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Geometrically induced broadening for phonon blocking at low temperatures
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Because of the presence of robust massless modes with no excitation gap, the heat current carried by phonons
tends to survive at low temperatures even when scattering mechanisms are incorporated into the system. This
becomes a fundamental obstacle to thermoelectric applications at low temperatures. In this study, we investigate
the effect of energy broadening on phonon transport in mesoscopic systems coupled to leads or probes in various
geometries using a nonequilibrium Green’s function formalism. An analytic theory derived from a minimal model
consisting of a harmonic chain shows that geometrically induced broadening sizably suppresses low-temperature
phonon transport. It is also demonstrated from numerical calculations that this scheme for phonon blocking is
viable for realistic systems in higher dimensions.
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I. INTRODUCTION

In recent years, the heat flux carried by phonons in
mesoscopic systems has garnered a great deal of attention
in condensed matter physics [1,2]. In such situations, some
conventional physical concepts break down. For instance,
Fourier’s law that relates heat current and temperature gradient
is no longer valid, and thereby thermal conductivity is ill-
defined. In particular, it is easily seen from the Landauer
formula for ballistic phonon transport that at low temperatures,
the thermal conductance Gth becomes material independent
and quantized in integer multiples of the thermal conductance
quantum defined by G0 = (πkB)2T/3h, where T denotes the
temperature [3–5]. This is parallel to the electric conductance
Gel, which is quantized in units of e2/h for metallic quantum
wires [6,7]. These two conductance quanta are interrelated by
the standard Lorentz number and satisfy the Wiedemann-Franz
law, indicating that G0 is universal for phonons and electrons
despite the difference in their particle statistics [3,8]. The
experimental observation of universal thermal conductance
across a dielectric nanoscale junction is a hallmark of ballistic
phonon transport in the mesoscopic regime [8]. In the ballistic
transport regime, Gth becomes independent of transport length.
This feature has been observed in experiments for semicon-
ducting nanowires, even at room temperature [2,9,10].

Currently, it is becoming increasingly important to under-
stand and thereby manage thermal transport at the nanoscale.
This is not only due to the purely physical interest in this
topic, but also because of the technological applicability to
thermoelectrics that allows mutual conversion between thermal
energy and electric energy [1,2,11]. The conversion efficiency
is measured by the dimensionless figure of merit ZT =
GelS

2T/Gth, where S denotes the thermopower or Seebeck
coefficient. As seen in the above expression, a lower Gth is
favorable to thermoelectric applications. In semiconducting
systems available to thermoelectrics, Gth = G

(e)
th + G

(p)
th is

normally dominated by the phononic contribution G
(p)
th rather

than its electronic counterpart G
(e)
th . Thus an important issue

in this field constitutes how to suppress phonon transport. To

this end, several approaches have been investigated so far.
The suggested strategies consist mainly of adding scattering
mechanisms due to alloying [12–14] or defects [15,16], sur-
face roughness [2,17–21] or decoration [22], and geometric
deformation of thermal pathways [23–31]. However, these
effects are often limited because of residual quantum channels
stemming from robust massless modes with no excitation
gap, by which low-temperature phonon transport remains
intact [2,15–19,21,22,26–31].

Our approach to this issue is as follows. In practice, a
mesoscopic system such as a nanojunction is not isolated
but is coupled to its environment. In terms of the quantum
Langevin equation, macroscopic reservoirs are sources of noise
and dissipation. The fluctuation-dissipation theorem relates the
noise-noise correlation to the linewidth induced in the sys-
tem [2,32]. The resulting energy broadening, which depends
on the geometric configuration of the system and the reservoir,
substantially affects the thermal conductance across the system
through the self-energy due to the reservoir. The purpose of this
paper is to show that this connection is exploitable for phonon
blocking at low temperatures.

Partly, the present study is analogous to some of the
previous ones [23–25], where phonon transport across an
abrupt junction between a nanowire and an infinitely large bulk
reservoir is analyzed in accordance with the scattering theory.
In this study, we reformulate the physics of phonon blocking in
terms of the broadening mechanism. Moreover, we analyze the
effects of geometry and disorder in a lattice model on an equal
footing. The latter may be an important issue when addressing
phonon transport in realistic systems, which are not perfectly
ordered but usually contain a number of defects.

