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We consider the ability of local quantum dynamics to solve the “energy-matching” problem: given an instance
of a classical optimization problem and a low-energy state, find another macroscopically distinct low-energy state.
Energy matching is difficult in rugged optimization landscapes, as the given state provides little information about
the distant topography. Here, we show that the introduction of quantum dynamics can provide a speedup over
classical algorithms in a large class of hard optimization problems. Tunneling allows the system to explore the
optimization landscape while approximately conserving the classical energy, even in the presence of large barriers.
Specifically, we study energy matching in the random p-spin model of spin-glass theory. Using perturbation theory
and exact diagonalization, we show that introducing a transverse field leads to three sharp dynamical phases, only
one of which solves the matching problem: (1) a small-field “trapped” phase, in which tunneling is too weak for
the system to escape the vicinity of the initial state; (2) a large-field “excited” phase, in which the field excites
the system into high-energy states, effectively forgetting the initial energy; and (3) the intermediate “tunneling”
phase, in which the system succeeds at energy matching. The rate at which distant states are found in the tunneling
phase, although exponentially slow in system size, is exponentially faster than classical search algorithms.
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I. INTRODUCTION

Suppose that the perennial traveling saleswoman, having
many responsibilities herself, delegates the menial task of
constructing an efficient sales route to the company intern.
The intern wants to impress his boss, and decides to produce
not one but many routes, each sufficiently distinct from the
others so that the saleswoman may pick the one which suits
her best. After laboring for days on the notoriously hard
traveling saleswoman’s problem [1], the intern succeeds at
last in identifying one efficient route, but he shudders at the
thought of having to repeat the process multiple times. Can he
make use of this first route to construct others faster than he
would from scratch, keeping in mind that the additional routes
must be sufficiently different? This is the matching problem:
given an optimization problem and one optimal or near-optimal
solution, find others that are sufficiently distinct. The starting
solution serves as a hint for finding the others.

The goal in solving problems is often to obtain a repre-
sentative collection of all possible solutions, rather than a
single one, for multiple reasons: one may desire solutions with
additional properties (such as approval from the saleswoman
in the example above), a larger set of solutions is more robust to
parameter perturbations, and a representative set gives insight
into underlying structure in the problem. Efficient matching
is thus transformative, both when the original optimization
problem is difficult [2–4] and when well-designed algorithms
are only capable of finding a small set of special solutions [5,6].
The prospect of using a first solution to efficiently generate
others is now spurring active research into the area [7,8] after
being largely unexplored in the past.

The matching problem is often difficult for the same reason
as the original search problem: ruggedness in the cost function
to be minimized. A one-dimensional example of a rugged

cost function (or, equivalently, potential energy) is sketched
in the top panel of Fig. 1, and provides intuition for the
high-dimensional configuration spaces of real optimization
problems. The energy landscape has deep local minima called
“clusters.” A starting configuration in one cluster can be used
to efficiently locate others within the same cluster (see the
recent Ref. [7]), but does not provide benefit for finding
distant clusters of solutions. Local search algorithms such as
Metropolis Monte Carlo must excite the system out of clusters
in order to fully explore the configuration space. Furthermore,
it is straightforward to show that certain matching problems are
NP-complete, and we provide a short proof in Appendix A.

In this paper, we assess whether quantum Hamiltonian
dynamics may be faster than classical algorithms at energy
matching in rugged landscapes. We take as a nontrivial test
bed the classical random p-spin model of spin-glass theory.
This model has sharply defined clusters of low-energy states
(as reviewed in more detail in Sec. II). We denote the p-spin
Hamiltonian by Hp, which is diagonal in the σ̂ z basis of
N spin- 1

2 ’s. Quantum dynamics is produced by applying a
uniform transverse field:

H = Hp − �

N∑
i=1

σ̂ x
i . (1)

Starting in a classical (i.e., σ̂ z) state |σ 〉, we study the prob-
ability for observing at time t a classical state |σ ′〉 belonging
to a different cluster, i.e., |〈σ ′|e−iH t |σ 〉|2. Hamiltonians of the
form in Eq. (1) have long been used in the context of quantum
computation, particularly with time-dependent coefficients to
study the quantum adiabatic algorithm for finding ground states
[9–14]. Here, we instead use a static Hamiltonian to study
energy-matching dynamics, and do not restrict ourselves to
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FIG. 1. (Top) A one-dimensional example of a rugged energy
landscape U (x). States with energy below the dashed line form
disconnected clusters (shaded). A particle (black dot) remains in
a cluster until it either surmounts or tunnels through the energy
barriers. (Bottom) The dynamical phase diagram of the random
energy model (p → ∞ limit). The system tunnels between clusters
in the “tunneling” phase (green), remains trapped in a cluster in
the “trapped” phase, and is excited out of clusters in the “excited”
phase. The trapped, tunneling, and large-� excited phases have been
confirmed numerically. It is unclear whether the small-� excited phase
is truly an excited phase or a portion of the tunneling phase in which
perturbation theory does not apply.

ground states. Our analysis applies to approximate as well as
perfect optimization.

