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and spin-dynamics calculations
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We experimentally and theoretically study the geometry, as well as the electronic and vibrational properties, of
the heterotetranuclear magnetic cluster [Co3Ni(EtOH)]+, which is prepared in the gas phase with molecular beam
expansion. We characterize the cluster and identify possible isomers through the comparison of experimentally
observed infrared spectra with state-of-the-art quantum chemistry calculations, more specifically by focusing
on the OH stretching frequency. Furthermore, we suggest ultrafast, laser-induced, local spin-flip scenarios on
every Co atom, and report a cooperative effect, in which the spin density is localized on one Co atom, gets
transiently transferred to another, and then bounces back pointing in the opposite direction. Finally, we predict
a tolerance of the suggested scenarios with respect to the laser detuning of about 20 meV, which lies within
an experimentally applicable range. Our joint investigation is an additional step toward the implementation of
laser-controlled nanospintronic devices.
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I. INTRODUCTION

After the discovery of laser-induced demagnetization by
Beaurepaire et al. in 1996 [1], there has been a huge amount of
theoretical and experimental progress in the field of femtomag-
netism [2,3]. In the subfield of transition-metal nanomagnets,
extensive experimental and theoretical work has been done on
small nickel and cobalt clusters [4,5]. Additionally, several
studies of subpicosecond laser-induced spin dynamics on
similar clusters have already been performed [6,7].

With respect to the experimental investigations of isolated
metal clusters with different ligands by using an ablation
source [8,9] in combination with the Infrared Multiphoton
Dissociation (IRMPD) technique (cf., e.g., Refs. [10,11]),
a variety of investigations have been performed (cf., e.g.,
Refs. [12–21]; Refs. [12,16–18,20] specifically refer to ag-
gregates with alcohol molecules). The infrared (IR) spectra
in combination with density functional theory (DFT) and
quantum chemistry calculations yield structural assignments
of the isolated transition metal/ligand clusters.

From a chemical point of view, many material charac-
teristics can be understood at a molecular level through the
investigation of clusters. By revealing the behavior of the
smallest possible atomic constructs, a better understanding of
macroscopic effects and properties can be achieved.

Both Ni and Co are known for their catalytic activity as
well as their magnetic behavior, two aspects of high interest
regarding materials science. As an example, it has been
shown that a mix of the two metals in a catalyst compound
increases its performance for the methane reforming process
through the suppression of deactivation mechanisms (e.g.,
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carbon formation or catalyst oxidation) [22]. Numerous studies
on the activation of small molecules for cobalt as well as
nickel have been published (e.g., H2 [23], H2O [13,24], and
methanol [16]).

The goal of the present paper is to further elucidate the
microscopic mechanisms behind an elementary laser-induced
spin-manipulation process, namely the spin flip, which is
crucial in nanospintronic devices. We investigate the process
in a real, synthesized molecule. The reason is twofold: to have
the possibility to assert the quality of our quantum-chemical
calculations through comparison to experiment, and thus to
make sure that our scenarios are realistic, as well as to further
increase the pool of synthesizable structures, which are suitable
candidates for magnetic-logic building blocks.

Here, we present the investigation of a cationic cluster
consisting of the first row transition metals cobalt and nickel
and an attached ethanol (EtOH) ligand, namely the heterote-
tranuclear cluster [Co3Ni(EtOH)]+. This cluster, compared to
analogous homotetranucelar ones such as Ni4 [25–27] or Co4

[28,29], has a slightly lower symmetry, which leads to stronger
spin localization [30] and thus opens the way for localized
spin-manipulation scenarios. Based on the knowledge at our
disposal, [Co3Ni(EtOH)]+ has great possibility to act as a
prototype for ultrafast spin dynamics, aiming at fast data pro-
cessing. For this, the spin takes over the role of the information
carrier (bit) [31]. We structurally analyze the metallic cluster
and investigate its potential to function as a magnetic-logic
element.

The attached EtOH molecule serves mainly to slightly lower
the symmetry of the cluster. Geometry optimization of the
bare [Co3Ni]+ cluster (without EtOH) yields a C3v point group
symmetry, which, in turn, leads to a spin-density delocalization
in the energetically low electronic states. In other words, we do
not find enough electronic states with spin sitting on only one

2469-9950/2018/97(22)/224404(11) 224404-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.224404&domain=pdf&date_stamp=2018-06-05
https://doi.org/10.1103/PhysRevB.97.224404


D. DUTTA et al. PHYSICAL REVIEW B 97, 224404 (2018)

or two of the Co atoms, and hence it is impossible to derive
logic gates (such as AND, OR, and XOR). Previous studies
have shown that one can overcome this problem by lowering
the structural and electronic symmetry. This is achieved by
attaching a ligand to the metallic cluster [32,33]. This way, the
magnetic centers can be differentiated enough to yield spin-
density localization, but not too strongly to hinder cooperative
magnetic behavior between the metallic atoms [20,34–36].
Our system is positively charged. This has practical reasons
(a charge is needed for the mass spectrometry), but also
stems from the consideration that clusters with triplet elec-
tronic states are well-suited for magnetic logic: Two unpaired
electrons allow for spin- and charge-dynamics separation
[20,34], while, generally, this is not the case with doublet
states, in which one electron is the carrier of both spin and
charge (unless the doublet state is formed, e.g., from three
or five unpaired electrons, in which case, however, the states
lie energetically very high). Higher multiplicities (quintets,
septets, etc.), usually render the situation too complex, without
necessarily bringing much benefit with respect to the envisaged
logic functionalization.