Prior to this discussion, it may be appropriate to summarize
our methodology. This study is based on the nonequilibrium
Green’s function formalism [16,33,34] as well as the quantum
Langevin equation approach [2,32], which give a thoroughly
rigorous expression for heat currents carried by phonons in
noninteracting quantum systems coupled to heat reservoirs
held at different temperatures. The systems are described by
harmonic lattice Hamiltonians. To capture generic features
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in thermal transport, we focus on simple representative lat-
tice models without assuming specific materials. We neglect
phonon-phonon interactions due to lattice anharmonicity. Thus
thermal transport is evaluated without approximation validly in
the low-temperature regime where nonlinear quantum effects
are immaterial [35–38].

The paper is organized as follows. To begin with, in Sec. II,
we summarize the theoretical formulas including lattice Hamil-
tonians used in this study. To be self-contained, in Sec. III, we
briefly explain phonon transport in the presence of disorder. At
low temperatures, phonon transport is dominated by gapless
modes that are immune to disorder by virtue of the acoustic
sum rule. The robust massless modes tend to prohibit total
thermal insulation. In Sec. IV, we show that this fundamental
difficulty is circumvented by connecting the system to leads or
probes of different geometries. Introducing a minimal model,
an analytic theory is derived for phonon blocking in terms of the
linewidth correlated to geometry. In Sec. V, numerical results
are discussed for more realistic models in the absence or the
presence of disorder, demonstrating that phonon blocking is
realizable over a broad temperature range with the assistance
of disorder. Finally, Sec. VI provides a summary.

II. THEORETICAL FORMULATION

This section summarizes the lattice Hamiltonians and the
theoretical formulas used for analyzing thermal transport.
Henceforth, we simplify the notation G

(p)
th into G for brevity

since we consider the phononic contribution only. The Hamil-
tonian describing an isotropic elastic continuum is given by

H = 1

2

∫
dr[ρq̇ · q̇ − (λ + μ)q · ∇∇ · q − μq · ∇2q], (1)

where ρ(r) is the mass density, λ and μ are the Lamé’s
constants, and q(r) is the vector displacement field at position
r. In the following, we assume λ = μ for simplicity. The finite
difference method is used to map this Hamiltonian onto a cubic
lattice with lattice spacing a. The result is simply formulated as

H = 1

2
(q̇ tMq̇ + qtKq), (2)

in terms of the column vector q consisting of vector
displacements (qx

r ,qr
y,qz

r ) at all lattice points r. The mass
matrix and force-constant matrix are explicitly expressed as
M

ij

rr′ = mrδrr′δij and

Kij = K̄

⎡
⎣

⎛
⎝�i +

∑
k �=i

�i+k + �i−k

2

⎞
⎠δij

+ �i+j − �i−j

2
(1 − δij )

⎤
⎦, (3)

respectively. Here,

mr = ρ(r)a3,

K̄ = μa,

�i
rr′ = 2δrr′ − δr,r′+ai

− δr,r′−ai
,

�
i±j

rr′ = 2δrr′ − δr,r′+(ai±aj ) − δr,r′−(ai±aj ),

and ai denotes the unit lattice vector in the direction
i ∈ {x,y,z}. It is easy to obtain the lattice expressions reduced
in lower dimensions. For instance, K = K̄(�x + �y) for
out-of-plane displacements of atoms in a square lattice in thexy

plane (shear horizontal mode). This corresponds to the scalar
model of two-dimensional (2D) harmonic lattice. Analogously,
K = K̄�x for a shear mode in a 1D harmonic chain along x.

