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We investigate the lattice dynamical properties of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au in the nonequilibrium
hcp structure by means of density-functional simulations, wherein spin-orbit coupling (SOC) was considered
for Ir, Pt, and Au. The determined dynamical properties reveal that all eight elements possess a metastable hcp
phase at zero temperature and pressure. The hcp Ni, Cu, Rh, Pd, and Au previously observed in nanostructures
support this finding. We make evident that the inclusion of SOC is mandatory for an accurate description of
the phonon dispersion relations and dynamical stability of hcp Pt. The underlying sensitivity of the interatomic
force constants is ascribed to a SOC-induced splitting of degenerate band states accompanied by a pronounced
reduction of electronic density of states at the Fermi level. To give further insight into the importance of SOC in
Pt, we (i) focus on phase stability and examine a lattice transformation related to optical phonons in the hcp phase
and (ii) focus on the generalized stacking fault energy (GSFE) of the fcc phase pertinent to crystal plasticity.
We show that the intrinsic stable and unstable fault energies of the GSFE scale as in other common fcc metals,
provided that the spin-orbit interaction is taken into account.
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I. INTRODUCTION

Relativistic effects are responsible for a number of intrigu-
ing phenomena and physical properties in solids. Textbook
examples are the yellow color of gold and the characteristic
humming of transformers. Several properties in magnetic
materials, such as magnetocrystalline anisotropy, the magneto-
optic Faraday and Kerr effects, and the anomalous Hall effect,
are due to relativistic effects and of fundamental interest
and technological importance. The appropriate frame for the
description of the relativistic electronic structure in solids is
quantum electrodynamics, and by arguments similar to those
leading to the nonrelativistic Hohenberg-Kohn theorem and
Kohn-Sham scheme [1,2] a relativistic density-functional the-
ory (DFT) for many-electron systems can be formulated, which
in practice involves solving the Kohn-Sham-Dirac equation
self-consistently [3–5].

The Kohn-Sham-Dirac Hamiltonian treats relativistic ef-
fects rigorously, but considering them approximately is suf-
ficient for many solid-state applications. In scalar-relativistic
approaches, the lowest-order relativistic corrections (Darwin
and mass-velocity terms) are included in the Hamiltonian,
but the coupling between spin and electron momentum is ne-
glected, commonly by averaging it out [6–8]. Scalar-relativistic
schemes allow for an effective approximative treatment since
the solutions of the Kohn-Sham equations are spin-up and
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spin-down eigenstates for collinear spin magnetic moment
orientations. For an adequate description of heavy elements,
such as actinides, and many magnetic ground- and excited-
state properties (see examples above), spin-orbit coupling
(SOC) also has to be included in the Hamiltonian. In plane-
wave codes, for instance, this is achieved through a second
variational approach after diagonalizing the scalar-relativistic
Hamiltonian [9]. Other band structure codes use a transfor-
mation of the Kohn-Sham-Dirac Hamiltonian to an effective
two-component regular Hamiltonian, which includes SOC to
zeroth order in the expansion [10,11]. Finally, a few codes
rely on a four-component Kohn-Sham-Dirac implementation
[12–15].

The importance of relativistic effects on electronic proper-
ties of atoms, molecules, and elemental solids was thoroughly
studied [16–19]. Much less research in this direction has
been conducted on bulk phase stability and lattice dynamical
properties of elements, and among those efforts most attention
has been paid to the 6p systems Pb, Bi, and Po. For instance, it
was observed that SOC is essential for a correct representation
of the phonon frequencies in the α and β phases of Po
and crucial for the phononic contribution to their compet-
ing thermodynamic stability [20–22]. Díaz-Sánchez et al.
demonstrated a significant, wave-vector-dependent softening
of optical phonon frequencies along with improved agreement
with experimental dispersion relations in rhombohedral Bi
upon including SOC in the determination of the interatomic
force constants (IFCs) [23]. A similar phonon softening effect
of SOC was found for fcc Pb, whereas both scalar-relativistic
and relativistic treatments reproduced Kohn anomalies in
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the dispersion relations, although at different wave vectors
[24].

