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We classify the topology of the quench dynamics by homotopy groups. A relation between the topological
invariant of a postquench order parameter and the topological invariant of a static Hamiltonian is shown in d + 1
dimensions (d = 1,2,3). The midgap states in the entanglement spectrum of the postquench states reveal their
topological nature. When a trivial quantum state is under a sudden quench to a Chern insulator, the midgap states
in the entanglement spectrum form rings. These rings are analogous to the boundary Fermi rings in the Hopf
insulators. Finally, we show a postquench order parameter in 3+1 dimensions can be characterized by the second
Chern number. The number of Dirac cones in the entanglement spectrum is equal to the second Chern number.
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I. INTRODUCTION

Recently, properties of quantum states far from equilibrium
attract huge attention due to the progressive developments in
cold-atom experiments. For example, a quantum Newton’s
cradle setup is realized in one-dimensional Bose gases [1] and
the emergence of quantum turbulence is observed in a Bose-
Einstein condensate [2]. Besides examining the dynamical
properties of nonequilibrium states, cold-atom experiments
also provide a playground for engineering topological systems
including the Su-Schrieffer-Heeger model [3], the Hofstadter
model [4–6], and the Haldane model (Chern insulators) [7,8].
These topological phases are typically classified by the topo-
logical invariant in the static Hamiltonian. The classifica-
tion of the topological phases out of equilibrium is one of
the main interests in both condensed-matter and cold-atom
communities.

To study nonequilibrium topological phases, one straight-
forward setup is Floquet systems. The band inversion mecha-
nism is introduced by a periodically driven source and gives
rise to a Floquet topological insulator [9–11]. Another setup
is considering a dynamical process in which an initial state
of a trivial Hamiltonian is evolved under a sudden quench
to a nontrivial Hamiltonian. This quantum quench involves
the change of the topological number and can be revealed in
the postquench states. In a generic one-dimensional two-band
model, a dynamic Chern number characterizes the topological
property of the postquench state [12,13]. In a two-band Chern
insulator, the dynamics of the postquench state can be captured
by the Hopf number [14,15]. The postquench dynamics across
a quantum critical point is also influenced by the topological
edge states [16–20]. The topology of the static Hamiltonian
and topology of the postquench state are related.

In this paper, we establish this relation in a systematic way
by use of homotopy groups. We show that the postquench
state is periodic in time under a sudden quench to a transla-
tional invariant Hamiltonian in d dimensions (d = 1,2,3). The
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momentum-time space is a (d + 1)-dimensional torus T d+1. A
mapping from the time-momentum space T d+1 to a manifold
M of the postquench order parameter is characterized by the
homotopy group πd+1(M). In a two-band model, the manifold
of the postquench pseudospin is a two-sphere S2. Due to the
nonvanishing homotopy groups π1+1(S2) and π2+1(S2), the
postquench states have nontrivial topology in one and two
dimensions. However, in a generic n-band model (n > 2), the
postquench order parameter can be a higher-dimensional man-
ifoldM �= S2. The statement for two-band models, in general,
cannot generalize to n-band models (n > 2). We consider two
different strategies to overcome this obstacle. First, we project
both the static Hamiltonian and the postquench state in the
submanifolds that have similar structures as a two-band model.
We demonstrate this strategy by spin-1 models. Second, we
consider higher-order homotopy groups to classify both the
static Hamiltonian and the postquench order parameter. In a
four-band model, we demonstrate the relation between the
three-dimensional winding number of the static Hamiltonian
[classified by π3(S3)] and the second Chern number of the
postquench order parameter [classified by π4(S4)].

The entanglement spectrum also reveals the topological
property of the postquench states. In (1 + 1)-dimensional
postquench states, the entanglement spectrum has crossings
when the dynamic Chern number of the postquench order
parameter is nonzero [13]. Here, we extend this analysis to 2+1
and 3+1 dimensions and consider two different bipartitions.
In a real-space bipartition, we show that when the postquench
state is nontrivial, midgap states in the entanglement spectrum
form Dirac cones in 2+1 and 3+1 dimensions. The number
of Dirac cones in the entanglement spectrum directly links to
the topological index of the postquench states. We compute the
topological index of the postquench states and show it relates to
the topological invariant of the postquench order parameters.
In a frequency space bipartition [21], we show that the midgap
states in the entanglement spectrum in 2+1 dimensions form
rings. In this case, the topological invariant of the postquench
order parameter is characterized by the Hopf number. These
rings in the entanglement spectrum are analogous to the
boundary Fermi rings in the Hopf insulators [22–24].
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The rest of the paper is organized as follows: In Sec. II, we
introduce the quench protocol and the classification scheme by
homotopy groups. In Sec. III, we review the quench dynamics
of two-band models and introduce a different quench process
which has not been discussed before. In Sec. IV, we show
the quench dynamics and the entanglement spectrum of the
postquench states in spin-1 models. In Sec. V, we demonstrate
that the second Chern number captures the quench dynamics in
3+1 dimensions in a four-band model. In Sec. VI, we conclude
our work and provide some discussion.

II. QUENCH PROTOCOL

We consider a free-fermion Hamiltonian with discrete
translational symmetries

H =
∑

k

n∑
i,j,=1

c
†
k,iH

ij

k ck,j , (1)

where k is the momentum, Hij

k is the single-particle Hamil-
tonian with n being the number of bands, and c

†
k,i is the

fermionic operator in the momentum space. If the single-
particle Hamiltonian Hij

k has a massive Dirac Hamiltonian
representation, one can classify the possible distinctive Dirac
mass term by homotopy groups [25–28]. This classification
requires the number of bands to be large. On the other hand,
in few-band models, the classification of the single-particle
Hamiltonian can also be obtained from the structure of the
single-particle Hamiltonian directly [22–24,29–31]. In partic-
ular, we can parametrize these few-band models with a finite set
of functions {fk,α}. Each point in the momentum space (which
is a d-dimensional torus) maps to a point in the manifold M of
this set of functions. We can classify distinct sets of functions
by the dth homotopy group πd (M).