The rest of the paper is organized as follows. In Sec. II the
possible geometries of the cluster, as well as the theoretical
methods for their quantum chemical calculation are presented.
In Sec. III a detailed analysis of the theoretically computed
and the experimentally measured IR spectra, as well as their
comparison is presented. In Sec. IV we theoretically investigate
the possibility for ultrafast, laser-induced spin dynamics on the
cluster, while, in Sec. V we summarize our findings.

II. GEOMETRY OF [Co3Ni(EtOH)]+

Experimentally, the cluster is prepared in a molecular beam
experiment. Although its stoichiometry is ascertained with
mass spectroscopy, its exact geometry can only be determined
in an indirect way. In our case, it is determined by the use of IR
spectroscopy employing the IRMPD technique and evaluated
by comparison with various theoretical calculations. Several
stable stereoisomers and their optimized geometries are taken
into account using different theoretical levels of calculations
(Fig. 1).

At a preliminary stage, we perform a less expensive compu-
tation using DFT to find all possible isomeres as well as their
pertinent vibrational spectra, which are then compared with the
experimental results. We use the BPW91 functional, which has
proven to provide adequate results for this kind of transition
metal clusters [20], and the 6-311+G(d,p) [37] basis set. We
perform calculations for various multiplicities and geometries,
including four ones with intact and six ones with dissociated
EtOH. Figure 1 gives an overview of the most stable structures
within the different geometries considered.

Then, we perform a series of quantum-chemical cal-
culations in real-space, to get accurate excited electronic
states, which we need for the spin-dynamics scenarios de-
scribed later on. First, a preliminary geometry optimization
step at the Hartree-Fock (HF) level is performed, where
we use various basis sets (such as the Sapporo family
of nonrelativistic double-zeta SPK-DZC basis set [38], the
Huzinaga’s 21 split-valence Midi basis set [39], and the
Stevens/Basch/Krauss/Jasien/Cundari valence basis set [40])

FIG. 1. All geometries considered in this study. Isomers I–V have
a pyramidal metal core and V–X a rhombic metal part. Furthermore,
isomers I, II, V, and VI have a nondissociated (intact) EtOH ligand
attached, while in the isomers III, IV, VII, VII, IX, and X, the
EtOH is dissociated in an ethyl and a hydoxyl group. Although
the energetically lowest structure is isomer VII, theoretical and
experimental IR spectra suggest that only nondissociated isomers are
present in the experiment (see text).

and multiplicities (singlets, triplets, quintets, and septets). We
consider both pyramidal and rhombic structures. Restricting
ourselves only to the HF calculations wrongly predicts the
latter ones as being the energetically lowest ones, if the
ligand is not allowed to dissociate. As with all 3d transition
metals, however, correlations play an extremely important role
both for the electronic energies as well as for their chemical
and physical properties (notably the magnetic properties).
Therefore, subsequently, a series of single-point coupled-
cluster calculations with single and double excitations and
the perturbative inclusion of energy contributions from triple
excitations [CCSD(T)] is performed. These give a very good
account of the correlation energies of the d-block elements
in our system, which is necessary to precisely predict the
ground-state geometry. Finally, the excited electronic states
are calculated with the equation-of-motion coupled-cluster
method with single and double excitations (EOM-CCSD) on
top of the CCSD-optimized structure (see Table I).

For the CCSD and the EOM-CCSD calculations, we choose
sophisticated basis sets for the metal atoms (but not too
complex to keep the calculations manageable) as we are
interested in the spin states of the metal atoms, and relatively
simple basis sets for the other atoms. Specifically, we perform
the CCSD calculations using the STO-6G basis set for C and
H [41], the same STO-6G basis set with an additional d shell
for O, and the DGauss A1 DFT Coulomb Fitting basis set [42]
for Co and Ni (this combination is denoted as BS1).

The excited electronic states obtained with the EOM-CCSD
method from a triplet reference state are not necessarily
eigenstates of the Ŝ2 operator. Since we need pure-spin excited
states, we perform the EOM-CCSD calculations not starting
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TABLE I. Comparison of ground-state energy for different ge-
ometries and different ab initio level calculations. Values are relative
energies of different isomers within the same calculation method.
Independent geometry optimization is performed for the HF, DFT, and
EOM-CCSD level. CCSD and CCSD(T) calculations are performed
using the DFT-level optimized structures. Multiplicities are given in
parenthesis for the spin-adapted level of calculations. The CCSD
and the CCSD(T) energies are computed with unrestricted Hartree-
Fock (UHF) and therefore yield spin-contaminated states (fractional
multiplicities), just like the DFT results. The EOM-CCSD calculation
is based on a different closed-shell CCSD step (not shown here), and
therefore yields pure-spin states (integer multiplicites). The geometry
of each isomer is shown in Fig. 1.

Isomer HF DFT CCSD CCSD(T) EOM-CCSD
(kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

I 479(7) 54(7.1) 136(7.3) 117(7.3) 120(3)
II 643(3) 50(7.0) 140(7.3) 118(7.3) 126(3)
III - 10(7.1) 197(7.7) 146(7.7) -
IV - 53(7.0) 223(7.5) 183(7.5) -
V 610(3) 147(4.4) 280(4.6) 236(4.6) 236(3)
VI 0(7) 149(5.5) 232(5.8) 206(5.8) 220(3)
VII 18(7) 0(7.1) 0(7.5) 0(7.5) 0(3)a

VIII - 1(7.2) 88(7.7) 71(7.7) -
IX - 14(7.1) 59(7.7) 58(7.7) -
X - 3(7.0) 90(7.4) 64(7.4) -

aThe geometry optimization was performed at the (closed-shell)
restricted-Hartree-Fock level.

from the energetically lowest open-shell mixed-spin CCSD
state (see Table I), but from a closed-shell singlet reference
state. The EOM-CCSD excited states calculated in this manner
are singlets and triplets. As expected, the reference singlet state
turns out not to be the energetically lowest one. It is rather a
triplet state that becomes the ground state, a finding which is
also consistent with our simpler HF results.