The present DFT investigation is, on the one hand, con-
cerned with the bulk lattice dynamical properties and possible
metastability of eight transition- and noble-metal elements,
Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, in a nonequilibrium hcp
structure at zero temperature and pressure. Whereas none of
these elements possesses a second known allotrope besides the
fcc configuration in its pressure-temperature phase diagram
[25,26], the driving force for this work is the expectation that a
metastable phase may have different properties than its stable
counterpart. In particular, there has been growing interest in
nanostructures in nonequilibrium crystal structures, possibly
isostructural to metastable bulk phases, due to their potentially
size- or shape-enhanced mechanical, optical, electronic, mag-
netic, or catalytic properties. Motivated by our recent finding
that the fcc structures of the hcp stable elements Sc, Ti, Co, Y,
Zr, Tc, Ru, Hf, Re, and Os are metastable [27], we here address
the complementary question: do the fcc stable transition and
noble elements Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au possess a
metastable hcp bulk phase? We make evident that the inclusion
of SOC is mandatory for an accurate description of the lattice
dynamics and stability of hcp Pt, unlike in its 5d neighbors Ir
and Au.

On the other hand, we lend fundamental insight into rela-
tivistic effects on the electronic structure and force constants of
hcp Pt and examine a displacive lattice transformation related
to zone-centered optical phonons in the hcp structure in order
to show the impact of SOC on the bulk phase stability of Pt.
We also analyze the generalized stacking fault (GSF) of fcc
Pt pertinent to the atomistic theory of crystal plasticity and
demonstrate the importance of SOC for the intrinsic stable and
unstable fault energies of the GSF.

The remainder of paper is organized as follows. We begin by
describing methodology and computational details in Sec. II.
In Sec. III we briefly present and discuss the lattice dynamical
properties of hcp Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. Then
we elaborate on the effect of SOC on the IFCs and phonon
dispersions in hcp Pt, on the displacive lattice transformation
in Pt, and on the GSF energy (GSFE) in fcc Pt. Section IV
concludes with a summary, highlights the significance of this
study, and presents a brief outlook.

II. METHODOLOGICAL AND COMPUTATIONAL
DETAILS

A. Lattice stability

In terms of the phonon frequency ν, the criterion for
dynamical lattice stability in the harmonic approximation reads
[28]

ν2(q,s) > 0 (1)

for all wave vectors q in the first Brillouin zone, polarizations,
and phonon branches s. Elastic instabilities connected to acous-
tic long-wavelength phonon modes are scrutinized separately,
as sampling the force constants for wave vectors close to the
� point is computationally not feasible in the present phonon
calculator. Elastic stability in the absence of external forces
requires a positive-definite strain energy (in standard Voigt

notation) [29]:

E(ε) − Ehcp = Vhcp

2

6∑

α,β=1

Cαβεαεβ > 0 (2)

for any small strain matrix ε �= 0. Ehcp denotes the total energy
of an hcp structure in equilibrium with the corresponding
atomic volume Vhcp. There are five independent elastic con-
stants Cαβ for hexagonal crystal symmetry, C11, C12, C13,
C33, and C44, and in addition the relation C66 = (C11 − C12)/2
holds. The elastic stability can be judged from the following
Born criteria [29]:

C44 > 0, (3a)

C11 − |C12| > 0, (3b)

(C11 + C12)C33 − 2C2
13 > 0. (3c)

To compute the elastic constants, we monitored and fitted
the energy vs strain relation [Eq. (2)] for the strain tensors
detailed by Fast et al. [30]. The largest employed strain
component was 0.02.

B. Generalized stacking fault

The GSFE specifies the minimum-energy pathway of cre-
ating a planar crystal fault with a specific degree of lattice
shearing [31]. The GSFE curve was obtained for the fcc
{111}〈112̄〉 family of slip systems by rigidly shearing two
parts of the crystal along the displacement vector u‖bp for
two different pathways. The partial Burgers vector equals
bp = afcc/6〈112̄〉, with afcc being the fcc equilibrium lattice
parameter. The fault energy γ (u) is normalized by the area A

per atom in a {111} close-packed layer,

γ (u) = Esheared(u) − Efcc

A
, (4)

where Esheared and Efcc are the energies of the sheared structure
and the fault-free fcc structure, respectively. The first consid-
ered pathway transforms the fcc lattice into an fcc lattice with
an intrinsic stacking fault (ISF) with corresponding energy
γISF ≡ γ (bp), whereas the second pathway transforms the fcc
lattice with ISF into an fcc lattice with an extrinsic stacking
fault (ESF) with corresponding energy γESF ≡ γ (2bp); see
Fig. 1 for a sketch. It should be noted that these paths involve
shearing on two successive close-packed planes. The energy
barriers occurring on the first pathway and second pathway are
referred to as the unstable stacking fault (USF) and unstable
twinning fault (UTF) with energies γUSF and γUTF, respectively
[32].