The evolution operator of the many-body state is Û (t) =
e−iH t . Let us assume the initial many-body state |�i〉 is
prepared from a given Hamiltonian Hi such that |�i〉 =∏

k,α∈occ. d
†
k,α|0〉, with dk,α being the fermionic opera-

tor in the energy basis of the initial Hamiltonian Hi =∑
k,α εk,αd

†
k,αdk,α , and “occ.” refers to the occupied bands.

Here εk,α is the eigenenergy of Hi . The corresponding single-
particle wave function is d

†
k,α|0〉 = ∑

i uα,ic
†
k,i |0〉, where uα,i

is the unitary matrix diagonalizing Hi .
The postquench many-body state is

|�(t)〉 = Û (t)|�i〉
=

∏
k,α

e−it
∑

i,j H
ij

k c
†
k,j ck,j d

†
k,α|0〉

=
∏
k,α

∑
i,j

[e−itHk ]ij uα,j c
†
k,i |0〉, (2)

which is factorized in the momentum k. Hence we only
need to focus on the single-particle evolution operator
Uk(t) = e−itHk acting on the single-particle wave function,
i.e., particles do not interchange the momentum due to
its noninteracting nature. We can consider a measure of
an operator Ok = ∑

i,j c
†
iO

ij

k cj by the postquench state,

〈Ok(t)〉 = 〈�(t)|Ok|�(t)〉 = ∑
α,β,γ [eitHk ]αβOβγ

k [e−itHk ]γα ,

where Oβγ

k = u
†
βiO

ij

k uγj . This postquench measurement
defines an order parameter 〈Ok(t)〉 on a manifold M′.

For a finite system, the postquench state will recur to its
initial state. The momentum-time space is a d + 1 torus, and
we can consider a mapping from a point in this d + 1 torus to a
point in the order parameter spaceM′. We can classify distinct
sets of the order parameter space by the (d + 1)th homotopy
group πd+1(M′).

We demonstrate few examples where the classification of
the postquench order parameter πd+1(M′) had direct relation
to the classification of the static Hamiltonian πd (M) in d =
1,2,3 dimensions and n-band models with n = 2,3,4.

III. TWO-BAND MODELS

A generic two-band Hamiltonian can be written as
Hk = akI2×2 + (fk,gk,hk) · σ , where σ = (σx,σy,σz) are the
Pauli matrices. The corresponding energy is Ek = ak ±√

f 2
k + g2

k + h2
k. Since ak just shifts the energy, the topology

of the Hamiltonian is independent of ak. For simplicity, we
remove ak in the following discussion.

In one-dimensional cases, we consider a symmetry con-
straint restricting the Hamiltonian such that one of the Pauli
matrices is forbidden. For example, a chiral symmetry con-
strains the Hamiltonian S :→ S†HkS = −Hk . Then hk = 0
if S = σz. The manifold of the Hamiltonian can be seen as a
ring with the parametrization eiθk = fk+igk√

f 2
k +g2

k

. The classification

for a point in k to θk is given by the first homotopy group
π1(S1) = Z and can be indexed by the winding number

ν = 1

2π

∫
dk

dθk

dk

= 1

2π

∫
dk

1

f 2
k + g2

k

[fk∂kgk − gk∂kfk]. (3)

In two-dimensional cases, we do not consider any symmetry
constraints. All the components (fk,gk,hk) are nonvanishing.
The manifold of the Hamiltonian is a two-sphere where we can
parametrize it by a unit vector d̂k = (fk,gk,hk)√

f 2
k +g2

k+h2
k

. The second

homotopy group classifies the Hamiltonian by π2(S2) = Z and
can be indexed by the Chern number

C = 1

4π

∫
d2kd̂k · [

∂kx
d̂k × ∂ky

d̂k
]
. (4)

Now we consider an initial state |ψi〉 which evolves under
the evolution operator Uk(t) = e−iHk t , |ψk(t)〉 = Uk(t)|ψi〉.
The evolution operator can be written as Uk(t) = cos(|Ek|t) −
iHk sin(|Ek|t). The postquench state will recur to its initial
state at t = 2π/|Ek|. Momentum and time (k,t) form a
(d + 1)-dimensional torus, where d is the dimensions of the
momentum space.

A. 1+1 dimensions

We first discuss the case when the static Hamiltonian Hk is
in one dimension and the postquench state |ψk(t)〉 is in 1+1
dimensions. A pseudospin can be defined by the postquench
state as n̂k(t) = 〈ψk(t)|σ |ψk(t)〉. There are two possible sce-
narios for the postquench pseudospin. One scenario is that there
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FIG. 1. An illustration of the topological relation between the
nonvanishing winding number of the static Hamiltonian and the
nonvanishing dynamic Chern number of the postquench pseudospin.
The blue arrows correspond to the pseudospin of the initial state.
The red arrows correspond to the directions of the pseudomagnetic
field (Hamiltonian Hk). The light-blue (semi-)rings correspond to
the trajectories of the pseudospin precession. (a) When there are two
fixed points k0 and k1, the trajectories of the pseudospin precession
wraps the Bloch sphere from k0 to k1 (shaded by orange). (b) When
pseudospin of the initial state is perpendicular to the directions of the
pseudomagnetic field, the trajectories of the pseudospin precession
with a half period wraps the Bloch sphere from 0 to 2π (shaded by
orange). Dashed green line shows the equator in the x-y plane.