With four transition-metal atoms (13 atoms in total) the
quantum chemical calculations for the system are demanding
even at the HF level (we reach a convergence of 10−6 in the
density matrix). An important criterion of the convergence
is also the overlap matrix of the produced molecular orbitals
(MOs) (which only minimally deviates from an identity matrix,
as theoretically expected). This criterion is extremely impor-
tant for the subsequent calculation of the optical transition-
matrix elements, since otherwise the optical selection rules
would not be properly obeyed [43,44]. Not surprisingly, the
calculations at the CCSD level are quite challenging and
time-consuming, and sometimes only average convergence is
reached (a maximum of 10−3 in the density matrix for the
restricted open shell calculations). Isomer I is the most stable
one among the geometries with nondissociated ligands and
also, as discussed later, probably the most abundant one in our
experiments.

All quantum chemical calculations are performed using the
GAMESS [45] and the GAUSSIAN [46] software packages.

III. INFRARED ABSORPTION SPECTRA

Here, only a short outline of the apparatus is given (details
can be found elsewhere, e.g., in Ref. [17]). The setup consists

of a three-chambered vacuum apparatus housing an ablation
source and a reflectron time-of-flight mass spectrometer. The
cluster is prepared by ablating a metal alloy rod and picking
up all formed species by a molecular beam (cobalt:nickel
rod—80:20, pulse power of the ablation laser ∼8 mJ, with
a frequency-doubled Nd:YAG laser at 532 nm). The ethanol
is seeded into the carrier gas from a cooled reservoir and the
final cluster is formed. The beam is then filtered and analyzed
in the mass spectrometer. By irradiating the beam with an
IR laser at a transition wavelength, a dissociation is achieved
and registered in the mass spectrum, i.e., the corresponding
mass peak’s intensity decreases. Specifically, the structurally
sensitive OH stretching vibration is observed and therefore
the IR spectrum is recorded in the region of 3520 cm−1 to
3760 cm−1. The chosen pulse power of the IR laser amounts
to about 12 mJ.

By performing vibrational frequency calculations at the
DFT level, the property of the converged structures as an
energetic minimum is verified and their vibrational spectra
are obtained. Anharmonicities can be taken into account by
scaling the spectra with a factor of 0.9862 (for the reference
system [Co3(EtOH)]+, see Ref. [20]). It has been observed
that, while producing their spectra reasonably well, the relative
energies of the obtained geometries are not optimally repre-
sented. Therefore, CCSD and CCSD(T) level energies for the
obtained geometries are consulted. By comparing theoretical
and experimental spectra as well as relative energies (see
Table I), an assignment of structure and spin state for the
experimentally observed species is attempted.

A. Infrared absorption spectra at the DFT level

The recorded IRMPD spectrum of the [Co3Ni(EtOH)]+ cluster
is shown for comparison both in Fig. 2 and in Fig. 3. Two
bands can be identified, one at 3638 cm−1 and one at 3663
cm−1, the latter one showing almost three times the intensity
of the first band. Several different structural motifs have been
calculated. The following combinations are considered: The
cluster core in a pyramidal form with an intact as well as a
dissociated ethanol molecule (Fig. 2); the cluster core in a
rhombic geometry with again both ethanol forms (Fig. 3). A
first observation is that, since there are two bands detected and
each isomer only possesses one vibrational transition in this
region, at least two different cluster geometries are produced
under these experimental conditions.

The only calculated structures showing a transition in the
region of the 3663 cm−1 band are the ones containing a pyra-
midal cluster core. Of those, the clusters coordinating an intact
ethanol molecule are fitting best to the spectrum. However,
it cannot be distinguished if the ethanol is bound by nickel
or a cobalt atom to the cluster. The band at 3638 cm−1 can
be attributed to a rhombic metal core structure with either an
intact or a dissociated ethanol molecule. The relative energies
are indicative for the dissociatively chemisorbed species. The
position of the nickel atom is again not distinguishable. In
fact, the CCSD and CCSD(T) level calculations also confirm
this assignment. Principally, all calculated energies are raised
significantly relative to the lowest energy isomer VII. However,
since the energies of the structures comprising a pyramidal
cluster core and a dissociated ethanol molecule experience the
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FIG. 2. Calculated pyramidal structures at the DFT level and
comparison of their spectra to the measured IR spectrum.

highest raise (130 kJ/mol according to the DFT calculations),
they are regarded as unlikely products. Therefore, these struc-
tures are excluded from consideration, further affirming the
above assignments. A takeaway note from this investigation

FIG. 3. Calculated rhombic structures at the DFT level and
comparison of their spectra to the measured IR spectrum.
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is that the OH stretching frequency depends mainly on the
metal-core geometry of the cluster and not so much on whether
the ligand is dissociated or not (a detailed analysis about how
the metal-core geometry affects the OH stretching frequency
on the CCSD level is presented later on).