C. Total energy and phonon calculations

We employed the Vienna Ab initio Simulation Package
(VASP) [33–35] and the all-electron full-potential local or-
bital (FPLO) scheme [12]. FPLO calculations with the scalar-
relativistic approximation are denoted by FPLO-SR, whereas
relativistic FPLO calculations using the four-component Kohn-
Sham-Dirac implementation [13] are denoted by FPLO-FR. A
detailed account of the numerical parameters for total energy
and phonon calculations is given in the Supplemental Material
[36], which includes Refs. [37–46].
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FIG. 1. Illustration of the crystal configuration at different stages
of the GSF (from left to right, perfect fcc lattice, lattice with ISF,
and lattice with ESF) and repeated slab geometry for calculating the
GSFE surface. The letters A, B, and C, as well the corresponding
color code, denote the stacking sequence, and the arrows indicate the
slip planes with slip vector bp .

III. RESULTS AND DISCUSSION

A. Structure and metastability of hcp states

The equilibrium geometries of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and
Au in the hcp structure [ahcp,(c/a)hcp] as computed with VASP

are listed in Table I. All elements apart from the isoelectronic
Rh and Ir possess an axial distortion larger than the “ideal”
value

√
8/3 ≈ 1.633. Pt seems to stick out as its ratio of 1.710 is

significantly larger than those of the other considered elements.
According to a previous DFT investigation and canonical band
theory treatment for the entire transition-metal family [47],
the (c/a)hcp ratio varies canonically as any of the three series
is traversed, which mainly originates from the one-electron
d-band energy. The deviation of (c/a)hcp from

√
8/3 was found

to peak for the elements of the ninth group, Ni, Pd, and Pt, in
agreement with the present results. It should be pointed out that
Ducastelle and Cyrot-Lackmann already employed the fourth-
order moment theory of the site-resolved electronic density
of states (DOS) to qualitatively show that a slight decrease
(increase) in c/a from

√
8/3 would stabilize the hcp structure

in the hcp (fcc) stability range [48].

As is evident from the calculated elastic constants listed
in Table I, the Born criteria (3c), and the computed phonon
dispersion relations and DOSs shown in the Supplemental
Material [36], the hcp structures of Ni, Cu, Rh, Pd, Ag, Ir, Pt,
and Au are dynamically stable. As their hcp total energies lie
above those of their fcc phases (Table I), these eight structures
are predicted to be metastable bulk phases at zero temperature
and pressure. It should be noted that the metastablity of hcp
Au was reported before [49]. In Table I we also list the elastic
Debye temperatures θD derived from the mean sound velocity
of single-crystalline solids [50].

There is experimental evidence for hcp nanocrystalline
structures in support of several of these metastable bulk phases:
Ni in hcp structure was produced via various preparation
routes, for instance, in pulsed laser deposited films [51], in thin-
film heteroepitaxial growth [52], and during low-temperature
annealing in nanograined thin films [53]. Nanoparticles of hcp
Rh were recently stabilized by means of electron-irradiation-
induced decomposition or chemical syntheses [54], and up to
16-monolayer-thick hcp Au sheets could be synthesized on
graphene oxide [55]. Observations of hcp Pd and Cu island
growth on a tungsten substrate were reported by Wormeester
et al. [56,57]. To the best of our knowledge, the hcp structure
has not been experimentally verified yet for the other elements
(Ag, Ir, and Pt).

B. Spin-orbit-coupling-induced metastability of hcp Pt

To start with, we investigate the influence of relativistic
effects beyond the scalar-relativistic approximation on the
lattice parameters of hcp and fcc Pt (see Table II). Obviously,
relativity causes a small expansion of ahcp (0.3% VASP, 0.7%
FPLO) accompanied by a reduction of the c/a ratio (each
0.7%), leading to an increased atomic volume (0.2% VASP,
1.4% FPLO). Changes of similar magnitude are found for the
fcc equilibrium lattice parameter afcc, although the effect is
much more pronounced in FPLO, and for the hcp-fcc energy
difference (see Table II). With respect to the experimentally
determined lattice parameter of fcc Pt at room temperature,
3.923 Å [58], the inclusion of SOC improves the agreement of
the theoretical results.