In multiterminal geometry, the retarded Green’s function is
generally written as

g = 1

ε2 − D − ∑
α 	α

, (4)

where D = h̄2M−1/2KM−1/2 is the dynamical matrix, and 	α

denotes the retarded self-energy due to a lead α. Following
the nonequilibrium Green’s function formalism [16,33,34] or
equivalently the quantum Langevin equation approach [2,32],
the heat current flowing in lead α is described by the linearized
Landauer-Büttiker formula

Jα =
∑

β

Gαβ(Tα − Tβ) (5)

for a small enough temperature difference Tα − Tβ . The ther-
mal conductance between leads α and β is expressed as

Gαβ = 1

h

∫ ∞

0
dε

∂f

∂T
εTαβ, (6)

where Tαβ = Tr γαgγβg∗ is the transmission coefficient, γα =
−2 Im 	α is the linewidth function, and f = (eε/kBT − 1)−1

is the Bose function for phonons. The thermal conductance
quantum G0 corresponds to G for T = 1.

III. MASSLESS MODES PROTECTED BY
THE ACOUSTIC SUM RULE

As mentioned in Sec. I, a simple way to reduce thermal
conductance is to disorder the system that transports phonons.
To demonstrate this, we employ scalar 2D models, into which
isotopic disorder and surface roughness are incorporated. In the
calculation, the former is modeled by random masses deviating
from the mean m by δm = ±0.1m with equal probability. For
the latter, we consider a multilayer randomly stacked with
two segments of equal length l = 5a and different widths
w = 10a and 12a, where the fluctuations δw = ±a occur with
a probability of 1/2. See, the insets in Fig. 1 for reference. Note
that disordering is thoroughly implemented in the lattice model
(unlike the relaxation time approximation in the Boltzmann
equation approach). In this sense, the numerical results shown
here are exact. Figure 1 summarizes the transmission coeffi-
cientT and the thermal conductanceGderived from Eq. (6). As
seen in this figure, disorder reduces T appreciably over a wide
energy range. The reduced T is naturally reflected in G. At
high temperatures, G monotonically diminishes as the system
length Lx increases, signaling diffusive phonon transport in the
presence of disorder. On the other hand, T remains unaffected
at low energies. Correspondingly, the low-temperature G stays
quantized at G0 regardless of disorder.

These observations do not contradict the probability of
phonon scattering caused by each type of disorder. From
perturbation theory, the reciprocal phonon lifetime is evaluated
for mass disorder to be τ−1 ∝ 〈δm2〉

m2 ε2N (ε) to the lowest
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FIG. 1. Effects of disorder on thermal transport. [(a) and (b)]
Transmission coefficient T as a function of energy ε and [(c) and
(d)] thermal conductance G as a function of temperature T calculated
for scalar 2D models with [(a) and (c)] mass fluctuations δm = ±0.1m

and [(b) and (d)] width fluctuations between w = 10a and 12a. Each
plot corresponds to a single realization of disorder. The system length
is set to be Lx = 100a in (a) and (b), while Lx are varied as 20a,
50a, 100a, 200a, 500a, and 1000a in (c) and (d). The system width
is chosen to be Ly = 10a for (a) and (c). The gray line in each figure
displays the numerical result in the absence of disorder as a reference.
Note that in this case, phonon transport is ballistic so that both T and
G are independent of Lx . Insets in (c) and (d) are schematics for the
models used in the calculations.

nonvanishing order in δm, where the angular brackets stand
for statistical average, and N (ε) denotes the phonon density
of states [39,40]. This implies that mass disorder is irrel-
evant to low-energy phonon transport. The probability of
specular reflection at a Gaussian rough surface amounts to
exp(−k2〈δw2〉), where k represents the phonon wave num-
ber [2,35]. In view of this, surface roughness is essentially
negligible in the long-wavelength limit. Phonon-phonon in-
teractions stemming from lattice anharmonicity are neglected
in the present study. However, it may be worth noting that
the relevant scattering rate vanishes in the low-energy or low-
temperature limit [35–38], suggesting that phonon transport
is intrinsically stable at low temperatures even in interacting
systems. This conjecture is corroborated by numerical cal-
culations for nanojunction atomic systems with anharmonic
interactions based on diagrammatic perturbation theory [36].