At the DFT level, the different geometries considered form
two groups: the more 3D-like structures (pyramidal metal core,
see Fig. 2) with slightly higher OH stretching frequencies,
and the more 2D-like ones (rhombic metal core, see Fig. 3)
with lower OH stretching frequencies. The most probable
candidate for the peak at 3663 cm−1 is the pyramidal isomer I
attached with an intact ligand and a calculated frequency of
3672 cm−1 (Fig. 2). This cluster shows to be the closest to the
experimentally most pronounced peak, although an overlap
of isomer II with the ligand bound to the nickel cannot be
excluded. The calculated OH stretching vibrations of isomer
III and IV (pyramidal core geometry) reveal significant blue
shifts (over 25 cm−1) compared to the experimental peaks,
and we therefore consider them very unlikely to have formed.
Furthermore, isomers III and IV are significantly less stable
than isomers I and II (cf. Table I). For further theoretical
investigations, the most stable isomer I with an undissociated
ethanol attached to cobalt is taken into account.

The less pronounced experimental peak at 3638 cm−1 is
reproduced in theory with the rhombic metal core geometry
(isomers V–X, see Fig. 3). It seems unlikely that isomers
V and VI (with intact EtOH attached) form, since they are
considerably less stable than the remaining isomers with
dissociated EtOH (cf. Table I). The most stable structure is
isomer VII. It is interesting to note that the shift of the OH
stretching frequency at 3663 cm−1 between experiment and
calculation observed for isomer I is similar (around 10 cm−1)
to the shift found for isomer VII. With respect to the relative
energy and the calculated vibrational frequency from the set
of the rhombic structures, isomer VII with a dissociated EtOH
is most probably formed. Thus, isomer I (or II) and isomer VII
can be assigned to the spectra. Nevertheless, the difference
in the experimental intensities implies a higher probability of
forming the intact cluster I than the dissociated structure VII,
i.e., even though the metal core seems to be stabilized in the
rhombic geometry when the ethanol is dissociated, with intact
ethanol as well as the bare metallic cluster (without EtOH),
the pyramidal geometry is favored, which can result from
kinetically trapping of pyramidal metal clusters after ablation.
In a further step, the alcohol moiety is attached to the metal core
in the molecular beam experiment. Due to these considerations,
isomer I (as most stable structure of the subset of arrangements
with pyramidal metal cores) is chosen as the structure for
the subsequent spin-dynamics calculations. Furthermore, in
a consistent manner, the bare metallic cluster (without EtOH)
also tends to the pyramidal geometry. This is another reason
why we choose the pyramidal structure I for the subsequent
spin-dynamics calculations.

B. Infrared absorption spectra at the CCSD level

In this section, we look at the OH stretching frequency of
the structures with intact (undissociated) ligand and compare
with the experiment. The νOH frequency analysis is repeated
both for the HF and the CCSD reference states. At the HF level,

TABLE II. OH stretching frequency (in cm−1) of the four ge-
ometries of [Co3Ni(EtOH)]+ with undissociated EtOH at the HF
(analytical values) and at the CCSD (fitted values) levels. The
fitted values are calculated both in a shorter range (five converged
structure data points in the region 0.961 to 1.017 Å) and a wider
range (nine converged structure data points in the region 0.905 to
1.092 Å). The frequency for the CCSD values are extracted from a
quadratic polynomial fit, a cubic polynomial fit but with a harmonic
approximation, a cubic fit including anharmonicities beyond the
harmonic approximation, and a quartic fit. All four fits are performed
for geometries in which only the OH bond is varied, and also along
the normal mode, as calculated analytically at the HF level. Compare
also with Figs. 2 and 3 for the DFT results and the experimental data.

Isomer Method HF CCSD
Along normal Along OH

Mode Bond
Wide Short Wide Short

I analytic 4256 - - - -
quadratic - 3809 3785 3909 3796

cubic (harmonic) - 3943 3910 4264 3777
cubic - 3679 3639 3727 3421

quartic - 3900 3895 3986 3791
II analytic 4253 - - - -

quadratic - 3799 3832 3773 3799
cubic (harmonic) - 3950 3920 3886 3780

cubic - 3626 3809 3616 3799
quartic - 4015 3826 3795 3848

V analytic 4261 - - - -
quadratic - 3787 3836 3720 3780

cubic (harmonic) - 3914 4191 3870 3783
cubic - 3683 3264 3551 3677

quartic - 3988 4140 3832 -
VI analytic 4264 - - - -

quadratic - 3794 3736 3673 3782
cubic (harmonic) - 3931 3987 3862 3768

cubic - 3704 3451 3635 3690
quartic - 3874 3911 3880 3883

analytical normal mode analysis is performed on geometries
also obtained at the HF level (with the DGauss A1 DFT
Coulomb-fitting basis set). Here νOH for closed-shell optimized
structures (used as our reference state, on which our further
theoretical study is done) is studied and compared with the
experimental results. At the HF level, νOH for isomers I, II, V,
and VI are found to be 4256 cm−1, 4253 cm−1, 4261 cm−1, and
4264 cm−1, respectively (Table II). For comparison, the value
for the bare EtOH is 4076 cm−1. The trend of νOH among
the isomers is inconsistent with the DFT-based analysis in
the previous section. However, the absolute values of νOH are
systematically shifted by around 400 cm−1.