can exist fixed points such that the postquench pseudospin
is parallel or antiparallel to the pseudomagnetic field (static
Hamiltonian Hk). The topological invariant characterizing the
postquench pseudospin in this scenario is the dynamical Chern
number [12,13],

Cdyn. = 1

4π

∫ km+1

km

dk

∫ π

0
dtn̂k(t) · [∂kn̂k(t) × ∂t n̂k(t)], (5)

where km and km+1 are two nearby fixed points in
one-dimensional momentum space. It has been shown in
Refs. [12,13] that the dynamic Chern number Cdyn. = ±1 if
the winding number νi for the Hamiltonian of the initial state
is different than the winding number ν of the Hamiltonian
Hk, νi �= ν. Pictorially, one can visualize this dynamical
Chern number by monitoring how many times the trajectory
of the postquench pseudospin wraps the Bloch sphere. We
demonstrate this wrapping in Fig. 1(a). For a given k, the
postquench pseudospin precesses along the direction of the
pseudomagnetic field dk = (fk,gk,0) with a circular trajectory
on the Bloch sphere. If the static Hamiltonian Hk has a
nontrivial winding, the circular trajectory of the post-quench
pseudospin can wrap the entire Bloch sphere from k0 to k1,
where k0(1) is the fixed point with the postquench pseudospin
(anti-)parallel to the pseudospin of the initial state.

Next, we consider the second scenario which has not been
discussed before. This scenario has no fixed points for the
postquench pseudospin. In general, the circular trajectories on
the Bloch sphere of the postquench pseudospin from k = 0 to
k = 2π do not wrap the entire Bloch sphere. Here k ∈ [0,2π ]
is the Brillouin zone (BZ). However, when the pseudospin

of the initial state is perpendicular to the direction of the
pseudomagnetic field, the circular trajectories on the Bloch
sphere of the postquench pseudospin from k = 0 to k = 2π

can wrap the entire Bloch sphere [see Fig. 1(b)].
Without loss of generality, we consider the static Hamil-

tonian Hk = f̂kσx + ĝkσy and the initial state |ψi〉 =
(1,0)T. Here we normalize the static Hamiltonian f̂ 2

k +
ĝ2

k = 1. The postquench state is |ψk(t)〉 = [cos t,−i(f̂k +
iĝk) sin t]T and the postquench pseudospin is n̂k(t) =
(ĝk sin 2t,f̂k sin 2t, cos 2t). Since there is no fixed point, we
need to integrate out the entire momentum space for the
corresponding dynamical Chern number, which is defined as

C ′
dyn. = 1

4π

∫ 2π

0
dk

∫ π/2

0
dtn̂k(t) · [∂kn̂k(t) × ∂t n̂k(t)]

= −1

2π

∫ π/2

0
sin 2t

∫ 2π

0
dk[fk∂kgk − gk∂kfk]

= −ν. (6)

Because of the intrinsic symmetry, n̂k(t) · [∂kn̂k(t) ×
∂t n̂k(t)] = n̂k(−t) · [∂kn̂k(−t) × ∂t n̂k(−t)], we integrate
half of the period (0 to π/2) of the postquench pseudospin to
have the nonvanishing dynamical Chern number. Figure 1(b)
shows how the trajectories of the pseudospin precess with half
period wraps the Bloch sphere when there is a nonvanishing
winding number of the static Hamiltonian Hk.

To demonstrate the topological property of the postquench
states, we consider the Su-Schrieffer-Heeger model, where
fk = t1 + t2 cos k and gk = t2 sin k. When |t1/t2| < 1 the
winding number ν = 1 and |t1/t2| > 1 the winding number
ν = 0. One way to characterize topological property of the
postquench states is the entanglement spectrum. One can
consider a spatial bipartition (A and B subsystems) and con-
struct the reduced density matrix ρA(t) = TrB |�(t)〉〈�(t)| =
N−1e−HA(t), where HA(t) is the entanglement Hamiltonian
and N is the normalization condition such that TrAρA(t) = 1.
In free-fermion systems, the spectrum of the entanglement
Hamiltonian can be directly extracted from the correlation
matrix CA

x,x ′ (t) = 〈�(t)|c†xcx ′ |�(t)〉, with x,x ′ in the subsys-
tem A [32,33]. The entanglement spectrum ξ (t) is the defined
as the eigenvalue of the reduced density matrix CA

x,x ′ (t). In
the first scenario where there are fixed points, it is shown in
Ref. [13] that the entanglement spectrum has crossings if the
dynamic Chern number is nonvanishing. Here, we demonstrate
that in the second scenario, the entanglement spectrum also
has crossings if the dynamic Chern number is nonvanishing.
Figure 2(a) shows when t1/t2 = 0.5, the midgap states in
the entanglement spectrums cross. These midgap states are
localized at the entanglement boundary. This is the bulk
boundary correspondence in the entanglement Hamiltonian.
If the dynamic Chern number is nonvanishing, there are robust
boundary modes in the entanglement Hamiltonian. On the
other hand, if the dynamic Chern number is zero, there are
no localized midgap states, as shown in Fig. 2(b).