More generically, the robustness of low-temperature
phonon transport is accountable for in terms of the equation
of motion mrq̈r + ∑

r′
Krr′qr′ = 0. The force-constant matrix

generally obeys the acoustic sum rule such that∑
r′

Krr′ = 0, (7)

because of the conservation of total linear momentum or
equivalently the invariance of the equation of motion under
rigid translations. This constraint ensures that there exist
massless modes with no excitation gap. In other words, gapless

modes always emerge in momentum-conserving systems. By
definition, the low-temperature conductance is expressed as
lim
T →0

G/G0 = lim
ε→0

T so that G/G0 represents the number of

propagating massless modes at low temperatures. This is
why low-temperature transport is insensitive to disorder. The
conclusion is not altered even for vector displacements in a 3D
lattice. An analogous argument is applicable to elastic waves in
3D. It is well known that stress-free boundary conditions at free
surfaces allow massless modes to occur in a finite elastic body.
In terms of the equation of motion ρq̈i = ∑

j

∂jT
ij , the stress

tensor T ij represents a flux of the i component of momentum
across the surface normal to j . Thus the stress-free boundary
enclosing an elastic system naturally leads to total momentum
conservation in terms of the divergence theorem.

IV. PHONON BLOCKING DUE TO BROADENING

Robust massless modes tend to set a fundamental limit
to suppressing thermal transport in the mesoscopic regime.
This may bottleneck low-temperature thermoelectrics such
as cryogenic solid-state coolers, which are beneficial for
nanoscale thermometers or radiation detectors, superconduct-
ing microelectronics, and probably solid-state quantum com-
putation [11,41]. A higher ZT as a result of a lower G is
suitable for thermoelectric refrigeration. This can be shown
from the lowest attainable temperature, expressed as Tc =
Th/

√
1 + ZT , where Tc and Th denote cold and hot junction

temperatures, respectively. In what follows, we analyze the
energy broadening induced by leads or probes attached to the
system for blocking low-temperature phonon transport.

For simplicity, we assume a 1D harmonic chain as a minimal
model, from which an analytic formulation is derived. The
retarded Green’s function of a linear chain consisting of n

lattice sites is analyzable in the iterative manner formulated
as [2,33]

gnn = (
g−1

0 − t4gn−1,n−1
)−1

, (8)

g1n = −t2g1,n−1gnn. (9)

Here, gjj ′ represents the matrix element of the Green’s function
between sites j and j ′, t = h̄

√
K̄/m is the characteristic energy

scale of the harmonic lattice, and K̄ denotes the intersite
force constant. For Si, K̄ is evaluated to be 17N m−1 [42],
yielding an estimate t  12 meV. In Eq. (8),g0 = (ε2 − bt2)−1

refers to the Green’s function of an isolated site, and b is
an integer that reflects the acoustic sum rule. In a linear
chain, each inner site couples to two nearest neighbors so
that b = 2. For a semi-infinite chain, the surface Green’s
function obeys gnn = gn−1,n−1 ≡ g. This leads to the quadratic
Dyson equation g = g0(1 + t4g2). The solution is found to
be g = −λ/t2 and λ = exp(2isin−1z), where z = ε/2t . To
evaluate heat flow, we consider a two-terminal system where
a finite chain is connected to two semi-infinite leads serving
as heat reservoirs at both ends. In this geometry, the Green’s
functions are computed by adding sites one by one to an
isolated lead until reaching the opposite lead. For a finite
chain in contact with a semi-infinite lead, one easily finds
that g11 = (g−1

0 − 	) = g and thereby g22 = · · · = gnn = g,
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where 	 = −t2λ is the retarded self-energy due to the lead.
After coupling to the opposite lead, the end-site Green’s
function becomes gnn = (g−1 − 	)−1 = −iγ −1, where γ =
−2 Im 	 is the linewidth function. Analogously, the intersite
Green’s function is derived to be g1n = λn−1gnn. In terms of the
Landauer formula, the two-terminal transmission coefficient
is given by T = γ 2|g1n|2 = 1. This coincides with the well-
known result deduced from analytic matrix inversion [2,34].

