with SI-uncorrected states lying above the Fermi level.
The large energy separation suppresses the mixing in this
case.

FIG. 11. Magnetic moments calculated at zero temperature for
RECo5 using GdCo5 lattice parameters (squares), and RECo5 using
RECo5 lattice parameters (stars).

APPENDIX C: ZERO-TEMPERATURE MOMENTS
CALCULATED AT EXPERIMENTAL LATTICE

PARAMETERS

In Fig. 11, we compare the zero-temperature moments
calculated either using GdCo5 lattice parameters or, where
available, RECo5 lattice parameters (Table I). Note that these
calculations were performed without the OPC applied, which
results in reduced Co moments compared to Fig. 3.
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