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Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab
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The optical bound state in the continuum (BIC) is characterized by an extremely high-quality factor resulting in
a drastic enhancement of light-matter interaction phenomena. We study the optical response of a one-dimensional
photonic crystal slab with Kerr focusing nonlinearity in the vicinity of BICs analytically and numerically. We
predict a strong nonlinear response including multistable behavior, self-tuning of BICs to the frequency of
incident waves, and breaking of symmetry protected BICs. We show that all of these phenomena can be observed
in silicon photonic structure at the pump power of several μW/cm2. We also analyze the modulation instability
of the obtained solutions and the effect of the finite size of the structure on the stability. Our findings have strong
implications for nonlinear photonics and integrated optical circuits.
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I. INTRODUCTION

Bound states in the continuum [1] (BICs) comprise a special
class of localized solutions of wave equations, which have
the energy lying in the continuum of the delocalized states.
These states may be interpreted as resonant states with infinite
quality factor, which originate due to destructive interference
of several leaky modes of the system. BICs are a general feature
of wave dynamics, and so may arise for quantum-mechanical
particles [2–4], sound waves [5–7], water waves [8–10], and
photonic structures [11–20]. The systems supporting optical
BICs are usually realized as two- or one-dimensional periodic
photonic structures, such as photonic crystal slabs [21] or
patterned photonic wires [22,23]. The continuum in this case
represents the states which have the tangential component of
the wave vector smaller than the total wave vector of the plane
wave in a surrounding medium at the same frequency. Leaky
modes as well as BICs lie inside the continuum. However,
leaky modes are coupled to the extended waves and therefore
radiate. In contrast, BICs have no access to radiative channels
due to the destructive interference so they remain localized
with zero leakage and do not decay in time [see Figs. 1(c)
and 1(d)]. Under the term “localized” we imply localization
in the direction perpendicular to the slab interface. We need to
highlight that the spectrum of the considered modes lies above
the light line where only the leaky modes can exist; however,
even in this case we can have localization in the � point. The
field of the localized mode is contributed only by the near fields
(closed diffraction channels) [Fig. 1(d), right panel], in contrast
to leaky modes which have radiation far field [Fig. 1(d), left
panel].

The bound states in the continuum in photonic crystal slabs
and plasmonic lattices, being high-quality-factor resonant
modes, have already found applications for sensing [24], filter-
ing [25], and lasing [26,27]. One of the most straightforward
possible applications of high-quality resonance modes such
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as BICs is the enhancement of optical nonlinear effects. The
nonlinear dynamics of bound states in the continuum has been
explored quite recently in Fabry-Perot cavities [28] containing
nonlinear impurities [29]. Moreover, nonlinear bound states
in the continuum, which are conventionally referred to as
embedded solitons, have been actively studied for more than a
decade in nonlinear fibers [30]. Nonlinear bound states and
related diffraction problems were also studied in periodic
arrays of circular cylinders [31,32].

The simplest manifestation of the nonlinear dynamics in the
resonant photonic structures is the multistable optical response.
If a nonlinear system is pumped by an input beam the frequency
of which is detuned from the linear resonant frequency, then
the nonlinear frequency shift of the appropriate sign may tune
the system in resonance with the pump beam which is the
origin of the multistability [33]. The optical multistability (or
bistability as the most simple case) has direct applications
for the realization of all-optical switchers. In real structures,
bistability onset is determined by the threshold pump power
density, which depends on the nonlinear susceptibility of the
material and the resonator quality factor. An ultra-high-quality
factor of the BIC thus suggests low threshold powers for the
bistability onset.

In this paper, we study the nonlinear response of a one-
dimensional photonic crystal slab with Kerr-type focusing
nonlinearity supporting BICs. We analyze the role of BICs
in formation of bistable and tristable states, and study the
modulation instability accounting for a finite size of the
photonics structure. We show that the BIC supporting systems
allow one to achieve strong nonlinear response without a cavity
at low pump power.