Armed with the recursive Green’s function formalism, we
next proceed to analyze a 1D chain in contact with a semi-
infinite 2D lead of a finite width W = Ma. Unfortunately,
there is no analytic formulation in 2D. Instead, numerically
solving the relevant Dyson equation, it is found that the
surface Green’s function is approximately represented as
gM = −λM/t2 with λM = 1 + 2iMz in the ε → 0 limit. This
corresponds to the self-energy 	M = −t2λM and the linewidth
γM = Mγ , indicating that the imaginary part of the self-energy
is augmented by coupling to the 2D lead while leaving the
real part unchanged. For an asymmetric two-terminal system
connected to 2D and 1D leads, it is easily shown that gnn =
−2iγ −1

M+1 and g1n = λn−1
M gnn. From these results, we arrive at

the transmission coefficient expressed as

T = γ γM |g1n|2 = 4M

(M + 1)2 . (10)

The identical result is derived when replacing the 2D lead
with a bunch of 1D leads. Equation (10) shows that the
broadening induced by a sufficiently wide lead blocks low-
temperature phonon transport sinceT → 0 as M → ∞. These
arguments are quantitatively confirmed in Fig. 2, where the
numerical results for 2D-1D junctions are summarized. A
similar behavior is seen in the previous study that considers
the 1D wire coupled to bunched 1D leads [42]. Our theoretical
treatment is further generalized by considering two 2D leads
of different widths W1,2 = M1,2a attached to the system. In
this case, we obtain

T = 4M1M2

(M1 + M2)2 . (11)

Interestingly, this equation is structurally equivalent to the
impedance-mismatch transmission T = 4Z1Z2/(Z1 + Z2)2

between two homogeneous media with different acoustic
impedances Z1,2. In terms of Eq. (11), it is noticed that
the geometric mismatch does not necessarily prevent thermal
transport, since T = 1 and then G = G0 for M1 = M2. Thus
asymmetric configurations are a prerequisite for phonon block-
ing in this scheme.

The source of broadening is not only current leads but also
temperature probes attached to the system. Normally, the probe
should be left floating, i.e., thermally isolated from the outside
world except for the system. Local equilibration between the
probe and the system is attained under the condition that no net
thermal current flows between them. As a result, connecting the
probe to the system introduces broadening without dissipation
(i.e., no heat is dissipated in the probe). This is reminiscent of a
fictitious probe strongly coupled to each site of a lattice system
to mimic inelastic scattering [6,11,32]. Such a probe acts as a
phase-breaking scatterer, whose strength is measured by its
inducing linewidth. Thus it is expected that phonon transport
is impeded not only by wide leads but also by wide probes. To
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FIG. 2. Effects of 2D lead on 1D thermal transport. (a) Real
and (b) imaginary parts of self-energy 	M due to 2D lead of width
W = Ma calculated as a function of scaled energy Mε, where M is
varied as 3, 11, 101, and 1001. As found in the figures, 	M collapses
onto the single function −t2(1 + iMε/t) in the low-energy limit. (c)
Thermal conductance G as a function of temperature T for 2D-1D
junctions with M=3, 5, 11, 21, 51, and 1001. G exhibits a plateau at
low enough temperatures. (d) lim

T →0
G as a function of W . The gray lines

in (a), (b), and (c) display the results for a normal 1D wire without
geometric mismatch (for which M = 1) as references. The solid line
in (d) represents the theoretical plot based on Eq. (10). Inset in (d)
illustrates the geometry assumed for the analysis. Note that the central
site on the right-side boundary of the 2D lead is coupled to the left
end of the 1D chain.

show this, we consider a setup where a finite 1D chain situated
between two 1D leads couples to a 2D probe locally at an inner
site p of the chain. Note that b = 3 for the contact site p. The
associated Green’s functions are derived to be gnn = −2iγ −1

M+2,
g1p = λp−1gnn and g1n = λ

n−p

M+1λ
p−1gnn. Hence the lead-lead

transmission is given by

T1n = γ 2|g1n|2 = 4

(M + 2)2 .

Similarly, the lead-probe transmission is expressed as

T1p = γ γM |g1p|2 = MT1n.