At the CCSD level, no analytical methods for the calculation
of the force matrix exist and therefore numerical procedures
must be used. A major challenge is that, with 13 atoms, there are
altogether 33 vibrational modes (deducting three translational
and three rotational modes from the altogether 3 × 13 = 39
degrees of freedom), which in practice translates into scanning
an energy hypersurface of 3 × 13 = 39 dimensions (when
using Cartesian coordinates for the atomic dislocations, we
obviously cannot remove the translational and the rotational
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motion). Furthermore, in every dimension we must collect
several points to perform a decent fitting, thus rendering such
an endeavor simply impossible. A simplified approach, namely
to only vary the O-H distance while keeping all the other coor-
dinates frozen, yields frequencies which are quite far from the
experimental ones (both with respect to their absolute values,
but more importantly also with respect to their relative values).
It turns out that a more efficient way exists. First we calculate
the normal modes with HF, for which analytic gradients are
available [45]. Then we perform several single-point CCSD
calculations along the normal-mode coordinate to extract the
energy potential, and finally we fit to a polynomial function.

A fundamental question in the fitting of any curve
is the number of parameters considered. Although, for
our vibrational spectra, we more or less assume a harmonic
potential energy profile along the vibrational mode coordinate,
complete quantum chemcical calculations can also yield
anharmonicities.

As the CCSD level, calculations do not reach a very tight
convergence; we need to collect the energy data in a relatively
wide range around the minimum to get reliable potential energy
curves. Each potential curve is obtained by numerically fitting
the data to a third-order polynomial. The second derivative
of the potential curve at the minimum corresponds to the
stretching frequency of the OH vibration. We fit to a cubic
polynomial because in the relatively wide range of the sample
data, the potential curve does not strictly remain within the
harmonic regime. In fact, a cubic polynomial describes the
classical Lennard-Jones potential around the minimum better
than a quadratic one, since the latter one is symmetric (whereas
the Lennard-Jones potential is steeper for shorter than the equi-
librium distances, compared to the larger than the equilibrium
ones). Fitting a polynomial of even higher degree does not
further increase the quality of the results, despite the fact that
the statistical errors for its coefficients become smaller. The
reason is that we fit less than ten points, and therefore the
statistical significance is not high enough. Mathematically, one
could even perfectly interpolate an eighth-degree polynomial
with exactly zero statistical error, which, however, would
oscillate wildly in between the interpolation points.

All our frequency results are summed up in Table II.
We consider two different geometry variations (along the
normal mode as calculated at the HF level, and by stretching
only the OH bond). We also consider two different fitting
ranges (a shorter one where the O-H bond length is varied
between 0.961 and 1.017 Å with five fitting points, and a
wider one where the O-H bond length is varied between 0.905
and 1.092 Å with nine fitting points). Finally, we consider
four different fitting methods. The first one is the simplest
harmonic potential. The second one is a cubic potential (fitting
a third-degree polynomial) and extracting the frequency by
assuming a harmonic potential for the normal modes (strictly
mathematically, the first and the second methods would yield
exactly the same frequencies if the fitting points were symmet-
rically equidistributed around the equilibrium point at 0.987 Å,
which, however, is not the case because the calculations do
not converge for all chosen geometries). The third one is
again the cubic potential fit but also including the cubic-term
perturbations to the harmonic potential for the normal modes
(anharmonicities in the phonons). Finally, the fourth one is a
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FIG. 4. Potential-energy curve fitting as a function of the O-H
distance for the pyramidal structures I (lower panel) and II (upper
panel), to which undissociated EtOH is attached. Er is the relative
CCSD energy and r is the O-H distance corresponding to the length
of normal mode vector. Cubic polynomials are used.

quartic potential fit. Figures 4 and 5 show the cubic fittings
for the two pyramidal and the two rhombic geometries with
undissociated ethanol attached.

Our main result, consistent with the experiment, is that
the OH stretching frequency within the cubic (harmonic)
approximation of our reference state of the planar isomers is
red shifted with respect to the frequency of the pyramidal one
(Table II). In all cases, except for quartic fittings, the trend of
νOH for different isomers remains the same. The most important
findings here are that correlated calculations greatly improve
the frequencies (cf. HF vs. CCSD results, Table II) and that
the use of a cubic potential fitting becomes better than the
simple harmonic potential, however, only if anharmonicities
are considered as well, in which case we get an excellent
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FIG. 5. Potential-energy curve fitting as a function of the O-H
distance for the rhombic structures V (lower panel) and VI (upper
panel), to which undissociated EtOH is attached. Er is the relative
CCSD energy and r is the O-H distance corresponding to the length
of normal mode vector. Cubic polynomials are used.
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TABLE III. Charge distribution of the CCSD reference state for
the different isomers with undissociated EtOH ligand.

Isomer CH3- -CH2- O H Co1 Co2 Co3 Ni

I 0.070 0.256 − 0.265 0.330 0.099 0.285 0.281 − 0.057
II 0.054 0.250 − 0.246 0.318 0.289 0.324 0.317 − 0.317
V 0.073 0.258 − 0.272 0.331 0.053 0.181 0.191 0.186
VI 0.070 0.251 − 0.265 0.327 0.082 0.229 0.232 0.073

agreement with the experimental data even at a quantitative
level (e.g., for isomer I, we get νOH = 3679 cm−1 as compared
to the experimental peak of 3663 cm−1). In general, νOH

can in principle be used to distinguish between the reference
states of pyramidal and planar isomers and subsequently the
excited states, on which ultrafast spin-dynamics studies are
performed [32].