One might expect quantum dynamics to be efficient for
two reasons: conservation of energy biases the dynamics
towards classical states having the same energy as the starting
configuration, and quantum fluctuations can tunnel through the
energy barriers that separate those states. However, Hamilto-
nian dynamics conserves the full quantum mechanical energy
〈H 〉, whereas the goal of energy matching is to find a state
with the same classical energy 〈Hp〉. Furthermore, recent
work has shown that the tunneling amplitudes between clus-
ters can be exponentially suppressed in many-body systems
[15–17]. Thus, the performance of quantum dynamics in
energy matching, and its comparison to classical search al-
gorithms, is nontrivial.

We find three sharp dynamical phases for the transverse
field p-spin model, each with distinct implications for energy
matching. The phase depends on the target energy per spin ε

and the strength of the transverse field �. The large-p phase
diagram is shown in the bottom panel of Fig. 1. At low ε

and small �, the probability of the system tunneling between
clusters vanishes in the thermodynamic limit even at arbitrarily
late times. The system cannot exit its initial cluster and energy
matching fails in this “trapped” phase. At large �, the system
moves freely out of the initial cluster but is excited to higher
classical energies in return for magnetizing along the transverse
field. Energy matching fails in this “excited” phase as well
since the system does not locate states at the desired classical
energy. Only at intermediate ε and �, in the “tunneling” phase,
does energy matching succeed by tunneling between clusters
while roughly preserving the classical energy density [18].

The timescale for tunneling is exponential in system size,
i.e., quantum dynamics cannot solve the matching problem
in polynomial time. On the other hand, classical algorithms
also require exponential runtime in these models, and quantum
dynamics runs exponentially faster than classical spin-flip
Monte Carlo at equilibrium. We also show that it can be
exponentially faster than a nonlocal search algorithm in which
new configurations are chosen independently at random (the
“unstructured search”). Since the problem Hamiltonians which
we consider have little to no special structure, it would be
difficult to construct a classical algorithm that could perform
similarly well. Furthermore, the quantum algorithm presented
here is directly implementable on current experimental plat-
forms [19,20].

Note that the tunneling phase does not exist at sufficiently
low ε for the p-spin model. A uniform transverse field cannot
solve the matching problem near the classical ground state
regardless of the field strength and regardless of runtime.

We derive these results using both perturbation theory
in � and numerical exact diagonalization. Here, we present
the underlying intuition. We work in the σ̂ z basis, whose
eigenstates are referred to as classical states and have definite
classical energy Hp. Since matching problems start from
a given classical state |σ 〉 with specified energy density ε,
we distinguish states |σ ′〉 not only by their classical energy
densities ε′ but also their fractional Hamming distances x

relative to |σ 〉:

x ≡ 1

2

(
1 − 1

N

N∑
i=1

σiσ
′
i

)
. (2)

States having the same ε, assuming ε is not too close to the
center of the spectrum, are disconnected: some states lie at
distances less than a certain x∗(ε), and others lie at distances
greater than a certain x∗∗(ε), but none lie in-between. Those
states at x < x∗(ε) belong to the same cluster as |σ 〉, whereas
those at x > x∗∗(ε) belong to different clusters. We show this
using the distance-resolved density of states, i.e., the number
of states at distance x with energy density ε′. It is exponential
and written eNg(x,ε′ |ε). Using perturbation theory, we argue that
the effective coupling between states is similarly exponential
and written e−Nγ (x,ε′ |ε), which increases monotonically with
�. The two exponents g(x,ε′|ε) and γ (x,ε′|ε) are the central
objects in our analysis.