Note that both T1n and T1p are independent of probe position.
The adiabatic condition leads to the two-terminal conductance
G = G1n + G1pGpn/(G1p + Gpn), following the multitermi-
nal Landauer formula. Reversing the iteration, it is easily found
that T1p = Tpn and hence G1p = Gpn. As a result, we reach
the effective transmission

T = 2

M + 2
. (12)

Again, it is shown that T → 0 as M → ∞. The analytic result
is validated numerically as shown in Fig. 3. It is also confirmed
numerically that low-temperature thermal conductance is unaf-
fected by varying the number of contact sites for a given width
of 2D probe (not shown). This implies that a large enough
real probe connected to the system enables phonon blocking
irrespective of the contact geometry.
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FIG. 3. Effects of 2D probe on 1D thermal transport. (a) Thermal
conductance G as a function of temperature T for a 1D chain coupled
to a 2D probe of width W = Ma, where M is varied as 1, 3, 5, 11,
21, 51, and 1001. G exhibits a plateau at low enough temperatures.
(b) lim

T →0
G as a function of W . The gray line in (a) displays the result

for a normal 1D wire without probe as a reference. The solid line in (b)
represents the theoretical plot based on Eq. (12). Inset in (b) illustrates
the geometry assumed for the analysis. Note that the central site
on the lower boundary of the 2D probe is in contact with an inner
site of the 1D chain.

The broadening argument may become more transparent by
considering the local density of states, defined by

N (x,ε) = −2ε

π
Im gjj (ε)

per site, where x = ja and j = 1,2, . . . ,n. In view of Eq. (4),
N (x,ε) is reduced by the broadening due to leads or probes
in contact with the system. This is analytically verifiable.
From the on-site Green’s function derived above, one finds
N (x,ε) = 2/(M + 1)πt for a 2D lead and 2/(M + 2)πt for a
2D probe in the low-energy limit. They become negligibly
small for a sufficiently large M , compared to 1/πt for an
infinitely long ordered 1D chain. The expected depletion in the
low-energy regime is visible in Fig. 4, where numerical results
are summarized for the 2D lead and the 2D probe. Although
momentum-conserving systems always exhibit gapless spectra
because of the acoustic sum rule, a vanishingly low density of
states is realizable, which tends to suppress phonon propaga-
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FIG. 4. Local density of states for (a) a 2D-1D junction and (b)
a 1D chain coupled to a 2D probe. The geometries assumed in the
calculations are identical to those for Figs. 2 and 3. The parameters
are chosen to be Lx = W = 101a.
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FIG. 5. Thermal conductance G as a function of temperature T

for asymmetric (a) 2D-2D and (b) 3D-3D junctions. In (a), the system
width is Ly = 10a, while the lead width W = Ma is varied as M=20,
50, 100, 200, and 1000. In (b), the system width is Ly = 4a, while the
lead width is varied as M=10, 20, 50, 100, and 200. In the 3D model,
the same thickness Lz = 4a is assumed for the system and the lead.
The gray lines in (a) and (b) display the results for normal 2D and 3D
wires without geometric mismatch as references, respectively. Insets
are schematics for the models used in the calculations.

tion across the system. This provides an intuitive interpretation
for the phonon blocking due to broadening.

V. NUMERICAL CALCULATION

The preceding section deals with the analytic theory for
a 1D chain. In this section, we explore thermal transport in
higher dimensions by using numerical calculations. As shown
in Fig. 5(a), G/G0 tends to vanish at low temperatures in
asymmetric 2D-2D junctions when the lead width W increases
sufficiently. Thermal transport in 3D is also numerically eval-
uated by employing the 3D vector model described in Sec. II.
In this model, G/G0 = 4 is observed for a uniform 3D rod
at low temperatures. This represents contributions due to four
intrinsic massless modes comprised of one extensional, one
torsional, and two flexural modes. Low-temperature phonon
transport via these fundamental modes is greatly suppressed
in asymmetric 3D-3D junctions, as shown in Fig. 5(b). Previ-
ously, a similar but symmetric configuration has been argued
for manipulating phonon transport [26,31,42]. As implied from
our 1D lattice theory, in that case, perfect transmission of
massless modes is sustained in the low-energy limit regardless
of geometric mismatch. This reasonably accounts for the
previous observations. It is also noted that the present results
do not contradict the elastic-wave transmission vanishing at
an abrupt junction between a nanowire and an infinitely large
bulk reservoir at low frequencies [23–25]. In the elastic model,
the quenched transmission is ascribed to interfacial scattering
at the geometrically mismatched junction. In the lattice model,
on the other hand, this is accounted for by geometry-dependent
broadening.

