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Magnetic anisotropy in permalloy: Hidden quantum mechanical features
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By means of relativistic, first principles calculations, we investigate the microscopic origin of the vanishingly
low magnetic anisotropy of Permalloy, here proposed to be intrinsically related to the local symmetries of the
alloy. It is shown that the local magnetic anisotropy of individual atoms in Permalloy can be several orders of
magnitude larger than that of the bulk sample and 5–10 times larger than that of elemental Fe or Ni. We furthermore
show that locally there are several easy axis directions that are favored, depending on local composition. The
results are discussed in the context of perturbation theory, applying the relation between magnetic anisotropy
and orbital moment. Permalloy keeps its pronounced soft ferromagnetic nature due to the exchange energy to be
larger than the magnetocrystalline anisotropy. Our results shine light on the magnetic anisotropy of permalloy
and of magnetic materials in general, and in addition enhance the understanding of pump-probe measurements
and ultrafast magnetization dynamics.
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I. INTRODUCTION

Random alloys can be viewed as a distribution of clusters
of different composition that have an underlying crystal struc-
ture in common. The configurational space is enormous for
these systems and any macroscopic property is the result of
averaging of a immense amount of local clusters with different
configuration and composition [1]. Random alloys often have
properties that stand out from the pure elements they are build
up from, i.e., the mixing of elements may produce properties
that are completely unexpected. One of the most prominent
examples is Permalloy (Py), the common name for FexNi1−x

alloys with x ∼ 0.2 and fcc crystal structure. These alloys are
characterized by strong ferromagnetism, high permeability,
vanishingly low magnetic anisotropy energy (MAE), and
low damping parameter [2]. These attributes elevate Py to a
standard material in magnetism and advantageous soft magnet
for technological applications.

One might ask what the mechanism of the vanishing MAE
of Py really is. One attempt to explain it is the resultant MAE
picture [3], which suggests that an appropriate mixture of
two elements with distinct easy axis (as bcc Fe and fcc Ni
with 〈001〉 and 〈111〉 direction, respectively) would result in a
material without strong preferential easy magnetization axis.
In this model each Fe and Ni atom maintains a finite, local
anisotropy given by each element, producing a heterogeneous
distribution of competing easy axis directions in which Fe
always favors 〈001〉 and Ni always favors 〈111〉 easy axis
direction. In this picture the vanishing anisotropy is realized by
the exchange interaction dominating the magnetic anisotropy

(which is generally true for 3d transition metals), combined
with a competition of easy axis directions between Fe and Ni
atoms.

This model, however, neglects the fact that elements when
put into an alloy or compound interact and change the elec-
tronic structure and therefore, in principle, all observable prop-
erties. In line with this reasoning, experiments actually suggest
that the Fe-Ni hybridization produces a unique electronic
structure of Py and that this is the major cause of the low MAE
[4]. Other experiments show the existence of orbital moments
of the individual chemical species in Py [5]. Since it is known
that the magnetic anisotropy is proportional to the anisotropy
of orbital moment for transition metals [6,7], these results point
to a potentially complex explanation for the vanishing MAE
of Py.

As a random alloy, Py may be viewed as a huge ensemble
of interconnected clusters of Fe-Ni atoms distributed on an
fcc lattice, in which the macroscopic properties reflect the
configurational average of different such clusters. Then dif-
ferent parts of the alloy may indeed have competing local
anisotropies, that effectively average out, leading to a fairly
isotropic state. Details of such a microscopic scenario has,
to the best of our knowledge, not been considered so far as
a possible mechanism for low MAE in Py. In the present
work, we present first principles calculations to investigate
this local MAE. However it is not easy to directly study the
MAE, particularly not from first principles theory as it is
hard to uniquely and accurately decompose the energy into
local contributions and the numerical challenges are countless.
Instead we will study another related quantity induced by the
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spin-orbit coupling (SOC), namely, the local anisotropy of the
orbital moment. It is well known to reveal information about
the MAE [6]. With this information we investigate the role of
these local competing anisotropies and their relevance for the
soft magnetic behavior of Py.

II. METHOD

The study was designed as the following: First, we per-
formed ab initio calculations of a fcc matrix (∼12 500 atoms)
of a virtual crystal approximation (VCA) medium of Py (Py-
VCA) and lattice parameter of 3.54 Å [5]. The fcc matrix
was considered to have the same number of valence electrons
as Py (9.6 e−). After the self-consistent procedure, clusters
composed by Fe and Ni, with different configurations, were
embedded in the Py-VCA matrix. The cluster region was
self-consistently updated while the potential parameters of the
Py-VCA matrix were kept fixed.