II. COUPLED-MODE EQUATIONS

The structure under consideration is shown in Fig. 1(a). For
the sake of simplicity, we focus only on the TE-polarized waves
since the problem is reduced to the scalar form in this case. We
will describe the structure in terms of effective refractive index
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FIG. 1. (a) Schematic image of the considered system: one-
dimensional photonic crystal slab. (b) Schematic representation of
the periodic variation of the effective refractive index. (c) Map of
the reflection coefficient vs in-plane wave vector and frequency. (d)
Electric-field distribution of the leaky (symmetric) mode and bound
state in the continuum (antisymmetric mode). Out of the slab the BIC
is localized and its field exponentially decays away with decrement
κ =

√
(2π/d)2 − k2

0 , where k0 is the normalized frequency of the BIC.

considering periodicity and nonlinearity as perturbations:

n(z) = n0 + δn
2

π

∞∑
j=1

1

j
sin

(
jπw

d

)
cos (jGz) + n2I. (1)

Here n0 is the average refractive index of the core layer in the
absence of grating, δn is the modulation amplitude, G = 2π/d

is the reciprocal vector of the structure, d is the period of the
lattice, w is the width of the protrusions, and n2I is the term
corresponding to the Kerr-type focusing nonlinearity. Both n0

and δn are found from the solution of the conventional slab
waveguide problem. The geometry of the waveguide is chosen
such that the reciprocal vector G is close to the wave vector
of the effective waveguide mode. Thus, the normally incident
radiation resonantly excites forward and backward propagating
waveguide modes, which are coupled via backscattering. Then
we exploit the coupled-mode theory in the simplest form of
two-mode approximation [34–36]. The electric field can be
written as

E(z,t) = [E+(z,t)eiβz + E−(z,t)e−iβz]e−iω0t + c.c. (2)

Here E± are the amplitudes of the forward and backward prop-
agating modes with the wave vector β. Implementation of the
slow-varying approximation allows one to neglect the second
derivatives in the wave equation. The terms proportional to
δn2, (n2I )2, and δn × n2I are omitted. Moreover, we assume
ω0 = ck0 = βc/n0 and use β = G = 2π/d omitting all terms
which have spatial dependence other than e±iβz. With these
assumptions, the wave equation can be transformed to a pair
of dimensionless coupled-mode equations (see Supplemental
Material [37]):

∂Ẽ±
∂t̃

= ∓∂Ẽ±
∂z̃

+ iδñẼ∓ + iẼ±(|Ẽ±|2 + 2|Ẽ∓|2). (3)

Here we use the following normalized parameters:

z̃ = βz, Ẽ± = E±(n2/n0)1/2,

t̃ = ωt, δñ = δn sin (2πw/d)/(2πn0).

Further, we will consider only spatially uniform solutions, and
thus drop the spatial derivatives. These equations, however,
should be supplemented though with the pump and decay
terms. This procedure can be done in a way similar to one
presented in Ref. [38]. At fist, we introduce the vector of
the resonant mode components E = (Ẽ+,Ẽ−)T . Moreover,
we introduce the vectors of incoming and outgoing fields S+
and S−. We assume that the incoming radiation is normal
to the interface impinging either from the top or from the
bottom interface. The energy can leave the system also only
normally to the interface from top or bottom. Thus, both S+
and S− are vectors with size 2 such that S+ = (S++,S+−)T

and S− = (S−+,S−−)T , where the second indices correspond
to the energy flux which goes through the top (+) or the
bottom (−) interface. The resulting set of equations can be
written as

∂Ẽp

∂t̃
= iδñσ̂x,pqẼj + iTpqklẼqẼ

∗
k Ẽl − �̂pqẼq + D̂T

pqS+,q ,

(4)
∂S−,p

∂ t̃
= ĈpqS+,q + D̂pqẼq . (5)

Here, p,q,k,l = {+,−}; σ̂x is the Pauli matrix; Tpqkl =
δpqδkl(2 − δpk) is the tensor governing the structure of the non-
linear response; Ĉ = rslabÎ + tslabσ̂x is the matrix representing
the nonresonant reflection and transmission from the slab (rslab,
tslab are the Fresnel coefficients for the effective uniform slab);
and �̂D̂ are unknown matrices responsible for the decay of the
resonant modes and their coupling with incoming and outgoing
waves, respectively. In Ref. [38], certain relations between
�̂,D̂, and Ĉ were derived from the energy conservation and
time-reversal invariance condition. Namely, it was shown
that