Second, in order to measure the impact of SOC on the inter-
atomic forces, we computed the phonon dispersion relations
of hcp Pt with and without invoking SOC. These calculations
were done for fixed geometry (we chose the scalar-relativistic
geometry) in order to disentangle any effect arising from the

TABLE I. Structural parameters, energy difference per atom 	Ehcp ≡ Ehcp − Efcc, elastic constants, and elastic Debye temperature for the
metastable hcp structures of the investigated fcc stable elements. SOC was invoked for Ir, Pt, and Au.

Element ahcp (Å) (c/a)hcp 	Ehcp (meV) C11 (GPa) C12 (GPa) C33 (GPa) C44 (GPa) C13 (GPa) θD (K)

Ni 2.485 1.642 24 340 125 337 60 124 461
Cu 2.568 1.638 8 225 99 246 42 88 365
Rh 2.723 1.613 37 432 152 431 75 176 406
Pd 2.763 1.683 33 247 131 250 22 125 250
Ag 2.929 1.641 3 143 71 154 21 59 221
Ir 2.710 1.625 67 678 237 666 111 267 368
Pt 2.721 1.710 66 471 233 411 27 219 228
Au 2.836 1.673 6 257 185 264 26 162 174
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TABLE II. Structural parameters of fcc and hcp Pt and the energy
difference 	Ehcp ≡ Ehcp − Efcc from VASP with and without SOC,
as well as FPLO in the scalar-relativistic and relativistic modes. The
energy difference 	Efco ≡ Efco − Efcc discussed in Sec. III C is also
listed. The lattice parameters are in angstroms and the energies are in
meV per atom.

Structure Energy

fcc hcp hcp fco

Method afcc ahcp (c/a)hcp 	Ehcp 	Efco

VASP 3.897 2.713 1.722 65 16
VASP+SOC 3.899 2.721 1.710 66 40
FPLO-SR 3.881 2.704 1.718 74 18
FPLO-FR 3.906 2.723 1.706 69 39

geometry change accompanying SOC (see Fig. 2). Accord-
ingly, scalar-relativistic hcp Pt is predicted to be unstable as
imaginary optical modes on the transverse phonon branches
near the �(0,0,0,0) and A(0,0,0,1/2) high-symmetry points
occur. The SOC clearly removes all imaginary optical modes
and hardens the acoustic modes along several high-symmetry
directions, in particular �-K and �-M , but leads to virtually
no change in the maximum phonon frequency. The impact
of the geometry change accompanying SOC is minor as the
comparison of Fig. 2 with Fig. 2 from the Supplemental
Material [36] makes evident; that is, the phonon bandwidth
decreases by ∼0.1 THz, but there is obviously no change in
the band topology.

The effect of SOC on the phonon dispersion relations calls
for an analysis of the 3 × 3 IFC matrix 
αβ(κ,κ ′) for a pair of
atoms κ and κ ′, where α and β denote the Cartesian coordinate
indices (for κ = κ ′, 
αβ is referred to as the on-site term).
For the present purpose it is sufficient to mainly focus on
the trace denoted by Tr 
. Table III lists the traces with and
without considering SOC, Tr 
SOC and Tr 
, respectively, as
well as their difference, 	Tr 
 = Tr 
SOC − Tr 
, for those
shells of atoms neighboring an arbitrary reference atom, for

Γ K M Γ A

0

1

2

3

4

5

6

ν 
(T

H
z)

with SOC
without SOC

FIG. 2. Effect of SOC on the phonon dispersion relations for hcp
Pt employing the scalar-relativistic geometry (see Table II). −|ν| is
plotted when ν2 < 0. The arrows indicate the two optical normal
modes at �, whose polarization vectors lie in the (0001) plane.

TABLE III. The traces of the IFC matrix (eV/ Å
2
) with (Tr 
SOC)

and without (Tr 
) the inclusion of SOC, as well as their difference
(	Tr 
 = Tr 
SOC − Tr 
), for different shells of atoms for hcp
Pt employing the scalar-relativistic geometry. The shell coordinate
triplets (klm) give the location of one site per shell (the number of
equivalent sites is in square brackets) relative to an arbitrary reference
atom in terms of the conventional hcp basis vectors (ka1 = kahcpex ,
la2 = lahcp/2ex + l

√
3/2ahcpey , ma3 = mchcpez). The distance is in

angstroms, and only shells for which |	Tr 
| � 0.03 eV/ Å
2

are
listed.