The electronic structure and magnetism of VCA-Py and
the clusters were evaluated using the first-principles real-space
linear muffin-tin orbital method within the atomic sphere
approximation (RS-LMTO-ASA) [8–11]. This method follows
the steps of the LMTO-ASA formalism [12] but uses the
recursion method [13] to solve the eigenvalue problem directly
in real space. The calculations presented here are fully self-
consistent, the exchange and correlation terms were treated
within the local spin density approximation (LSDA) [14], and
the SOC term was included at each variational step [15,16]. The
RS-LMTO-ASA method is particularly designed to treat low
symmetry systems as the embedded clusters presented here,
without the need of periodic boundary conditions.

Since we use an electronic structure method that adopts
the atomic sphere approximation, it is natural and expedient
to make a projection of atomic contributions to the magnetic
spin and orbital moment as well as the magnetic anisotropy.
This was indeed done for every atom on each of the clusters
we considered. We note that the atomic sphere approximation
replaces the Wigner-Seitz cell with a sphere of equal volume
[12]. As outlined [17] this allows us to define, even for an
itinerant electron system, an effective spin Hamiltonian with
atomic contributions to spin and orbital moments, interatomic
exchange interactions, and a local contribution to the magnetic
anisotropy. In the present work we evaluated the magnetic
anisotropy from the anisotropy of the orbital moment, as
detailed below, but we note that other methods exist in making
atomic projected estimates of the magnetic anisotropy. For
instance, in Ref. [18] the local anisotropy was determined from
differences in the valence band energy projected on orbitals
inside an atomic sphere.

Concerning the embedded clusters, we considered a central
atom with its first and second neighboring shells allowing
hence for 19 atomic positions in each cluster. The configuration
space here is vast and any practical investigation cannot cover
all possible configurations. We have, however, investigated as
large a number of geometries that is practical (100 configura-
tions, excluding symmetric geometries). Figures 1(a) and 1(b)
show the average Fe and Ni occupation for each of the 19 sites
in the clusters, for the case the smallest (8) and largest (100)
number of configurations, respectively. The latter number of
clusters is sufficient to produce average occupations of the

 
 

 
 

 
 

FIG. 1. Distributions of Fe (red) and Ni (gray) atoms at different
cluster sites (the atom at the central site is numbered 1, atoms posi-
tioned on nearest neighbor positions are numbered 2–13, and atoms
on second neighbor positions have numbers 14–19), considering (a)
8 or (b) 100 configurations. The dashed (dot-dashed) line represents
the average Fe (Ni) concentration of Permalloy. Three examples of
configurations that may be found in Permalloy are illustrated in (c).
The gray spheres represent Ni atoms and red spheres Fe atoms.

different atomic sites that agree with what one expects for the
average occupation of Py. We illustrate as an example a few
typical geometries in Fig. 1(c), where the atoms are sorted from
a central site (labeled 1), followed by its first (labeled 2–13)
and second neighbors (labeled 14–19).

These clusters present distinct configurations due to the
Fe content (composition) and distribution (arrangement at
different sites). Note that, locally in a cluster, the number of
Fe and Ni atoms can vary, although a configurational average
over all clusters of the material would naturally result in a
concentration of Fe and Ni that reflects the alloy concentration,
i.e., 20% Fe and 80% Ni [marked as dashed lines in Fig. 1(b)].

By the binomial distribution, it is straightforward to calcu-
late the probability of finding a specific concentration. We find
that two Fe atoms (x = 2) distributed over the 19 cluster sites
has a probability of 15%, when considering that the average
concentration of Fe atoms in the alloy is 20%. In the same way
we find that the probabilities of x = 3, 4, and 5 are 22%, 22%,
and 16%, respectively. Hence we selected for our calculations
clusters with these Fe concentrations and in this way our study
embodies a sampling from 75% of all possible compositions.
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We selected the following number of cluster geometries for
each Fe concentration: For x = 2 we carried out a maximum
of five different distributions of the Fe atoms, for x = 3 we
considered 11 geometries, for x = 4 the number of clusters was
49, and for x = 5 we considered 35 different distributions of Fe
atoms. This means that a maximum of 100 different clusters
were considered in our electronic structure calculations. We
note here that even though the binomial distribution gives
similar concentrations for x = 2 and x = 5, we considered
a larger number of geometries for x = 5 since the binomial
coefficient is larger for this value of x. A similar reasoning
was adopted for x = 3 and 4.