D̂†D̂ = 2�̂, (6)

ĈD̂∗ = −D̂. (7)

These relations are met even for nonlinear system, since non-
linearity is conservative and does not break the time-reversal
symmetry. Because of the symmetry of the problem we seek
D̂ and �̂ in the form

D̂ = eiφ0

(√
γ̃

√
γ̃√

γ̃
√

γ̃

)
, �̂ =

(
γ̃ γ̃

γ̃ γ̃

)
. (8)

The constant γ̃ = γ /(2β2) can be estimated from the con-
sideration that the coupling efficiency is proportional to the
refractive index contrast, namely, γ ≈ k2

0δñ
2. This approxi-

mate value comes from the perturbation theory, in which the
scattering rate from one mode to another is proportional to the
overlap integral 〈ψ1|V |ψ2〉, where V (x) = k2

0δn
2 cos(πx/d).

The phase φ0 is found from the condition (7) and yields φ0 =
−1/2i log(−rslab − tslab). For the case of a thin waveguide
it can be approximated by φ0 ≈ (n0k0h + π )/2, where h is
the thickness of the waveguide. The set of equations is then
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rewritten as

∂Ẽ±
∂t̃

= iδñẼ∓ − γ̃ (Ẽ+ + Ẽ−)

+ iẼ±(|Ẽ±|2 + 2|Ẽ∓|2) +
√

γ̃ Ĩpeiφ0−iδω̃t̃ . (9)

Here Ĩp = n2E
2
p/2 and δω̃ = δω/ω is the detuning between

the pump beam and ω̃0 = ω0/ω. The above equations can
be rewritten in terms of symmetric (leaky) and antisym-
metric (BIC) modes, represented by Ẽs = Ẽ+ + Ẽ− and
Ẽa = Ẽ+ −,Ẽ−, respectively:

∂Ẽa

∂t̃
= (−iδñ + 3iK)Ẽa − iẼsM, (10)

∂Ẽs

∂t̃
= (iδñ − 2γ̃ + 3iK)Ẽs − iẼaM + 2

√
γ̃ Ĩpeiφ0−iδω̃t̃

(11)

where K = 1
4 (|Ẽs |2 + |Ẽa|2) and M = 1

4 (ẼaẼ
∗
s + ẼsẼ

∗
a ).

This pair of the equations clearly shows the absence of radiation
losses for the antisymmetric mode, because γ is not explicitly
included in Eq. (10). For the same reason we cannot pump
the BIC from the far field and its excitation is possible only
because of the nonlinear coupling with a bright (symmetric)
mode.

III. SELF-TUNING OF THE BIC
AND SYMMETRY BREAKING

In the absence of pumping and nonlinearity, the system of
Eqs. (9) has symmetric and antisymmetric solutions:

ω̃ = δñ, Ẽ+ = −Ẽ−, (12)

ω̃ = −δñ − 2iγ̃ , Ẽ+ = Ẽ−. (13)

The antisymmetric solution has no radiation losses and
corresponds to the symmetry protected BIC whereas the
symmetric solution corresponds to leaky modes [see Figs. 1(b)
and 1(c)]. In the nonlinear case, the amplitude of the BIC
depends on the frequency:

|Ẽ±| =
√

1

3
(δñ − ω̃). (14)

Therefore, in the case of Kerr-type focusing nonlinearity, the
BIC exists at all the frequencies smaller than the frequency
of the linear BIC (ω̃ < δñ). This is the manifestation of the
self-tuning of the BIC. If we pump the sufficient energy density
in the system, namely, W = d−1

∫ |E(z)|2dz = (1/3)(δñ − ω̃),
then the resonant frequency is tuned such that the BIC coin-
cides with pump frequency. This can be regarded as a way
to excite the BIC: we pump the system with nonresonant
radiation, and the system adjusts itself due to the nonlinearity
to form a BIC. This type of behavior of nonlinear BICs has
been previously discussed in Refs. [39,40] for the nonlinear
Fabry-Perot resonator and nonlinear impurity model.