Shell Distance Tr 
SOC Tr 
 	Tr 


(000) [1] 0 32.494 31.745 0.749
(100) [6] 2.713 −3.299 −3.269 −0.030
(001) [2] 4.671 −0.244 −0.182 −0.062
(210) [6] 4.699 −0.304 −0.340 −0.036
(200) [6] 5.426 0.747 0.860 −0.113
( 4

3
8
3

1
2 ) [6] 6.687 −0.121 −0.066 −0.055

(002) [2] 9.341 −0.211 −0.330 0.119

which |	Tr 
| � 0.03 eV/ Å
2
. The force-constant matrices

were analyzed for the scalar-relativistic geometry. The notation
of a shell (klm) is given in the caption of Table III.

As is evident, the on-site force constants (000) are the
largest; Tr 
 and Tr 
SOC rapidly decay with distance due to
valance electron screening, and both traces exhibit an oscil-
latory pattern with distance. In terms of absolute values, the
SOC clearly has the largest impact on the on-site term, whose

increase of 0.749 eV/ Å
2

arises almost entirely from the in-

plane contributions of 	
xx = 	
yy = 0.383 eV/ Å
2
. Sur-

prisingly, SOC has significantly smaller effects on the nearest-
neighbor shell (100) and the next-nearest-neighbor shell ( 1

3
2
3

1
2 )

(not listed in Table III since |	Tr 
| < 0.03 eV/ Å
2
) than the

more distant shells (200) and (002) with distance equal to
2ahcp and 2chcp, respectively. Thus, the perturbation of the force
constants due to SOC extends to at least two lattice spacings.
Larger supercell calculations would be required to determine
the full range.

SOC affects the IFCs since it influences the underlying
electronic structure and may thus alter the screening of forces
on the ion cores. In an hcp structure (point group D4

6h), the
scalar d-wave functions transform according to the irreducible
representations A1g , E1g , and E2g . Figure 3(a) shows the 5d-
band-dominated total electronic DOS of hcp Pt in the scalar-
relativistic and relativistic modes computed with FPLO. In the
scalar-relativistic case, there is a pronounced peak 0.12 eV
below the Fermi level, which arises mainly from the E1g states.
This peak is due to a flat band with bandwidth ≈1 eV [see
Fig. 3(b)], in which the weighted E1g contribution to the band
states is also shown. The SOC splits degenerate band states
and leads to new singular features in the DOS [see Figs. 3(a)
and 3(c)]. The spin-orbit splitting at the center of the Brillouin
zone amounts to approximately 0.8 eV for the highest occupied
band. The relativistic treatment narrows the peak at the Fermi
level primarily by band splitting, thereby significantly lowering
the DOS at the Fermi energy. The relativistic effects also alter
the topology of the Fermi surface shown in the Supplemental
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FIG. 3. The electronic structure of hcp Pt. (a) Total electronic
DOS in the scalar-relativistic and relativistic modes with FPLO. (b)
FPLO-SR band structure and the E1g band weights represented by gray
ribbons. (c) FPLO-FR band structure. The equilibrium geometries were
employed (see Table II).

Material [36] by removing hole pockets centered at M and
lying on M-L and splitting a funnel-shaped hole surface into
two disconnected ones. We partially attribute the strong impact
of SOC on the IFCs to this reduction of states at the Fermi

level, which in turn reduces the screening [59]. Given the
complexity of the Fermi surface of Pt (as opposed to that of
a simple free-electron metal), we expect that the electronic
structure origin involves more intricate details, for instance, a
dependence of the electronic screening on the size and shape of
the Fermi surface [60], but addressing these aspects is beyond
the scope of this work.

It is instructive to contrast these results for Pt with the impact
of SOC on the phonon dispersion relations for Ir and Au, which,
as neighbors in the periodic table, have comparable spin-
orbit interaction strengths. From the corresponding phonon
dispersion relations shown in the Supplemental Material [36],
it is clear that SOC leads to a minor change in the dispersion
relations (maximum |	ν| = 0.07 THz) without notably affect-
ing the phonon band topology. The flat band of predominantly
E1g character that was suggested to play an important role in
hcp Pt can be ruled out to be decisive. In Au, the 5d bands
are completely filled, and the Fermi surface is determined by
free-electron-like 6s states. In Ir, which has one electron less
than in Pt, this band is almost empty.

The SOC-induced metastability of hcp Pt is a surprising
result since SOC commonly does not affect structural stability.
To lend further insight into the impact of relativistic effects on
structural stability in Pt and what further distinguishes it from
the other elements, we next examine a lattice transformation.