In two-band models, the postquench pseudospin n̂k(t)
contains the same information as the postquench pro-
jector Pk(t) = |ψk〉〈ψk| = 1

2 [1 + ñk(t) · σ ], where ñk(t) =
(ĝk sin 2t,−f̂k sin 2t, cos 2t). Hence the topological invariant
computed from the postquench pseudospin can reflect the
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FIG. 2. Entanglement spectrum ξ (t) for a real-space bipartition
with (a) t1/t2 = 0.5. The green (orange) line indicates the corre-
sponding eigenstate localized at the left (right) entangling boundary
between subsystems A and B. (b) t1/t2 = 2. There are no crossings
in the entanglement spectrum.

topology of the postquench state and can reveal its property in
the entanglement spectrum. In (1 + 1)-dimensional cases, the
Chern number C computed from the postquench state is C =
−C ′

dyn. = ν. This indicates that the number of crossings of the
midgap states in the entanglement Hamiltonian is related to the
dynamical Chern number of the postquench order parameter.
Since the dynamical Chern number is computed from t = 0 to
t = π/2, the number of crossings in the entanglement spectrum
in the region t ∈ [0,π/2] equals the dynamical Chern number
due to the bulk boundary correspondence.

B. 2+1 dimensions

For the case that the static Hamiltonian is in two dimensions
and the postquench state is in 2+1 dimensions, the postquench
pseudospin is defined as n̂k(t) = 〈ψk(t)|σ |ψk(t)〉 on the Bloch
sphere. One can consider a mapping from (t,kx,ky) to n̂k that
can be classified by the third homotopy group π3(S2). The
topological index is characterized by the Hopf number [34]

χ =
∫

d2kdtFk(t) · Ak(t), (7)

where F i
k(t) = 1

8π
εijkn̂k(t) · [∂j n̂k(t) × ∂kn̂k(t)] and Ai

k(t) is
the Berry connection satisfying F i

k(t) = εijk∂jA
k
k(t). In a

two-band model, the Berry connection Ai
k(t) and Berry flux

F i
k(t) can be computed from the postquench state Ai

k(t) =
i〈ψk(t)|∂iψk(t)〉 and F i

k(t) = 1
2π

εijk〈∂jψk(t)|∂kψk(t)〉. It has
been shown in Refs. [14,15] that the Hopf number is nonvan-
ishing if the Chern number of the static Hamiltonian is nonzero.

The relation between the nonvanishing Chern number of
the static Hamiltonian and the nonvanishing Hopf number is
illustrated in Fig. 3. If the static Hamiltonian has a nonvanish-
ing Chern number, the direction of the pseudomagnetic field
dk = (fk,gk,hk) forms a skyrmion texture. The postquench
pseudospin precesses under the pseudomagnetic field. For a
given direction of the pseudospin, there is an inverse map-
ping from n̂k(t) → (kx,ky,t) such that the trajectory in the
momentum-time space is a closed loop. If the postquench
pseudospin has a nonvanishing Hopf number, the inverse
mapping of two different pseudospins forms a Hopf link in
the momentum-time space [14,15]. As demonstrated in Fig. 3,
the pseudospin at center is antiparallel to the pseudomagnetic
field and does not precess. The inverse mapping is a line

t

kx

ky

n̂(t)

Hk

n̂(π/2)

FIG. 3. An illustration of the topological relation between nonva-
nishing Chern number of the static Hamiltonian and the nonvanishing
Hopf number of the postquench pseudospin. The blue arrows corre-
spond to the pseudospin n̂k(t) of the initial state [upper panel]. The
red arrows correspond to the direction of the pseudomagnetic field
dk = (fk,gk,hk) [lower panel]. The light-blue arcs correspond to the
trajectories of the pseudospin n̂k(t) precession from t = 0 to π/2
[upper panel]. The dashed blue arrows are the pseudospin at t = π/2
[upper panel]. In the upper-right panel, the green line corresponds to
the inverse mapping from the pseudospin pointing to the north pole
at center to the momentum-time space. The pink ring corresponds to
the inverse mapping from the pseudospin pointing to the south pole
at t = π/2 to the momentum-time space. The green line and the pink
ring form a Hopf link that relates to the nonvanishing Hopf number
of the postquench pseudospin.

along the t axis. For the pseudospins perpendicular to the
pseudomagnetic fields which are pointing to the center, these
pseudospins will precess to the south pole at t = π/2. The
inverse mapping of these pseudospins pointing to the south pole
is a ring at the t = π/2 plane encircling the inverse mapping
of the pseudospins pointing along the north pole. These two
trajectories in the momentum-time space form a Hopf link
that relates to a nonvanishing Hopf number of the postquench
pseudospin.

Now we will show the relation of the entanglement spectrum
of the postquench state and its corresponding Hopf number
characterizing the postquench pseudospin. To be specific, we
consider the Hamiltonian with fk = t1 sin kx , gk = t1 sin ky ,
and hk = M + cos kx + cos ky .

The Chern number of this static Hamiltonian is |C| = 1
when 0 < |M/t1| < 2 and C = 0 otherwise. We consider
the entanglement spectrum of the postquench state evolved
from |ψi〉 = (1,0)T. For simplicity, we flatten the Hamiltonian
|Ek| = 1 such that the period of the postquench state is 2π .
For a real-space bipartition, the entanglement spectrum has
no crossings if the Hopf number is zero [Fig. 4(a)] and
has two cones when the Hopf number |χ | = 1 [Fig. 4(b)].
On the other hand, we can also consider a frequency space
bipartition. The postquench state in the frequency space
is ψk(ω) = ∫ 2π

0 dteiωtψk(t), with ω ∈ [0,1]. The frequency
space bipartition we considered is that A : ω ∈ [0,0.5] and
B : ω ∈ [0.5,1]. The entanglement spectrum has no crossing if
the Hopf number is zero [Fig. 4(c)]. For the case Hopf number
|χ | = 1, the midgap states in the entanglement spectrum form
a ring [Fig. 4(d)]. This ring in the entanglement spectrum
is similar to the boundary Fermi ring in the Hopf insulators
[22–24].
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FIG. 4. Entanglement spectrum ξ (kx,t) for a real-space biparti-
tion with (a) (t1,M) = (1,2.5), (b) (t1,M) = (1,0.5). Entanglement
spectrum ξ (kx,ky) for a frequency space bipartition with (c) (t1,M) =
(1,2.5), (d) (t1,M) = (1,0.5). The right panel in (d) shows the midgap
states form a ring.