We then look for the solutions of the inhomogeneous set of
equations in the form E± = −ia±eiφ0−iδωt . The resulting set
of nonlinear algebraic equations has three classes of solutions.
The first one is the symmetric solution a+ = a− = as . This

class of solutions generates a standard S-shaped bistability
curve and will be treated numerically in Sec. IV. The second
class is that of asymmetric solutions, which have the form
a± = a0e

iφ± , where a0 does not depend on Ĩp. These solutions
are written as

a0 =
√

1

3
(δñ − δω̃), (15)

tan

(
φ+ + φ−

2

)
= −γ̃ /δñ, (16)

cos

(
φ+ − φ−

2

)
=

√
γ̃ Ĩp

2a0

√
γ̃ 2 + δñ2

. (17)

It can be seen that as Ip approaches zero the solution
approaches the fully antisymmetric solution φ+ − φ− = π .
Moreover, as Ĩp = 4

3γ̃
(δñ − δω̃)(γ̃ 2 + δñ2), the solution be-

comes fully symmetric. A similar type of solutions, for which
the pump power affects only the phase shift, has been explored
in Ref. [41] for the case of the nonlinear impurity model. It
was termed Josephson-like current, since, like in Josephson
effect, the sine of the phase difference is proportional to the
current (pump intensity in our case). Note, that these solutions
may be stable in finite-size systems as we will show, in Sec. V.
Moreover, systems of coupled dissimilar waveguides support
the analogous asymmetric nonlinear modes which are also
stable under the presence of gain and loss [42]. Finally, there
is a class of asymmetric solutions for which |a+| 	= |a−| and
φ+ = π + φ−. These solutions will be treated numerically in
the next section.

IV. NUMERICAL SIMULATION

In this section, we carry out the numerical study of coupled-
mode equations (9) and the reflection coefficient, which can be
written as

R =
∣∣∣∣∣rslab +

√
γ̃

Ĩp

Ẽ+eiφ0 +
√

γ̃

Ĩp

Ẽ−eiφ0

∣∣∣∣∣
2

. (18)

For the numerical calculations we use the following set of
parameters: we considered a silicon slab waveguide in vacuum
(n0 = 3.48, n2 = 3×10−18 m2/W [43,44]). The depth of the
etched grating was chosen to be 10 nm while the thickness of
the core layer without grating is h = 100 nm; the refractive
index modulation amplitude in this case is δn ≈ 0.0316. The
lattice period d was chosen in such a way that β = 2π/d at
wavelength λ = 1 μm. Width of the protrusions is chosen to be
w = d/4. We have also added the material losses to the system
by introducing additional diagonal loss term δγ = 0.25γ to
matrix �̂. The results of the numerical modeling are shown
in Fig. 2.

Figure 2(a) shows the phase diagram depending on the pump
detuning and intensity. The four numbers labeling different
phases correspond to the number of stationary solutions, num-
ber of stable solutions, number of symmetric solutions, and
number of stable symmetric solutions, respectively. Here, sta-
bility was checked with respect to homogeneous perturbations.
It has been anticipated that nonlinear BICs can be destroyed by
the modulation instability. It has been even suggested to exploit
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FIG. 2. Graphical representation of the solutions of coupled-
mode equations (9). The four-digit numerical indices absd in panel
(a) have the following meaning: a shows the total number of solutions,
b denotes how many of them are stable, c is the number of symmetric
solutions, and d is the number of stable symmetric solutions. The
total field as a function of pump intensity is shown in panel (b)
where δω = −11.16 meV. Note that the horizontal axis there has
logarithmic scale. Labeled points are used to distinguish between
different branches of solutions. (c, d) Reflection coefficient of the
structure with respect to detuning δω at Ip ∼ 0.34 (c) and 3 μW/cm2

(d). All other parameters are the same for all panels and are given in the
main text. In panels (c) and (d), green dots correspond to symmetric
solutions, blue dots correspond to asymmetric solutions, and red lines
indicate the linear solutions. The stable (unstable) solutions are shown
by thick (tiny) dots. The dashed line in panel (b) corresponds to
antisymmetric solutions 2|a0|2. The shaded area in panels (c) and
(d) indicates the region −δñ < δω̃ < δñ.

the instability to generate the frequency combs using BICs
[45]. It can be seen that for the large positive detunings δω > δn

the system supports a single symmetric stable solution. In
the region −δn < δω < δn and large enough intensity, an-
other phase exists where two additional asymmetric solutions
emerge, one of which is stable. Therefore, the nonlinearity
could result in breaking of the symmetry protected BIC and its
transformation into symmetric solution with radiation losses.