Tunneling between clusters occurs only if there are states in
different clusters which are resonant, i.e., states whose classical
energies differ by less than the effective coupling between
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them. The level spacing between states at distance x and energy
density ε is of order e−Ng(x,ε|ε). These resonate with the initial
state |σ 〉 if the effective coupling is larger than the level spacing
at distance x. The requirement for tunneling to occur is thus

max
x∈[x∗∗(ε),1−x∗∗(ε)]

[g(x,ε|ε) − γ (x,ε|ε)] > 0.

(Tunneling condition)
(3)

The curve �tun(ε) on which the left-hand side equals 0 defines
the boundary between the trapped and tunneling phases.

As the initial state evolves in time, the amplitude on
any nonresonant state remains exponentially small, of order
e−2Nγ (x,ε′ |ε). However, there are exponentially many such
states. If the total amplitude on states with ε′ 
= ε is large, then
those states will be observed at later times with high probability
and the system excites into classical energy density ε′. The
requirement for the classical energy density to be preserved is

max
x∈[0,1]

[
max

ε′
[g(x,ε′|ε) − 2γ (x,ε′|ε)]

]
< 0.

(Nonexcitation condition)
(4)

The curve �exc(ε) on which the left-hand side equals 0 defines
the boundary between the tunneling and excited phases. There
is an additional transition into the excited phase that coincides
with the well-known thermodynamic transition into a quantum
paramagnetic phase at large �. We cannot detect this transition
within perturbation theory, but we find clear evidence for it
numerically.

Equations (3) and (4) are necessary conditions for the
quantum dynamics to succeed at energy matching. If both
are satisfied, then the time required for energy matching is
simply the inverse tunneling rate between clusters. We estimate
the timescale τq using Fermi’s golden rule with the effective
coupling and distance-resolved density of states. We find τq

scales exponentially with exponent

1

N
ln τq = min

x∈[x∗∗(ε),1−x∗∗(ε)]
[2γ (x,ε|ε) − g(x,ε|ε)].

(Tunneling timescale)
(5)

Note that the use of transverse-field quantum dynamics for
energy matching is also investigated in Ref. [8], independent
of and developed concurrently with this work. The analysis
in Ref. [8] is complementary to that presented here: we focus
on the dynamical phases of the system and the requirements
for energy matching to occur, whereas they use a different
approach to study the dynamics particularly at large transverse
field.

The remainder of the paper is devoted to proving these
results. In Sec. II A, we introduce the p-spin model Hp which
we use for our analysis. We demonstrate the clustering of
its low-energy states in Sec. II B, and calculate the function
g(x,ε′|ε) in Sec. II C. In Sec. III, we consider the quantum
dynamics of the full Hamiltonian H for the simple and
well-controlled random energy model (the p → ∞ limit of
the p-spin model). We develop the perturbation theory and
calculate γ (x,ε′|ε) in Sec. III A, show that the resulting
tunneling rate is superior to the Arrhenius rate from a classical
spin-flip Monte Carlo simulation in Sec. III B, and use exact
diagonalization of small systems to validate the perturbative
results in Sec. III C. In Sec. IV, we show that these results

are robust in the more realistic mean-field models at large but
finite p, and show that the quantum dynamics can now outpace
the unstructured search in addition to spin-flip Monte Carlo.
Finally, we conclude in Sec. V.

II. THE p-SPIN MODEL

A. Discussion of the model

We consider energy matching in the classical p-spin model,
which consists of N spin- 1

2 ’s with random all-to-all p-body
interactions. Although originally introduced as a mean-field
model for spin glasses [21–23], the p-spin model has since re-
ceived attention for its connections to structural glasses [24,25]
and combinatorial optimization problems [26,27]. Its versa-
tility is due to the particularly simple Gaussian correlations
between the energy levels. It serves as an analytically tractable
model of high-dimensional rugged energy landscapes.

The p-spin Hamiltonian is

Hp =
∑

(i1...ip)

Ji1...ip σ̂
z
i1

. . . σ̂ z
ip
. (6)

The sum is over all p-tuples of the N spins. Each coupling
Ji1...ip is an independent Gaussian random variable of mean 0
and variance p!

2Np−1 . Denote a configuration of the spins by σ ,
where the ith spin has value σi . From Eq. (6), it follows that the
energies are Gaussian distributed with mean 0 and covariance
matrix

E[Hp(σ )Hp(σ ′)] = N

2
(1 − 2x(σ,σ ′))p. (7)

Here and for the entirety of the paper, E denotes averages
over the disordered couplings Ji1...ip . x(σ,σ ′) denotes the
fractional Hamming distance between σ and σ ′ [Eq. (2)].
Equation (7) summarizes why the p-spin model is a useful test
bed for disordered systems: the energy landscape is Gaussian
correlated with correlations that depend only on the distance in
configuration space. The parameter p sets the strength of the
correlations and is a useful parameter to vary. In particular, as
p → ∞ the energy levels become independent [21]. When we
consider quantum dynamics below, we use the p → ∞ limit as
a starting point and then argue that leading-in-1/p corrections
do not affect the qualitative picture.