C. The hcp to fco lattice transformation in Pt

The investigated displacive lattice transformation brings
the hcp structure into the face-centered-orthorhombic (fco)
structure. The initial part of this transformation is related to the
zone-centered, optical phonons of hcp Pt with the displacement
vector parallel to the [11̄00] direction, for brevity denoted by
O[11̄00][�]. An analysis of the phonon normal modes at the
� point revealed that the polarization vectors of two optical,
energetically degenerate normal modes lie in the (0001) plane,
but not parallel to the [11̄00] direction. Thus, O[11̄00][�] does
not correspond to a single excited optical normal mode, but
rather to a superposition of both optical normal modes.

The hcp to fco lattice transformation was modeled as a
“frozen” phonon mode. It is governed by a displacement of the
two types of close-packed (0001) planes in opposite directions,
i.e., alternating in [11̄00] and [1̄100] for all A and all B

layers, respectively, where ABAB denotes the hcp stacking
sequence; see Fig. 4(a) for a sketch. In order to describe this
transformation, we use the displacement variable δ, which
is linear in the displacement strain and defined to be 0 and
1 at the initial state [hcp structure, space group P 63/mmc

(194)] and the final state [fco structure, space group Fmmm

(69)], respectively. The transformation was modeled by the
orthorhombic space group Cmcm (63), which is a subgroup of
both the initial and final structures. During the displacement
we assumed that the cell volume is constant; that is, neither
the interplanar distances between adjacent (0001) planes nor
their in-plane dimensions were allowed to change. Due to
these constraints, the lattice parameters of the fco structure,
afco, bfco, and cfco as defined in Fig. 4(a), are related to the
hcp lattice parameters through afco = ahcp, bfco = √

3ahcp, and
cfco = chcp. A brief comment on the effect of relaxation is
provided in the Supplemental Material [36].
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FIG. 4. (a) Sketch of the hcp to fco transformation at the initial (δ = 0), intermediate (δ = 0.5), and final (δ = 1) stages by means of
displacing the two types of hcp (0001) planes alternating in the [11̄00] and [1̄100] directions. Atoms residing in the two planes are colored
differently. The basal plane of the fco structure with lattice parameters afco and bfco is indicated at δ = 1. cfco (not depicted) measures the height
of the fco unit cell perpendicular to the image’s plane. (b) Total energy difference E(δ) − Ehcp for the transformation of Pt in comparison to
Pd, Ir (energies rescaled by a factor of 0.1), and Au. The inset shows the energies of Pt for small δ.

In the scalar-relativistic approximation, the phonon fre-
quencies for both these optical normal modes are imaginary
(Fig. 2), indicating that hcp Pt would spontaneously transform
into a different structure with lower energy. This is confirmed
by the scalar-relativistic total energies along the lattice trans-
formation [see Fig. 4(b)]. As δ is increased from 0 to 1, the
total energy decreases until it reaches a symmetry-dictated
minimum in energy that coincides with the fco structure. From
the VASP (FPLO-SR) calculations, we find that the total energy of
the fco structure lies approximately 49 meV (56 meV) lower in
energy than that of the hcp state [see Fig. 4(b)]. In contrast, the
VASP+SOC and FPLO-FR total energy curves exhibit a shallow
minimum at δ = 0, which is in line with the real phonon
frequencies for the optical normal modes at � (Fig. 2 from
the Supplemental Material [36]), and a local maximum at δ ≈
0.16. This supports the scenario that the SOC-induced splitting
in the electronic band structure described in the previous
section stabilizes the hcp band energy against a Jahn-Teller-
like band distortion, which lifts the twofold-degenerate E1g

representation of the scalar d-wave functions. Similar to the
scalar-relativistic results, the VASP+SOC and FPLO-FR energy
curves exhibit a minimum at δ = 1. SOC reduces the fco-hcp
energy difference by 23 and 26 meV in the VASP+SOC and
FPLO-FR calculations, respectively. Thus, although all phonon
frequencies in relativistic hcp Pt are predicted to be real at
0 K, the hcp structure is only barely stable due to the shallow
energy barrier along the hcp to fco transformation path, which
is likely to be overcome by thermal lattice vibrations at rather
low temperatures.