FIG. 3. Stability analysis of the solution presented in Fig. 2(b)
for which q = 0, i.e., the system is infinitely large. Therefore, Fig. 3
represents how decrease of the system size (increase of q) affects
stability of modes. Text in the panels corresponds to solutions shown
in Fig. 2(b). The shaded area indicates stable solutions. For each plot
Ip ≈ 1.5 μW/m2 and δω = −11.16 meV. All other parameters are
given in the main text.

The situation complicates drastically as detuning becomes
less than −δn. Namely, already at moderate pumping intensi-
ties, a multistable behavior is observed with two symmetric and
one asymmetric stable solution. We plot the dependence of the
mode intensity on the pumping power for δω = −11.16 meV
in Fig. 2(b). The symmetric solutions are shown in green, and
they exhibit conventional bistable behavior. At the same time,
we observe the additional nonsymmetry branch shown in blue.
Remarkably, in the absence of material losses (δγ = 0) the
blue branch starts from the zero intensity manifesting the fully
antisymmetric BIC. It then splits into the horizontal branch
which connects it with the symmetric solution and the branch
of asymmetric solutions, which exhibits S-shape behavior.

The asymmetric solutions generate the energy flow in
the plane of the waveguide Sz, which is proportional to
|a+|2 − |a−|2. Since the asymmetric solutions appear in pairs
equivalent up to interchange of a+ and a−, the specific current
direction is defined by the initial conditions. The spectra of the
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reflection coefficient at different pump intensities are shown in
Figs. 2(c) and 2(d) and are compared with the linear reflection
coefficient (thin red line).

V. MODULATION INSTABILITY

As the next step, we analyze stability of the obtained
solutions with respect to the longitudinal perturbations. For
that we write the electric field in the form

Ẽ±(z̃,t̃) = (a± + εf±eiq̃z̃el̃t̃ + εg±e−q̃z̃el̃∗ t̃ )e−iδω̃t̃ , (19)

where ε is the amplitude of the small perturbation; q̃ is the
wave vector of the perturbation, which is a parameter; and l̃ is
the complex eigenfrequency. We substitute the expression for
the electric field to the initial differential equations and lin-
earize them with respect to ε. The solution of the resulting
eigenvalue problem for l̃ gives the spectrum of the linear pertur-
bations. If at least one of the eigenvalues has positive real part,
then our initial solution is unstable. Figure 3 shows the spectra
of the linear perturbations with largest real part of l̃ for different
classes of stationary solutions. The stability with respect to
homogeneous perturbations labeled in Fig. 2 corresponds to
the case of q̃ = 0. We can see that while the lower stable
branch of the symmetric solution is stable for all possible q̃

[Fig. 3(a)] the upper branch is unstable to the perturbations
with any finite q̃ larger than some critical q̃crit [Fig. 3(b)]. It has
been shown previously for a similar system that the instability
of the upper symmetric branch leads to soliton formation [46].
At the same time, we can see that all of the asymmetric

solutions are stable with respect to perturbations with wave
vectors larger than some finite critical value q̃max, as can be
seen in Figs. 3(d)–3(f). This has interesting consequences for
the stability conditions in finite structures. Namely, since only
perturbations which have wavelength smaller than the system
size may exist, the perturbations with q̃ < 1/N (where N is the
number of periods) will decay. Thus, if the system size is less
than q̃max, it will be linearly stable with respect to longitudinal
perturbation. Therefore, a finite size of the structure could
stabilize the solutions, which are unstable in the infinite system.

VI. CONCLUSION

To conclude, we have demonstrated the existence of the
nonlinear BIC in a simple structure periodically corrugated
silicon waveguide. We have shown how the existence of the
BIC leads to the emergence of multistable behavior in the
structure at moderate pump intensities. Moreover, it has been
shown that finite system size may stabilize the solutions, which
are unstable in the infinite system. The moderate level of pump
intensities required for the optical switching in the structures
supporting BIC states opens avenues for the realization of
all-optical switchers exploiting bound states in the continuum.
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