Regarding the calculations for the matrix of VCA-Py,
the resulting spin moment (ms) is 1.12 μB per atom, which
is in acceptable agreement with the experimental value of
approximately 1.0 μB per atom [4,5] and previous calculations
[4,19,20]. Therefore, we conclude that the effective medium,
considered to host the different clusters, reproduces the main
features of Py.

For the different clusters in this investigation we have esti-
mated the local anisotropy from a well defined quantity—the
orbital moment anisotropy, which is the difference of the orbital
moment projection L for two different global quantization axes
�L = Ln̂1 − Ln̂2 . Since �L is defined as a local quantity, it
is numerically easy to evaluate from first principles theory in
contrast to the tiny energy difference needed for the MAE. It
is established that the energy difference between two states
with the magnetization direction along two different global
directions is EMAE = − ξ

4μB
�L [6,21], where ξ is the SOC

constant. One of the key assumptions in deriving this relation
is that spin diagonal matrix elements of the spin orbit coupling
should dominate the contribution to the MAE [22]. Since Py is a
strong ferromagnet (the majority spin band is essentially filled)
only minority spin states contribute significantly to the density
of states at the Fermi energy, and this criterion is expected
to be fulfilled. In this situation, the easy axis is parallel to the
direction of maximum orbital magnetic moment. To exemplify
the numerical advantage of the approach adopted here, we
note that values of 1 μRy for the MAE are related to orbital
anisotropies of 10−4 μB, which are values well defined by the
method’s precision. Thus, it serves well as the relevant quantity
to evaluate and to quantify the local anisotropies in alloys.

III. RESULTS AND DISCUSSIONS

Before we discuss the results of the MAE, we note that for
all configurations investigated here, the calculated individual
moments were close to mFe

s = 2.30 μB and mNi
s = 0.61 μB

for spin moment and LFe = 0.045 μB and LNi = 0.031 μB for
orbital moment. These values are in agreement with previous
theoretical [19,20] and experimental [5] studies.

A. Site resolved easy axis and EMAE

Next, we focus on the local magnetic anisotropy axis. For
that, first we estimated the �L, between two magnetization
directions for each atom, using orbital moments computed fully
self-consistently.

The orbital moment anisotropy was computed as �L =
L[001] − Ln̂2 , with n̂2 = [110] and [111] directions. Comparing

 
 

FIG. 2. Likelihood of different easy axis directions for each of
the atomic sites from the clusters. Averages are formed from eight
configurations (a) and 100 configurations (b). The easy axis direction
are represented by the color bars.

the �L values one can obtain the direction that yields the
maximum value of L, i.e., the easy axis of each atom in any
of the clusters we considered. Hence we are able to find a
distribution of probabilities of local easy axis orientations for
the 19 atomic sites in the clusters we have considered here.
This information is summarized in Fig. 2. In Fig. 2(a) we
show results from eight different clusters (in this case we only
considered values of x—the number of Fe atoms—of 3 and
4) and in Fig. 2(b) 100 different configurations. We note that
the easy axis orientations along [110] and [111] directions
have a relative increase if more configurations are considered
[compare Figs. 2(a) and 2(b)]. We also note that the probability
of finding [110] and [111] easy axis directions is more or less
equally high, which is what one should expect for a material
with a vanishing global magnetic anisotropy. However, Fig. 2
shows that the probability of finding the [001] easy axis
orientation is somewhat too high, if one has in mind that
the global magnetic anisotropy should be vanishingly small.
The tendency of density functional theory in the local density
approximation or the generalized gradient approximation to
favor the [001] direction of fcc Ni is well known [23], and
it is possible that the results shown in Fig. 2 reflect a similar
situation. The general trends and the analysis provided in this
paper would not be changed qualitatively if the functional used
resulted in a perfect distribution of probabilities of local easy
axis orientations.