B. Clustering

The static and dynamical behavior of the p-spin model de-
rives from the organization of its energy levels in configuration
space. Central to this organization is whether configurations
at the same energy density are “connected.” We say that σ

and σ ′ are connected (as N → ∞) if there is a sequence of
spin flips transforming one into the other which incurs only
O(1) changes in energy throughout the process. For a given σ ,
the set of σ ′ to which it is connected defines a “cluster.” The
motivation for these definitions is that, heuristically, stochastic
dynamics such as Glauber or Metropolis quickly explores
within a cluster but requires much longer times to transition
between them. In many physical and computational problems,
including the p-spin model, the number and geometry of
clusters transition sharply at certain energy densities.
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FIG. 2. Important transitions in the classical p-spin model. Each
box represents the configuration space of N spin- 1

2 ’s, and the red
areas represent the regions of configuration space that contain states
of energy density ε. Top: εd < ε < 0, middle: εs < ε < εd , bottom:
εGS < ε < εs .

The relevant transitions for this paper are sketched in
Fig. 2. The center of the spectrum, corresponding to infinite
temperature, is at energy density ε = 0, and the bottom is
at a finite energy density εGS (<0). In-between, transitions
occur at εd and εs . They are best understood in terms of
two order parameters. The Edwards-Anderson order parameter
quantifies dynamical ergodicity breaking, e.g., in a Monte
Carlo simulation run for time t :

qEA ≡ lim
t→∞ lim

N→∞
E

[〈
N−1

∑
i

σi(t)σi(0)

〉]
. (8)

The angular brackets denote a thermal average over σ (0) and
an average over the randomness of the dynamics. The order
parameter that quantifies equilibrium ergodicity breaking is in
terms of “replicas,” i.e., copies of the system that are uncoupled
from each other but have the same disorder realization:

q ≡ lim
N→∞

E

[〈∣∣∣∣∣N−1
∑

i

σ α
i σ

β

i

∣∣∣∣∣
〉]

. (9)

The superscripts α and β denote different replicas and the
angular brackets denote independent thermal averages over
σα and σβ . Note that N−1 ∑

i σ
α
i σ

β

i , the “overlap” between

α and β, is simply 1 − 2x(σα,σ β). Two configurations chosen
uniformly out of all possible 2N will have q = 0 (x = 1

2 ) with
probability 1. In a finite-temperature paramagnetic phase, q

remains at 0. In any ordered phase, whether ferromagnetic or
spin glass, q 
= 0.

Now, we turn to the relevant phases of the p-spin model:
(i) εd < ε < 0: qEA = 0, q = 0. A randomly selected pair

of states at such ε is connected with probability 1 (in the
thermodynamic limit). The corresponding cluster spans the
configuration space, in the sense that the overlap between a
randomly selected pair is 0 with probability 1 and stochastic
dynamics equilibrates throughout the space.

(ii) εs < ε < εd : qEA 
= 0, q = 0. Typical states are no
longer connected, and instead the number of clusters scales
exponentially with N . The timescale for transitioning between
clusters is exponential in N . In particular, it diverges in the
thermodynamic limit, hence, qEA is nonzero. Nonetheless, the
clusters are distributed throughout the configuration space. A
randomly selected pair of states belong to different clusters and
the overlap is still 0.

(iii) εGS < ε < εs : qEA 
= 0, q 
= 0. The number of clusters
is O(1) with respect to N . A randomly selected pair of states
has finite probability of belonging to the same cluster, which
occupies only a small region of the configuration space. This
finite-probability event produces a nonzero average overlap,
i.e., q 
= 0.

The transition at εd is called the “dynamical” or “clustering”
transition, as it marks the energy density (or corresponding
temperature) below which stochastic dynamics fails to equi-
librate the system. The transition at εs is called the “static”
transition, as it is where the equilibrium order parameter
becomes nontrivial.

We focus on the range εs < ε < εd in this paper, for which
the configurations are organized into exponentially many
clusters. The matching problem is solved if the system, initially
prepared in one cluster, is found in a different cluster at a later
time.