Up to now, the relation between the Hopf number and
the number of boundary Fermi rings in the Hopf insulators
has not been established in the literature. It has been roughly
discussed in Ref. [24] that there are more surfaces states when
the absolute value of the Hopf number becomes larger. One
should notice that in the Hopf insulators, all the Chern numbers
computed from the three two-dimensional tori embedded in
T 3 are zero. This indicates that there are no chiral modes on
three boundaries due to vanishing Chern numbers in three
directions. However, nonvanishing Hopf numbers generate
gapless boundary states from the bulk boundary correspon-
dence. Heuristically, the Fermi ring can be understood from
a skyrmion texture of the pseudospin n̂(t) in the (kr ,t) plane,
where kr =

√
k2
x + k2

y . In Fig. 3, at kr = 0 and kr = kboundary,
the pseudospin always points to the north pole. The trajectory
in the momentum-time space where the pseudospin points to
the south pole forms a ring [pink ring in Fig. 3]. Hence for a
fixed θk = tan−1 kx/ky , the pseudospin n̂(t) has a space-time
skyrmion texture in the (kr ,t) plane and leads to one chiral
boundary mode in the entanglement Hamiltonian for a fre-
quency space bipartition. The Fermi ring in the entanglement
Hamiltonian is the collection of the chiral boundary modes
from θk = 0 to 2π .

IV. THREE-BAND MODELS: SPIN-1 MODELS

A generic three-band model can be written as Hk =
akI3×3 + bk · λ, where λi,i = 1, . . . 8 are Gell-Mann matrices
spanning the Lie algebra of the SU(3) in the defining repre-
sentation. We remove ak in the Hamiltonian since it just shifts
the energy level. One can flatten the Hamiltonian by using the
eigenstate projectors in terms of Gell-Mann matrices as [35,36]

Pk,α = |ψk,α〉〈ψk,α| = 1
3 (1 +

√
3nk,α · λ), (8)

where two conditions TrPk,α = 1 and P 2
k,α = Pk,α constrain

the nk,α vectors to be a unit vector on S7. The nk vector

describes the manifold of the static Hamiltonian with higher
dimension than S1 and S2. The homotopy group is zero
in one and two dimensions, π1(S7) = 0 and π2(S7) = 0. To
have the nontrivial homotopy group, we need to constrain
the Hamiltonian to have the spin-1 structure, Hk = dk · S,
where dk = (fk,gk,hk) and S = (Sx,Sy,Sz) are chosen from
the linear combination of the Gell-Mann which satisfy the
SU(2) subalgebra. In the following discussion, we consider
the representation of S to be

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i

0 i 0

⎞
⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (9)

The corresponding energies are E0 = 0 and Ek,± =
±

√
f 2

k + g2
k + h2

k.
The spin-1 models have the same classifications of static

Hamiltonian as two-band models. In one-dimensional cases, if
we eliminate one of the Si (e.g., we set hk = 0) in the Hamil-
tonian, the Hamiltonian can be classified by the first homotopy
group π1(S1) with the winding number ν = 1

2π

∫
dk[f̂k∂kĝk −

ĝk∂kf̂k], where f̂k = fk√
f 2

k +g2
k

and ĝk = gk√
f 2

k +g2
k

. In two-

dimensional cases, we assume all the components in dk
are nonvanishing. The Hamiltonian can be classified by the
second homotopy group π2(S2) with the Chern number C =

1
4π

∫
d2kd̂k · [∂kx

d̂k × ∂ky
d̂k], where d̂k = dk

|dk| .
The evolution operator of the spin-1 models satisfies the

Rodrigues rotation formula [37],

Uk(t) = exp[−iHkt]

= I3×3 − iHk sin(|Ek,±|t) + H2
k[cos(|Ek,±|t) − 1].

(10)

We have Uk(2π/|Ek,±|) = Uk(0). The postquench state will
recur to the initial state at t = 2π/|Ek,±|.

Here we define the postquench pseudospin ŝk =
〈ψk(t)|S|ψk(t)〉. Unlike two-band models, the postquench
pseudospin in the spin-1 models is not guaranteed to be
a unit vector. For example, ŝ = 〈010|S|010〉 = (0,0,0) is a
null vector, where (010) is a shorthand notation for a three-
dimensional state |ψ〉 = (0,1,0)T. We need to restrict the initial
state such that the postquench pseudospin is a unit vector. In
the representation of the S we chose, the initial state can be
either |ψi〉 = (1,0,0)T or (0,0,1)T to maintain the norm of the
postquench pseudospin to be 1.

To summarize, in order to have nontrivial topology of both
the static Hamiltonian and postquench order parameter in a
three-band model, we focus on spin-1 models with a given
initial state either |ψi〉 = (1,0,0)T or (0,0,1)T.