In addition to these values of �L we also estimated the
site resolved EMAE. For that, we used the calculated SOC
constants for ξFe = 4.0 mRy and ξNi = 6.7 mRy. The values
of EMAE and the direction of the easy axis for each atom are
shown in Fig. 3 (for sake of simplicity only eight configurations
are shown). Note from the figure that we find local easy axis
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FIG. 3. MAE per site with the easy axis direction represented
by squares (for [100]), circles (for [110]) and triangles (for [111]
direction). Note that negative values of the MAE symbolize an
[001] easy axis, while positive values symbolize that the [111] or
[110] direction was an easy axis. The eight different configurations
considered here are represented by different colors. Note that some
data points are superposed, since the same MAE value is found for
an atom placed in a given site of different configurations.

directions that in general are different for each atom in the
cluster. The figure also shows that different configurations in
general have very different local anisotropies. For instance, the
eight clusters considered in this figure all have rather different
behaviors when it comes to the MAE. For some of them, e.g.,
site 3 in one cluster can have the [100] easy axis direction,
but other configurations could favor the [110] or the [111]
easy axis direction for this site. Although not shown in Fig. 3,
we find no clear trend for the Fe and Ni atoms, for different
clusters and different sites, both atom types can have any of
the three considered local easy axis orientations. As is clear
from the figure we find values that are typically 5–10 times
larger compared to the values of bcc Fe (∼0.1 μRy) or fcc
Ni (∼0.2 μRy) [24]. Further, these local MAE values are,
remarkably, orders of magnitude larger compared to the almost
vanishing value of the MAE of bulk Py.

A key point of Fig. 3 is that the symmetry of each cluster
is not cubic. Hence, spin-orbit effects enter as a local uniaxial
anisotropy and it depends on second-order anisotropy terms
instead of fourth-order contributions that are expected from
cubic environments. This is the primary reason why the local
MAE values of Py are bigger than those of bcc Fe and fcc Ni.

It is interesting to compare the results of Figs. 2 and 3
to recent supercell calculations for the MAE of FeCo based
alloys [25,26]. There it is also found that the local anisotropy
of various atomic configurations varies strongly, and even
changes sign, while the alloy MAE is described by the average

FIG. 4. Distribution of atomic sites with easy axis pointing in
any of the 13 possible cubic crystalline directions (see text). The
calculations made use of the force theorem and considered 100
configurations. The symbols stand for different Fe compositions of
the clusters.

over many configurations. Those systems are, however, very
different in that they have a large MAE, meaning that one
direction of magnetization should be over-represented among
different cluster configurations. Py differs in that the MAE is
vanishingly small, meaning that there must be a balance from
different local anisotropy contributions.

B. Easy axis distribution

Considering that local electronic properties of atoms in Py
are distinct, the atomic easy axis may point in a particular
direction among any of the 26 orientations of the cubic lattice
(that is to say 〈001〉, 〈110〉, and 〈111〉). For instance, the
〈001〉 direction actually represents six equivalent directions
in a homogeneous environment, however, in a disordered
alloy, there is no such constraint. Therefore, we considered
a complementary statistical analysis considering the 26 axis
directions as independent. For that, we computed L for all
26 directions, from which we extracted values of �L, having
the [001] axis as reference (note that we distinguish specific
directions by writing them within square bracket). Here we
applied the force-theorem method [27,28] in order to compute
the orbital moments, with the advantage of good precision
for MAE calculations [29,30] combined with computational
efficiency. The obtained magnetic anisotropy energies are
compatible with the ones computed from fully self-consistent
calculations (shown in Fig. 3).

Figure 4 shows the calculated distribution of atoms with a
given easy axis. These results were obtained from one hundred
clusters with four different cluster compositions (x = 2, 3, 4,
and 5), which means that the data in Fig. 4 represent 1900 atoms
in total. It should be noted that of all these calculations we found
no significant difference in orbital moment (or anisotropy
energy) of a particular magnetic configuration and its time-
reversed state, which is consistent with Kramers theorem. For
this reason we plot in Fig. 4 the distribution of easy axis
orientations of 13 directions, grouping together information
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TABLE I. Distribution (in percent) of atomic sites with easy axis
pointing in the 〈001〉, 〈110〉, and 〈111〉 direction. The data is presented
for different values of Fe concentration, as well as the total sum of
all Fe concentrations. The calculations made use of the force theorem
and considered 100 configurations.