It is instructive to investigate the hcp to fco transformation
path for a few other elements, and we chose isoelectronic Pd,
as well as Ir and Au. As is evident from the total energies
shown in Fig. 4(b), the relative stability of the hcp and fco
structures of Pd, Ir, and Au is inverted, irrespective of SOC, and
E(δ) is a monotonically increasing function of δ (0 � δ � 1).
The SOC decreases Efco − Ehcp of Ir by 35 meV. The total
energies of the other investigated elements, Ni, Cu, Rh, and
Ag, are also found to order as Efcc < Ehcp < Efco. Thus, Pt is
an exception since Efcc < Efco < Ehcp. It should be stressed
that this exceptional order is not a result of spin-orbit effects

as the same order is found in the scalar-relativistic treatment
of Pt.

D. GSFE of Pt

The results in the previous sections showed that SOC
insignificantly alters the relative energetic stability of the close-
packed fcc and hcp structures of Pt, whereas a pronounced
effect on the total energy difference was demonstrated for more
open structures on the hcp to fco deformation path. Here, we
focus on the GSF of fcc Pt, which may be viewed as a local
perturbation of the close-packed arrangement near fault planes,
depending on the position on the fault pathway, and investigate
the impact of SOC on the GSFE curve. Of special significance
are the extrema on the GSFE curve, combinations of which
were hypothesized to govern the activation of competing
plastic deformation modes in the atomistic theory of plasticity
in fcc crystals [32,61–63]. In this context it was reported [64]
that the fault energies in Pt do not scale as in common fcc
transition, noble, and nearly-free-electron metals. This point
is addressed further below.

The GSFE curves γ (u) computed with VASP are shown in
Fig. 5(a) as a function of the magnitude of the displacement
vector u = |u|. The most notable effect of SOC is a reduction
of both γISF and γESF by approximately 20 mJ/m2, or 6%
(a rule of thumb states γISF � γESF), and an increase of the
barriers γUSF − γISF and γUTF − γISF. The position of the USF
at u(γUSF)/bp ≈ 0.7 is located relatively far from the midpoint
of the first pathway at 0.5bp. The position of this saddle point,
as well as that of the UTF at u(γUTF)/bp ≈ 1.5, is fairly stable
against invoking SOC. It is also evident that the interlayer
relaxation on the fault energy curve is generally significant,
in particular for the saddle-point energies.

Table IV summarizes the present intrinsic stable and un-
stable fault energies along with available DFT data, which
neglected SOC throughout, and the experimentally determined
γISF. It should be highlighted that in contrast to Refs. [64,65]
but in accordance with Refs. [66,67], we report a pronounced
barrier height γUSF − γISF and a significantly larger barrier
γUTF − γISF compared to the theoretical data from Ref. [64].
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FIG. 5. (a) GSFE surface γ of Pt with fault pathway u = |u| given
in fractions of the magnitude of the partial Burgers vector bp = |bp|.
(b) Scaling plot for stable and unstable fault energies of the GSFE
with our values for Pt computed with and without invoking SOC,
DFT data taken from Jin et al. (neglecting SOC) [64], and the scaling
law (5) suggested in Ref. [64].

The experimental estimate for γISF amounts to 322 mJ/m2

at 298 K [68], but as the corresponding temperature coef-
ficient dγISF/dT ≈ −0.08 (mJ/m2)/K is negative [68], the
low-temperature experimental value is larger by approximately
24 mJ/m2 assuming a linear extrapolation with temperature.
Keeping in mind that the accuracy of experimental ISF energies
in fcc elements was estimated to be approximately 20 % [69],
we conclude good agreement with the presently derived γISF.

The obtained data allow examining a previously suggested
universal scaling law [64],

γUTF

γUSF
� 1

2

γISF

γUSF
+ 1, (5)

which would be fulfilled provided that the fault energy barrier
for the sequentially faulted lattice (i.e., along the second
pathway) does not strongly interact with the preexisting ISF. Jin
et al. [64] found that Eq. (5) does not apply to scalar-relativistic

TABLE IV. Relaxed stable and unstable fault energies (mJ/m2)
on the GSFE surface of fcc Pt evaluated with and without SOC. Other
DFT (neglecting SOC) and available experimental literature data are
tabulated for comparison.

Approach γUSF γISF γUTF γESF

Theory
This work, with SOC 346 302 455 313
This work, without SOC 349 322 441 336
Ref. [64]a 286 286 305 284
Ref. [67]b,c 339 324 486
Ref. [65]b 258 254
Ref. [66]b 311 282

Experiment
Ref. [68] (298 K) 322

a VASP, functional not published.
b VASP, PBE [37].
c Experimental lattice parameter used.