A. 1+1 dimensions

In 1+1 dimensional cases, we consider the static Hamil-
tonian Hk = fkSx + gkSy such that the topology of the static
Hamiltonian can be indexed by the winder number ν. Let us
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FIG. 5. Entanglement spectrum ξ (t) computed from the
postquench state defined in Eq. (11) for a real-space bipartition with
(a) (t1,t2) = (0.5,1) and (b) (t1,t2) = (1,0.5).

assume the initial state is |ψi〉 = (1,0,0)T. To further simplify
the calculation and have a more compact form, we normalize
the Hamiltonian f̂ 2

k + ĝ2
k = 1. The postquench state evolved

under the evolution operator from Eq. (10) is

|ψk(t)〉 = Uk(t)|ψi〉 =
⎛
⎝ cos2 t

2 (f̂k − iĝk)
−i sin t/

√
2

− sin2 t
2 (f̂k + iĝk)

⎞
⎠. (11)

The postquench pseudospin is ŝ(k,t) = (gk sin t,−fk sin t,

cos t) pointing on a two-sphere S2. We can now define the
dynamical Chern number characterizing the topology of the
postquench pseudospin as

C ′
dyn. = 1

4π

∫ 2π

0
dk

∫ π

0
dt ŝ · (∂kŝ × ∂t ŝ)

= 1

4π

∫ π

0
dt sin t

∫ 2π

0
dk[fk∂kgk − gk∂kfk]

= ν. (12)

Similar to the two-band cases, there is an intrinsic symmetry
such that n̂k(t) · [∂kn̂k(t) × ∂t n̂k(t)] = n̂k(−t) · [∂kn̂k(−t) ×
∂t n̂k(−t)]. We integrate half of the period (0 to π ) to have
the nonvanishing dynamical Chern number.

In the case f̂k = t1+t2 cos k√
(t1+t2 cos k)2+t2

2 sin2 k
and ĝk =

t2 sin k√
(t1+t2 cos k)2+t2

2 sin2 k
, we have C ′

dyn. = ν = 1 when |t1/t2| < 1

and C ′
dyn. = ν = 0 when |t1/t2| > 1. We can also computed

the Chern number of the postquench state [Eq. (11)]
directly,

C = 1

2πi

∫
2π
0 dk

∫ π

0
dt〈∂tψk(t)|∂kψk(t)〉−〈∂kψk(t)|∂tψk(t)〉

= 1

2π

∫ π

0
dt sin t

∫ 2π

0
dk[fk∂kgk − gk∂kfk]

= 2C ′
dyn.. (13)

The number of crossings of the midgap states in the entangle-
ment Hamiltonian is direct related to the (dynamical) Chern
number. Since the (dynamical) Chern number is computed
from t = 0 to t = π , the number of crossings in the entangle-
ment spectrum in the region t ∈ [0,π ] equals the Chern number
due to the bulk boundary correspondence. The entanglement
spectrum of the postquench state is shown in Fig. 5. When
the Chern number C = 2C ′

dyn. = 2, the entanglement spectrum

has two crossings from t = 0 to t = π . On the other hand, when
the Chern number is vanishing, the entanglement spectrum
does not have crossings.

Since the crossings in the entanglement spectrum are
directly related to the topology of the postquench state instead
of the postquench order parameter, it is interesting to check
the Chern number of the postquench state with vanishing
postquench order parameter ŝ = 0. We consider the initial state
|ψi〉 = (0,1,0)T with the initial order parameter ŝ = 0. The
postquench state has the form

ψk(t) = Uk(t)(0,1,0)T =

⎛
⎜⎝

− i√
2

sin t(f̂k − iĝk)
cos t

− i√
2

sin t(f̂k + iĝk)

⎞
⎟⎠. (14)

The postquench order parameter remains a null vector and the
Chern number of the postquench state is zero.

B. 2+1 dimensions

In (2+1)-dimensional cases, the normalized Hamiltonian
can be described as Hk = d̂k · S, where the unit vector d̂k =
(f̂k,ĝk,ĥk) characterizes the topology of the static Hamilto-
nian. The postquench state is

|ψ(k1,k2,t)〉

=

⎛
⎜⎝

1 + (cos t − 1)
[
1 − 1

2

(
f 2

k + g2
k

)] − ihk sin t
1√
2
(fk + igk)[hk(cos t − 1) − i sin t]

1
2 (cos t − 1)(fk + igk)2

⎞
⎟⎠. (15)

The postquench pseudospin is ŝk(t) = [fkhk(1 − cos t) +
gk sin t,gkhk(1 − cos t) − fk sin t, cos t + h2

k(1 − cos t)] on
S2.

The topology of this postquench pseudospin is charac-
terized by a Hopf fibration S3 → S2. To compute the Hopf
number, we first consider a mapping of the postquench pseu-
dospin from S2 to S3. Then the combined mapping from the
momentum-time space T 3 to S3 is characterized by π3(S3) and
can be indexed by the three-dimensional winding number, i.e.,
the Hopf number can be computed from the three-dimensional
winding number. The mapping is ŝk → (η↑k,η↓k), with η↑k and
η↓k being two complex numbers satisfying |η↑k|2 + |η↓k|2 = 1:

skx + isky = 2η↑kη̄↓k, skz = |η↑k|2 − |η↓k|2. (16)

This maps S2 to S3. Defining η↑k = n1 + in2 and
η↓k = n3 + in4, we have (n1,n2,n3,n4) = (cos t

2 ,hk sin t
2 ,

gk sin t
2 ,fk sin t

2 ).
The Hopf number can be computed from the mappingT 3 →

S3 → S2 [see Fig. 6] by

χ = 1

2π2

∫ 2π

0
dt

∫
BZ

d2kεμνρτnμ∂kx
nν∂ky

nρ∂tnτ

= 1

4π2

∫ 2π

0
dt sin2 t

2

∫
BZ

d2kd̂ · (
∂kx

d̂ × ∂ky
d̂
)

= 1

4π

∫
BZ

d2kd̂k · (
∂kx

d̂k × ∂ky
d̂k

)

= C. (17)
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T 3

S2 S3

f : ŝ → (η↑, η↓)

g : (kx, ky, t) → ŝ

f ◦ g : (kx, ky, t) → (η↑, η↓)

FIG. 6. A combined mapping from the momentum-time torus to
(η↑,η↓). This mapping can be characterized by the three-dimensional
winding number in Eq. (17).