Figure 6 displays the numerical results for 2D strips con-
tacted by 2D probes at two transverse edges and 3D rods
coupled to 3D probes at four side faces. In the 2D case, G/G0

monotonically decreases with increasing the probe size W at
low temperatures, and tends to vanish in the W → ∞ limit.
A similar reduction is observable in the 3D model, except
a shallow valley appearing in temperature dependence. At
the lower temperature side, G/G0 ascends slightly from its
minimum on lowering the temperature. It is verified from

224312-5



KIMINORI HATTORI AND YOHEI NAKAMURA PHYSICAL REVIEW B 97, 224312 (2018)

x
y

z

0

1

2

3

10-5 10-4 10-3 10-2 10-1 100
0

2

4

6

8

10-5 10-4 10-3 10-2 10-1 100 101

x

y

kBT / t

G
/

G
0

)b()a(

kBT / t

W W

W W

FIG. 6. Thermal conductanceG as a function of temperatureT for
(a) 2D and (b) 3D wires coupled to side probes. In (a), the system width
is Ly = 10a, while the probe width W = Ma is varied as M=10, 20,
50, 100, and 500. In (b), the lateral dimensions are Ly = Lz = 4a for
the system and the probes, while the probe width is varied as M=4,
10, 20, 50, and 100. The gray lines in (a) and (b) display the results for
normal 2D and 3D wires without probes as references, respectively.
Insets are schematics for the models used in the calculations.

additional calculations that in this region, thermal transport is
dominated by longitudinal modes. The associated mechanism
is unclear at the present stage of investigation. Nonetheless,
it should be emphasized that the minimum G/G0 is greatly
reduced for a larger W . As expected, phonon transport is
strongly suppressed even in a single-probe geometry if W

is large enough. It is worth noting that in experiments, a
macroscopically large substrate onto which a nanowire is
mounted may act as such a probe to block phonon transport
across the wire.

Thus far, we have assumed fully ballistic systems to eluci-
date phonon blocking at low temperatures. It is not necessarily
evident that the present scheme is applicable to disordered
systems, where phonon transport tends to be diffusive, as
illustrated in Fig. 1. Figure 7 summarizes the numerical results
for disordered systems to which a wide lead is attached.
As seen in the figure, geometrically induced broadening and
bulk or surface disorder suppress thermal transport separately
in the low- and high-temperature regimes, respectively. This
observation implies that phonon blocking is realizable by these
two uncorrelated mechanisms over a wide temperature range.
In the framework of perturbation theory, adding the nonlinear
quantum effects due to lattice anharmonicity further suppresses
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/
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FIG. 7. Thermal conductance G as a function of temperature T

for asymmetric 2D-2D junctions with (a) isotopic disorder and (b)
surface roughness. The system length and the lead width are set to
be Lx = W = 1000a. The other parameters are the same as those for
Fig. 1. The gray lines in (a) and (b) display the result for a normal 2D
wire without disorder and geometric mismatch as a reference. The
results obtained with adding both disorder and geometric mismatch
are shown by red lines in comparison with those only with disorder
indicated by blue lines. Insets are schematics for the models used in
the calculations.

G at high temperatures [36]. In view of this, the present result
amounts to its upper bound.

VI. SUMMARY

We have presented an analytic theory and numerical results
for thermal transport across a system in contact with leads or
probes of different geometries. The analytic formulas derived
from a minimal model consisting of a 1D harmonic chain
predict that low-temperature phonon transport via massless
modes is substantially suppressed by geometrically engineered
linewidth. Numerical calculations demonstrate that phonon
blocking in this scheme is operative in more realistic systems
in both ballistic and diffusive transport regimes. In particular,
it is shown that adding the broadening mechanism to diffusive
systems enables phonon blocking over a broad temperature
range.
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