Pt owing to a strongly reduced γUTF; see the scaling plot in
Fig. 5(b). In contrast, we find that scalar-relativistic Pt obeys the
scaling relation more strictly, and SOC brings it significantly
closer to the universal line equation (5), meaning that the
stable and unstable fault energies in Pt do indeed scale as
in other common fcc metals. Nevertheless, Pt is the element
that lies farthest from the universal scaling law [Fig. 5(b)].
This supports the conclusion from Ref. [64], although in
attenuated form, that the coupling between the transition state
for nucleation of the two-layer nanotwin and the preexisting
intrinsic stacking fault extends to several adjacent planes.
Possible reasons for the disagreement between this work and
Jin et al. for scalar-relativistic Pt are ascribed to differences
in numerical treatment (plane-wave cutoff, k-point integration
scheme, size of supercell, and thickness of vacuum), the proce-
dure of mapping out the GSFE, and the exchange-correlation
functional, all of which may affect the fault energies.

IV. SUMMARY AND CONCLUSIONS

We presented a DFT investigation of lattice dynamical
properties of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au in the hcp
structure, wherein SOC was considered for Ir, Pt, and Au. All
eight investigated elements are dynamically stable in the hcp
structure and thus presumably metastable bulk phases at zero
temperature and pressure. The existing experimental evidence
for hcp Ni, Cu, Rh, Pd, and Au in nanocrystalline structures
is supports these isostructural metastable bulk phases. The
metastability of the other hcp phases has not been experimen-
tally observed yet and thus is predicted here.

This investigation complements our previous density-
functional study [27], which suggested that the fcc structures
of the hcp stable elements Sc, Ti, Co, Y, Zr, Tc, Ru, Hf, Re,
and Os are metastable at 0 K. Taking both studies together, the
theoretical picture that has now evolved is that all transition
and noble-metal elements stable in the hcp (fcc) structure are
predicted to possess a metastable bulk fcc (hcp) phase.

Unlike hcp Ir and Au, the inclusion of SOC was shown to be
mandatory for an accurate description of the phonon dispersion
relations and dynamical stability in hcp Pt. A scalar-relativistic
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treatment of hcp Pt was found to lead to imaginary optical
modes. We showed that the SOC most notably perturbs the
on-site IFCs and the perturbation extends to no less than two
lattice spacings. The electronic structure reason for this change
in the screening of forces was ascribed, at least in part, to a
pronounced reduction of electronic DOS at the Fermi level
due to a SOC-induced splitting of degenerate band states of
predominantly E1g character.

To further examine the role of SOC in Pt, on the one
hand, we focused on the hcp to fco lattice transformation.
We found that Pt is the only investigated element for which
Efco < Ehcp. This phase transformation would spontaneously
occur in scalar-relativistic hcp Pt due to an unstable �-centered
optical phonon mode, but it is suppressed in relativistic Pt
due to the formation of a local maximum on the displacement
pathway, in agreement with the computed phonon spectra. On
the other hand, SOC causes significant changes in the stacking
fault energies and fault energy barriers of the GSFE curve of
fcc Pt. It should be stressed that the present intrinsic stable
and unstable fault energies in Pt were found to scale as in
other common fcc metals according to a previously suggested
universal scaling law [64], provided that the effect of SOC
on the total energy is considered. To summarize, relativistic
effects in Pt are too significant to be neglected in an adequate
description of its electronic structure, phase stability, and
dynamical and micromechanical properties.

This work raises several further questions, for instance, if
pairs of stable and metastable close-packed polytypes do also
exist in substitutionally disordered close-packed alloys. This
question is intimately related to the ongoing search for the
thermodynamic ground state and polymorphism in some high-

entropy alloys [70,71], as well as the production of dual-phase
(fcc and hcp) high-entropy alloys [72]. On the other hand,
polytypism is known to occur in a variety of inorganic solids,
and one might wonder if polytypes with extended stacking
sequences (i.e., longer periodicity) do exist in transition and
noble elements and what their dynamical properties are.

Moreover, the present findings are relevant in the context
of computing the temperature dependence of the intrinsic or
extrinsic stacking fault energies through the axial Ising model
[73], where the dynamical stability of the involved closed-
packed polytypes is a mandatory requirement for determining
vibrational free energies. Since ideal (i.e., laterally unbound)
ISFs can be viewed as a two-layer hcp nucleus in the fcc matrix
(see Fig. 1), one may also extend this investigation to the lattice
dynamical properties of an ISF embedded in the fcc host, with
a particular focus on interfacial effects.
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