Here C = 1
4π

∫
d2kd̂ · (∂kx

d̂ × ∂ky
d̂) is the Chern number

characterizing the static Hamiltonian. Hence we demonstrate
the relation between the Hopf number of the postquench
pseudospin and the Chern number of the static Hamiltonian
Hk = d̂k · S by χ = C.

The static Hamiltonian of the spin-1 models with nonvan-
ishing Chern number has been discussed in Ref. [38]. Here we
consider the static Hamiltonian with

f̂k = t1 sin kx√
t2
1 (sin2 kx + sin2 ky) + (M + cos kx + cos ky)2

,

ĝk = t1 sin ky√
t2
1 (sin2 kx + sin2 ky) + (M + cos kx + cos ky)2

, (18)

ĥk = M + cos kx + cos ky√
t2
1 (sin2 kx + sin2 ky) + (M + cos kx + cos ky)2

.

The Hopf number |χ | = 1 when 0 < |M/t1| < 2 and χ = 0
otherwise.

Similar to two-band models, the consequence of nonva-
nishing Hopf number can lead to the crossings of midgap
states in the entanglement spectrum. However, the number
of midgap states is not directly related to the Hopf number
[24]. Unlike the two-band models, the entanglement spectrum
of the postquench states in the spin-1 models for a real-
space bipartition does not show any crossings. However, if
we consider a frequency space bipartition, the entanglement
spectrum as a function of (kx,ky) has midgap states forming
two rings for |χ | = 1 and is fully gapped for χ = 0, as shown

FIG. 7. Entanglement spectrum ξ (kx,ky) computed from the
postquench state defined in Eq. (15) for frequency space bipartition
with (a) (t1,M) = (1,0.5), (b) (t1,M) = (1,2.5). The right panel in (a)
shows the crossings between the levels are two rings.

in Fig. 7. These rings are similar to the boundary Fermi rings
in Hopf insulators in Refs. [22–24].

V. FOUR-BAND MODELS IN 3+1 DIMENSIONS

Let us consider a four-band model in three dimensions with
the following form:

Hk = fkτx + gkτy + nkτzσx + mkτzσy, (19)

where {σi} and {τj } are two sets of Pauli matrices. There are two

twofold-degenerate energies Ek = ±
√

f 2
k + g2

k + n2
k + m2

k.
The unit vector d̂k = (fk,gk,nk,mk)/|Ek| characterizes the
topology of the static Hamiltonian. Since this unit vector
corresponds to a three-sphere S3, the classification of the
static Hamiltonian in three dimensions is the third homotopy
group π3(S3) = Z. The associate topological invariant is the
three-dimensional winding number

ν3 = 1

2π2

∫
BZ

d3kεabcd d̂a∂kx
d̂b∂ky

d̂c∂kz
d̂d . (20)

The postquench state is evolved by the evolution operator
Uk(t) = e−iHk t = cos(|Ek|t) − iHk sin(|Ek|t). It will recur to
the initial state at t = 2π/|Ek|. For simplicity, we normalize
the Hamiltonian |Ek| = 1 in the following discussion.

To have nontrivial topology of the postquench order param-
eter in 3 + 1 dimensions, the manifold of the postquench order
parameter can be a four-sphere S4 such that π4(S4) = Z. We
consider the initial state |ψi〉 = (1,0,0,0)T. The corresponding
postquench state is

|ψk(t)〉 =

⎛
⎜⎝

cos t

−i sin t(nk + imk)
−i sin t(fk + igk)

0

⎞
⎟⎠ (21)

and a postquench order parameter can be defined as

L = 〈ψk(t)|(τx,τy,τzσx,τzσy,τzσz)|ψk(t)〉
= (ĝk sin 2t,−f̂k sin 2t,n̂k sin 2t,−m̂k sin 2t, cos 2t), (22)

such that |L| = 1, i.e., the manifold for this postquench order
parameter is a four-sphere S4. The topology of the postquench
order parameter can be indexed by the second Chern number

C2 = −3

8π2

∫ π/2

0
dt

∫
BZ

d3kεabcdeLa∂kx
Lb∂ky

Lc∂kz
Ld∂tLe

= 3

4π2

∫ π/2

0
sin3(2t)

∫
BZ

d3kεabcd d̂a∂kx
d̂b∂ky

d̂c∂kz
d̂d

= ν3. (23)

Here we demonstrate that the second Chern number of the
postquench order parameter is equal to the three-dimensional
winding number of the static Hamiltonian. Notice that the
period of the postquench order parameter is π and there is
an intrinsic symmetry,

La(t)∂kx
Lb(t)∂ky

Lc(t)∂kz
Ld (t)∂tLe(t)

= La(−t)∂kx
Lb(−t)∂ky

Lc(−t)∂kz
Ld (−t)∂tLe(−t). (24)

To have a nonvanishing second Chern number, the time integral
is taking from 0 to π/2.
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FIG. 8. Entanglement spectrum ξ (ky,kz) computed from the
postquench state defined in Eq. (21) for a real-space bipartition at
t = π/2 with (a) M = 2, (b) M = 4, and (c) M = 0, where M is the
parameter in Eq. (25).