x = 2 x = 3 x = 4 x = 5 total sum

〈001〉 3.85 7.05 28.16 21.84 60.9
〈110〉 0.41 1.80 8.42 5.79 16.42
〈111〉 0.74 2.15 12.42 7.37 22.68

from time-reversed states. Thus, each data point shown in
Fig. 4 is the distribution of atoms (in percent) with an easy axis
along a specific direction. The information in the figure also
specifies which cluster composition the different calculations
correspond to. Note that for a calculation employing a very
large number of clusters one would expect the distribution
of atoms with easy axis along [001] would be the same as
that along [010] or [100]. This is not entirely reflected in
the data shown in Fig. 4(a), due to the limited number of
clusters (one hundred) used here. However, the degeneracy in
the distribution for the different directions shown in Fig. 4(a)
is rather close to expectations. A similar conclusion can be
reached for the distribution of the other easy axis directions,
shown in Figs. 4(b) and 4(c). Figure 4 also shows that clusters
with higher local concentration of Fe (x = 4 and 5) are prone
to have the easy axis point in the 〈001〉 or 〈111〉 directions,
whereas the 〈110〉 directions have lower probability for all
concentrations.

The data in Fig. 4 is summarized in Table I, where we have
integrated the distributions along the 〈001〉, 〈110〉, and 〈111〉
directions. In the case of an isotropic scenario of the 13 possible
directions, one would expect the following distribution of
atoms with easy axis along the three-, six-, and fourfold
axis: 〈001〉 with 23%, 〈110〉 with 46%, and 〈111〉 with 31%,
respectively. Our calculations show a contribution of 〈001〉
directions that constitute 61% of the data, see Table I. This is
related mainly to contributions from Ni atoms (data not shown).

The other calculated contributions are 16% from 〈110〉
directions and 23% of 〈111〉 directions (Table I). The calcu-
lations shown in Table I and Fig. 4 hence deviate from the
expected behavior of a completely isotropic material, and as
mentioned above this likely reflects the shortcoming of LDA
or GGA functionals for fcc Ni and as this study demonstrated
for Ni rich alloys.

IV. CONCLUSIONS

We consider here the magnetic anisotropy of a macroscopic
sample as a configurational average of local anisotropies,
for a diverse distribution of clusters like the ones shown
in Fig. 1(c). Each cluster may have several atoms with
large local anisotropies directed in any of the common crys-
tallographic axes (〈001〉, 〈110〉, and 〈111〉), but since the

interatomic exchange interaction of Py (not shown here)
is much stronger and ferromagnetic, the resulting magnetic
configuration is a collinear ferromagnet, where, after a proper
configurational average is made, the resulting MAE is expected
to be vanishingly small.

In this study, we only investigated clusters with approxi-
mately the same concentration of Fe and Ni as one has in Py
(Fe0.2Ni0.8). In a real sample such constraint does not exist, and
configurations involving, e.g., 1 Ni and 18 Fe atoms and vice
versa also appear, albeit with low probability. Once a proper
configurational average of a huge set of clusters is considered,
the proper macroscopic MAE can be obtained, and we suggest
this leads to a vanishingly small MAE for Py. The scenario
proposed here is principally different than simply making a
linear interpolation of anisotropy constants of bcc Fe and fcc
Ni and adopting an interpolated value for all atoms of the alloy.
This is particularly clear from the calculations that show that
the local anisotropy is orders of magnitude larger than the
observed anisotropy in Py. This naturally comes out from a
consideration of the distribution of atoms in a typical cluster,
where cubic symmetry is broken and hence the importance
of spin-orbit effects enters at a much higher level. It is also
clear from the theory that the Fe and Ni atoms can have local
easy axis directions along the 〈100〉, 〈110〉, and 〈111〉 axis,
depending on the local distribution of atoms. This is naturally
a significantly more complex behavior, compared to a simple
average of Fe and Ni atoms with fixed easy axis orientations.

We argue here that the vanishing anisotropy in bulk Py arises
from the cancellation of these local anisotropies. It is likely that
the scenario put forward here also applies to other magnetic
parameters, like the damping parameter or potentially the
asymmetric exchange (like a local Dzyaloshinskii-Moriya
interaction). We also note that experiments showed that amor-
phous materials present orbital induced magnetic anisotropy
[31,32] explained by the random anisotropy model. Note that
in amorphous materials the lack of symmetry (chemical and
crystalline) allows the emergence of orbital anisotropy. As
a final comment, we note that the local anisotropy effects
discussed here might affect the magnetization dynamics in
thin films of Py [33]. For that, adopting a scenario of locally
unique information, as proposed here, would be relevant for
the interpretation of pump-probe measurements and crucial to
simulations involving an effective spin Hamiltonian.
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