It is clear that the OH frequency physically depends both
on the geometry of the metallic part (pyramidal or rhombic),
and on the species the EtOH is attached to (Co or Ni). To
better understand the underlying electronic mechanisms, we
also inspect the charge density of isomers I, II, V, and VI
(Table III), using a gross population analysis of the reduced
one-electron density matrix for the ground electronic states.
It is noteworthy that in isomers I and II, the Ni is negatively
charged (although in I only minimally), while the Co is always
positively charged (Table III). This is in line with the fact
that Ni has a higher electron affinity, almost twice that of
Co [47]. Generally, a transfer of positive charge density from
the metal cluster toward the ethanol ligand is observed. Since
the OH is not just a simple electrostatic bond, it makes sense
to look into the electronic overlap population between the O
and H of the hydroxyl group. For the isomers I, II, V, and
VI, the overlap densities are 0.2894, 0.2904, 0.2890, and
0.2884, respectively. Comparing the two metallic geometries,
we note a slight decrease in the OH overlap population for the
planar isomers. This suggests that the OH bond of the planar
structures is slightly weaker, which is consistent with both the
experimental and the DFT-calculated νOH values.

Finally, since we want (at least to an extent) to distinguish
as much as possible between the chemical effect (i.e., whether
the ligand is attached to a Co or to a Ni atom), and the
geometry effect (pyramidal or rhombic), we also perform
for comparison a set of CCSD calculations of two simpler,
theoretically optimized structures, namely [Co(EtOH)]+ and
[Ni(EtOH)]+ (Fig. 6).

At the HF level (where the normal modes are analytically
calculated), we observe for all structures a red shift of the
νOH frequency compared to the bare EtOH (consistent with the
experimental results). The values for bare EtOH, [Ni(EtOH)]+
and [Co(EtOH)]+ are 4076 cm−1, 4038 cm−1, and 4041 cm−1,
respectively. Although the ground state of [Co(EtOH)]+ is a
triplet state, we also compute the frequency for the lowest
singlet state, which is found to be 4036 cm−1. Going to
the CCSD level, we find 3762 cm−1 for [Co(EtOH)]+, 3763
cm−1 for [Ni(EtOH)]+, and 3784 cm−1 for the bare EtOH.
These results not only explain the various trends for the
frequencies at the heterotetranuclear cluster, but also nicely
depict the improvement of the absolute values when high-level
correlations are included in the calculations.

FIG. 6. Optimized [Co(EtOH)]+ (a) and [Ni(EtOH)]+ (b) struc-
tures, used to study the frequency shift of the OH stretching mode
solely as a function of the metallic atom to which EtOH attaches (see
also text). All numbers indicate bond distances in Å (the numbers
next to the H atoms indicate the distance to their nearest neighbor).

IV. ULTRAFAST SPIN DYNAMICS

For our suggested ultrafast spin-dynamics scenario, we
use our EOM-CCSD calculations on isomer I, since it is
probably the most abundant one in the experiment (see
discussion above). More specifically for SOC and spin dy-
namics, because for every spin quantum number s we must
compute all substates ms = −s, − s + 1, . . . ,s − 1,s of a
given spin multiplicity M = 2s + 1, we need to start from
pure spin states and apply single and double excitation
operators in a consistent way (for details on constructing
spin-adapted wave functions see, e.g., Refs. [43,48–50]).
Therefore, we start from a closed-shell-based EOM-CCSD cal-
culation (last column of Table I) and search for singlet, triplet,

FIG. 7. Optimized structure and energy levels of the triplet states
of the pyramidal isomer I with and without SOC (no singlet or quintet
states are found in this energy window). All numbers indicate bond
distances in Å (the numbers next to the H atoms indicate the distance
to their nearest neighbor).
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TABLE IV. Energies, charge, and spin densities, as well as spin directions of the initial and final states for all three local spin-flip scenarios
(cf. Fig. 8). Since the states |7〉–|9〉, |17〉–|18〉, |28〉–|30〉, and |31〉–|33〉 are substates of the same triplets, they have the same charge and spin
densities.

State Energy Charge density Spin density Spin ang. mom. Orb. ang. mom.

(meV) Co1 Co2 Co3 Ni Co1 Co2 Co3 Ni 〈Sx〉 〈Sy〉 〈Sz〉 〈Lx〉 〈Ly〉 〈Lz〉
|7〉 14.82 0.131 0382 0.394 − 0.308 0.396 0.742 0.677 0.154 − 0.039 − 0.127 − 0.057 − 0.007 0.006 0.015
|9〉 18.79 0.131 0382 0.394 − 0.308 0.396 0.742 0.677 0.154 − 0.053 0.045 0.057 − 0.020 − 0.020 − 0.015
|17〉 361.57 0.908 0.092 0.099 − 0.462 1.028 0.277 0.263 0.398 − 0.365 0.040 0.008 − 0.592 0.056 0.000
|18〉 363.98 0.908 0.092 0.099 − 0.462 1.028 0.277 0.263 0.398 0.366 − 0.029 0.006 0.592 − 0.056 − 0.001
|28〉 867.93 − 0.010 0.217 0.666 − 0.276 0.210 0.454 1.103 0.209 − 0.202 − 0.427 − 0.285 − 0.005 − 0.012 − 0.017
|29〉 869.18 − 0.010 0.217 0.666 − 0.276 0.210 0.454 1.103 0.209 − 0.244 0.444 − 0.367 − 0.028 0.054 0.049
|30〉 869.86 − 0.010 0.217 0.666 − 0.276 0.210 0.454 1.103 0.209 0.441 − 0.023 0.648 0.035 − 0.044 0.069
|31〉 876.81 − 0.044 0.712 0.222 − 0.277 0.216 1.102 0.442 0.217 − 0.542 − 0.551 − 0.440 − 0.012 − 0.024 − 0.022
|32〉 877.36 − 0.044 0.712 0.222 − 0.277 0.216 1.102 0.442 0.217 0.209 0.207 − 0.363 0.009 − 0.002 − 0.014
|33〉 878.00 − 0.044 0.712 0.222 − 0.277 0.216 1.102 0.442 0.217 0.336 0.349 0.806 0.001 0.028 0.036