To demonstrate the relation between the nonvanishing
second Chern number and the entanglement spectrum of
the postquench state, we consider the functions in the static
Hamiltonian in Eq. (19) being

fk = sin kx, gk = sin ky, nk = sin kz,

mk = M − cos kx − cos ky − cos kz. (25)

The three-dimensional winding number characterizing the
static Hamiltonian is

ν3 =
⎧⎨
⎩

1, 1 < |M| < 3,

−2, |M| < 1,

0, 3 < |M|.
The entanglement spectrum of the postquench state reflects

the nontrivial topology of the postquench state. The Berry
connection associated with the postquench states are

At = 0,

Aki
= − sin2 t

(
n∂ki

m − n∂ki
m + f ∂ki

g − g∂ki
f

)
. (26)

We can compute the three-dimensional polarization from the
Chern-Simons 3-form of the postquench state,

P3 = −1

4π2

∫
BZ

d3kεαβγ Aα∂βAγ

= 1

2π2
sin4 t

∫
BZ

d3kεabcd d̂a∂kx
d̂b∂ky

d̂c∂kz
d̂d

= ν3 sin4 t. (27)

From the point of view of the dimensional reduction [39,40],
the second Chern number can be computed by the three-
dimensional polarization

C2 =
∫ π/2

0
dt∂tP3(t) = ν3. (28)

At t = π/2, the postquench state describes a three-dimensional
topological insulator with the three-dimensional polarization
P3 = C2. Hence the nonvanishing second Chern number char-
acterizing the postquench order parameter leads to Dirac-cone-
like excitations in the entanglement spectrum of the postquench
state for a real-space bipartition. In the case that C2 = −1, there
is one Dirac cone at (ky,kz,t) = (0,0,π/2) [Fig. 8(a)]. In the
case that C2 = −2, there are two Dirac cones at (ky,kz,t) =
(0,π,π/2) and (π,0,π/2) [Fig. 8(c)]. And the entanglement
spectrum is fully gapped for C2 = 0 [Fig. 8(b)]. The number of

TABLE I. MHk is the manifold of the static Hamiltonian and
Mn̂k(t) is the manifold of the postquench order parameter. The classi-
fication based on the homotopy groups gives the topological invariants
of the static Hamiltonian in d dimensions and the postquench order
parameter in d + 1 dimensions. These two topological invariants are
related.

d = 1 d = 2 d = 3

πd (MHk ) π1(S1) → ν π2(S2) → C π3(S3) → ν3

πd+1(Mn̂k(t)) π2(S2) → Cdyn. π3(S2) → χ π4(S4) → C2

Dirac cones in the entanglement spectrum is equal to the second
Chern number characterizing the postquench order parameter.
On the other hand, the Berry connection At = 0 indicates no
midgap states in the entanglement Hamiltonian for a frequency
space bipartition. Numerically, we observe the entanglement
spectrum are fully gapped for either trivial (vanishing second
Chern number) or topological (nonvanishing second Chern
number) postquench states.

VI. DISCUSSION

We demonstrate the relation between the topological in-
variant of the static Hamiltonian in d dimensions and the
topological invariant of the postquench order parameter in
d + 1 dimensions by use of homotopy groups. We show that
the entanglement spectrum of the postquench state reveals its
topological property. If the postquench order parameter has a
nonvanishing topological invariant, the entanglement spectrum
has midgap states forming Dirac cones or rings. Our results are
summarized in Table I.

The thriving developments of cold-atom experiments pro-
vide a way to measure the dynamics of the postquench
states by the method of Bloch state tomography [41–43].
For example, in a hexagonal optical lattice, one can prepare
a localized cold-atom cloud only at one of the sublattices
(A sites) and let it evolve by a sudden quench to a Chern
insulator. The nonvanishing dynamical Chern number will lead
to a momentum-time skyrmion which can be mapped out by
the momentum-time–resolved Bloch state tomography. This
measurement in principle can be extended to spin-1 models and
the four-band models with nontrivial topology in cold-atom
systems [44].

Before we close the discussion, we would like to point out
some future directions.

(1) It has been proposed theoretically that a measurement
protocol to access the entanglement spectrum can be realized
in cold-atoms experiments [45]. The midgap states in the
entanglement spectrum in principle can be observed in our
quench setup.

(2) Up to date, the entanglement property in the frequency
space is only discussed in a two-photon state [46–48]. It will
be an intriguing task for finding the experimental realization
in condensed-matter and cold-atom systems.

(3) Although the directions of time and momentum are
both periodic, they are NOT exchangeable in the quench
dynamics. This no-exchangeability reflects the property of the
entanglement spectrum with different bipartitions in real and
frequency spaces.
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To understand the condition of the existence of midgap states in
the entanglement spectrum, it is desired to study the structure of
the reduced density matrix of the postquench state for different
bipartitions in real and frequency spaces.

(4) The interaction and disorder effects in the quench
dynamics are an interesting direction to study. In the one-
dimensional case, it is shown that the disorder does not
remove the crossings in the entanglement spectrum under
symmetry constraints [13]. It will be interesting to investigate
the robustness of midgap states in the entanglement spectrum
for higher-dimensional cases.

(5) One possible extension of our analysis is to consider the
higher-order homotopy group. With the development of the
synthetic dimensions [49–51], our method can generalize to

dimensions higher than 3 + 1. One interesting model [52] is a
six-dimensional four-band model [Eq. (19)] with a postquench
order parameter on S4. The static Hamiltonian can be classified
by π6(S3) = Z12, and the postquench order parameter can be
categorized by π6+1(S4) = Z × Z12 described by the second
Hopf fibration S7 → S4.
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