and quintet states. It turns out that in the energetic window up
to 1 eV only triplet states are found (Fig. 7). Subsequently, we
introduce a static magnetic field B of magnitude |B| = 10−5

at. un. and the perturbative inclusion of spin-orbit coupling
(SOC). The perturbation Hamiltonian reads

Ĥ ′ =
Nel∑

i=1

Zeff
a

2c2R3
i

L̂ · Ŝ +
Nel∑

i=1

μS Ŝ · B +
Nel∑

i=1

μLL̂ · B. (1)

Here Zeff
a is the effective nuclear charge of atom a and accounts

for the two-electron integral contributions to the SOC [51], Nel

is the total number of electrons in the system, Ri is the position
of the i-th electron, c is the speed of light in vacuum, μL and
μS are the corresponding gyromagnetic ratios of orbital L̂ and
spin Ŝ angular momentum. The magnetic field, by lifting the
degeneracy between spin-up and spin-down states (Zeeman
splitting), allows us to find suitable initial and final states
for laser-induced spin-flip scenarios. The SOC delivers the
necessary intermediate spin-mixed states for our suggested
laser-induced � scenarios [52,53].

Strictly mathematically speaking, L is not a good quantum
number for nonspherical systems (for linear molecules only Lz

is still a good quantum number). For larger systems, one must
define a point of origin for L̂ [54]. Obviously, after SOC, L̂
and Ŝ are coupled and thus the question of the point of origin
becomes relevant for Ŝ as well. Since in our quantum chemical
calculations we use linear combinations of atomic orbitals,

we follow the common practice here; namely, we consider
for every atomic orbital the pertinent nucleus position as the
origin. The reasoning behind this is that the localized electronic
excitations to a great extent dictate the optical selection rules.

Due to the presence of the ligand, the three Co atoms
become symmetrically nonequivalent, which results in a very
pronounced localization of the spin density on a single metallic
atom. Without EtOH, inspection of the spin density (not
presented here) reveals that the spin is localized either on the Ni
atom or equidistributed among all three Co atoms (Table IV).

The propagation in time of the wave functions is done in
the Hilbert space spanned by the eigenvectors of Ĥ0 + Ĥ ′
(where Ĥ0 is the system’s unperturbed Hamiltonian), within
the semiclassical approximation, in which our system is treated
fully quantum mechanically and the electric field of the laser
pulse classically. This is perfectly fine for laser pulses, weak
enough not to destroy the system, and strong enough so
that no photon counting is necessary. The time propagation
is performed under the electric dipole approximation in the
interaction picture, and no relaxation is taken into account (in
this time regime one can safely assume that no decoherence
due to electron-phonon interaction sets in [35,55]). The time-
dependent Hamiltonian reads

Ĥlaser(t) = D̂ · Elaser(t), (2)
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FIG. 8. Spin-flip process on (a) Co1, (b) Co2, and (c) Co3. For each process the top panel presents the time-resolved populations of the
initial (dashed), final (solid), and intermediate (dotted) states, the middle panel shows the time-resolved expectation values of the 〈Ŝx〉, 〈Ŝy〉,
and 〈Ŝz〉 operators, and the bottom panel is the laser pulse envelope (in 10−3 at. un.).
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TABLE V. Parameters of the optimized laser pulses for the three local spin-flip processes. θ and φ denote the angles of incidence in spherical
coordinates, respectively, and γ is the angle between the polarization plane and the optical plane. FWHM is the full width half maximum of
the laser pulse envelope. The arrows indicate the direction of spins. The time-dependent populations are shown Fig. 8.

Localization Scenario Fidelity Parameters of the laser pulses

θ (◦) φ (◦) γ (◦) Intensity (J s−1m−2) FWHM (fs) Energy (eV)

Co1 |←〉 =⇒ |→〉 0.999 − 149.0 130.9 − 157.7 0.006 411 0.277
Co2 |↙〉 =⇒ |↗〉 0.968 169.2 348.4 29.9 0.015 961 1.015
Co3 |↓〉 =⇒ |↑〉 0.977 95.3 − 22.0 187.1 0.018 728 0.470

where Elaser(t) is the time-dependent electric field, and D̂ is the
electric-dipole operator. The system, being open, exchanges
angular momentum with the laser pulse: The electric field of the
laser couples to the orbital angular momentum, which, in turn,
couples to the spins through SOC. Thus the laser serves as an
angular momentum reservoir [53]. Including higher-order tran-
sitions (i.e., magnetic-dipole and electric-dipole transitions)
only slightly shifts the resonance conditions, without altering
the overall nature of the � processes. Especially the magnetic-
dipole transitions would also allow for a direct spin flip (going
from a spin down directly to a spin-down state) but this path is
orders of magnitude slower than the � processes [56]. For all
our suggested scenarios, we find the optimized laser parameters
(i.e., direction of incidence, intensity, and duration) with a
specially developed genetic algorithm [7].

Thanks to the symmetry-breaking EtOH, for the energeti-
cally low electronic states, we always find the spin density to
be mainly localized on one of the Co atoms, which allows us
to derive three different local spin-switching scenarios (one
for each Co atom). Figure 8 depicts the time evolution of
the electronic states for the three scenarios, while Table V
summarizes the respective laser parameters. All scenarios are
reversible; however, the best fidelity of the opposite spin-flip
direction is achieved with different laser pulses.

It is interesting that, although all three spin-flip scenarios
are similar, there are still some differences. The flip on Co1 is
about 25% faster than the other two, which can be attributed to
the fact that it has the lowest local symmetry (since the EtOH
is attached to it). This asymmetry renders the optical transition
matrix elements somewhat stronger (we remind the reader that
in the perfect spherical symmetry of an isolated atom, the
d ↔ d transitions are forbidden), and therefore the electronic
transitions are faster. Furthermore, since only two intermediate
states are needed (states |7〉 and |9〉 with energies 0.01482 and

Co2Co3

FIG. 9. Schematic of the flipping spin bounce process. Through
an M process the spin get transiently transferred from Co2 to Co2 and
back, while at the same time it flips its orientation.

0.01879 eV, respectively), the resonance condition is better
fulfilled, thus yielding a 99.9% fidelity, while the spin flips on
Co2 and Co3 are somewhat less perfect. Those latter scenarios
necessitate three intermediate states each. For the Co2 spin-flip
these are states |28〉, |30〉, and |32〉 with energies 0.86793,
0.86986, and 0.87736 eV, respectively, while for the Co3 spin
flip, these are states |31〉, |32〉 and |33〉 with energies 0.87681,
0.87736, and 0.87800 eV, respectively. Note also that for those
two spin flips, the intermediate states are not � states, in the
sense that their energy difference from the respective initial and
final states are not resonant to the laser frequency. In fact, here
we are dealing with a flipping spin-bounce M process [50], in
which all populated states are energetically very near and the
spin density of the transient state is localized on a different atom
than the one on which the spin flip scenario takes place (Fig. 9).
The interplay of the two spin localizations is also evident in
the MO composition of states |28〉–|30〉 (localized on Co3)
and |31〉–|33〉 (localized on Co2). For the former ones the main
virtual excitations are MO(47)→ MO(71) with amplitude 0.26
and MO(49)→ MO(77) with amplitude 0.30. For the latter
ones, the main virtual excitations are MO(47)→ MO(77) with
amplitude 0.27 and MO(49)→ MO(71) with amplitude 0.29.

MO(47) MO(49)

Co1

Co2

Co3
Ni

O

C

C

Co1

Co2

Co3
Ni

O

C

C

FIG. 10. Molecular orbitals MO(47) and MO(49) of isomer I,
which participate in the main virtual excitation of many-electron states
|28〉 to |33〉. These comprise the initial, final, and main intermediate
states for the laser-induced, flipping spin bounce M processes, which
locally flip the spins on Co2 and Co3 (see text and cf. Fig. 9).
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FIG. 11. Fidelity of the laser-induced spin-flip processes as functions of the laser frequency for the cases of (a) Co1, (b) Co2, and (c) Co3.
The vertical lines indicate the respective optimized laser pulses (see also Table V). Only the energies are varied, all other parameters are kept
to their optimized values.

In Fig. 10, one clearly sees the admixture of d orbitals from
Co2 and Co3 (the contribution from Co1 is much smaller).

This magnetic cooperative effect very much resem-
bles the one found previously on the homodinuclear
[NiII

2 (L-N4Me2)(emb)] cluster, in which the spin flip was
taking place on the octahedral Ni atom, while the intermediate
state had a charge transfer state stemming from the square
planar Ni [34].

As a final consideration toward the experimental appli-
cability of our suggested spin-flip scenarios, we investigate
the tolerance of all three scenarios with respect to the laser
frequency and find that even for a detuning of the order of 20
meV in all three cases, a significant portion of the spin density
gets flipped (Fig. 11).

V. CONCLUSIONS

In summary, we presented a joint experimental and the-
oretical study of heterotetranuclear [Co3Ni(EtOH)]+ cluster,
which is formed in a laser ablation source in a molecular beam
experiment. Our main findings are: (i) By comparing the ex-
perimental IR frequency of the OH stretching mode (νOH) with
the theoretical calculations, we assign two different metal core
geometries. One planar rhombic core with a dissociated EtOH
and a pyramidal core with an intact EtOH attached. The latter
geometry with the ethanol bound to cobalt is chosen for further

theoretical investigations. (ii) By analyzing the theoretically
optimized geometries and the trends of the different theoretical
calculations regarding the frequency shifting of νOH, we find
that the results get improved qualitatively by adding correla-
tions to our calculations, and by accurately taking into account
the complete normal mode of the cluster. Further quantitative
improvement results from considering anharmonicities in the
normal modes. (iii) Due to the symmetry-lowering effect of
the attached EtOH, we can find electronic states for which
the spin density is localized on one of the three Co atoms
and with the use of a genetic algorithm we suggest ultrafast
laser-induced spin-flip processes for each Co atom. (iv) For
the case of the spin-flip on the Co2 atom, we actually identify
this as an M process, resulting from a cooperative effect. It is
a spin-flipping bounce process, in which the spin density gets
transiently transferred from Co2 to Co3 before it returns to Co2
but this time pointing in the opposite direction. Our findings
represent an additional step toward the realization of real-life,
ultrafast, laser-controlled nanospintronics applications.
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