C. Franz-Parisi potential

We study the geometry of clusters by computing the quan-
tity defined in Eq. (10). It counts, for a fixed configuration
σ having energy density ε, the number of configurations σ ′
having energy density ε′ which are separated by a distance x.
Precisely,

g(x,ε′|σ,ε) ≡ 1

N
E[ln Trσ ′[δx,x(σ,σ ′) δ(ε′ − ε(σ ′))]]ε(σ )=ε.

(10)

The subscript to the disorder average indicates that we con-
dition on having ε(σ ) = ε. The argument of the logarithm is
the number of configurations at distance x from σ with energy
density ε′. Thus, g(x,ε′|σ,ε) is the conditioned average entropy
density at distance x. Since the correlations between σ and σ ′
depend only on their separation, g(x,ε′|σ,ε) depends on σ only
through x and ε. Thus, we will write g(x,ε′|ε) throughout the
paper.

g(x,ε′|ε) is closely related to the Franz-Parisi potential
(FPP), which is an important tool in the analysis of mean-field
disordered systems [28–30]. Equation (10) is essentially the
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FIG. 3. Transitions in thep-spin model exhibited through the FPP,
g(x,ε|ε). Compare to Fig. 2. Only x < 1

2 is shown since (for even p)
g(x,ε|ε) is symmetric between x ↔ 1 − x. For the curves shown, we
made the annealed approximation using p = 6 and ε = −0.68 (red),
−0.78 (purple), −0.828 (blue).

FPP written in the microcanonical ensemble, as we describe in
Appendix B. We shall refer to g(x,ε′|ε) as the FPP throughout
the paper, but keep in mind that Eq. (10) is not the standard
form in which it is presented.

Strictly speaking, one would need to use the replica trick to
evaluate the FPP, as done in Ref. [29]. However, the essential
physics remains intact if we instead take an “annealed” average
by switching the order of the logarithm and disorder average:

g(x,ε′|ε) ≈ 1

N
lnE[Trσ ′[δx,x(σ,σ ′) δ(ε′ − ε(σ ′))]]ε(σ )=ε

= −x ln x − (1 − x) ln (1 − x)

+ 1

N
lnE[δ(ε′ − ε(σ ′))]ε(σ )=ε. (11)

Note thatE[δ(ε′ − ε(σ ′))]ε(σ )=ε is the probability of ε(σ ′) = ε′
conditioned on ε(σ ) = ε. We present the calculation of this
conditional distribution in Appendix C. The end result for the
FPP is

g(x,ε′|ε) ∼ −x ln x − (1 − x) ln (1 − x)

− (ε′ − (1 − 2x)pε)2

1 − (1 − 2x)2p
. (12)

Although Eq. (12) is only an annealed average, the inequality
E[ ln (·)] � lnE[ · ] shows that it is a rigorous upper bound
to the exact FPP. In particular, if g(x,ε′|ε) < 0 then there are
no states having ε′ at distance x (with probability 1 in the
thermodynamic limit) [26].

Define g(x,ε) ≡ g(x,ε|ε). As a function of x, g(x,ε)
demonstrates that low-lying energy levels are organized into
clusters. Figure 3 gives representative examples. Compare the
shapes of g(x,ε) in Fig. 3 to the sketches in Fig. 2.

(i) εd < ε < 0: g(x,ε) > 0 for all x. There are configura-
tions that have the same energy density at all distances from
the reference state σ . This suggests that each configuration
is connected to all others, forming a single cluster that spans
the configuration space. While it is not a proof, as the FPP
distinguishes only the radial coordinate x of configurations and
not angular coordinates, dynamical calculations of the classical
stochastic dynamics confirm that qEA = 0 above εd [24,31].

(ii) εs < ε < εd : g(x,ε) is positive for x less than a certain
x∗(ε) or greater than a certain x∗∗(ε) (see Fig. 3), but is
negative in-between. This proves that configurations below
εd are organized into disjoint clusters. No configurations
at distances x ∈ (x∗(ε),x∗∗(ε)) have energy density ε, thus
those at x > x∗∗(ε) cannot be connected to σ . Furthermore,
the maximum of g(x,ε) over x > x∗∗(ε) is greater than that
over x < x∗(ε). There are exponentially more configurations
disconnected to σ than connected, i.e., exponentially many
clusters. A randomly selected σ ′ lies at distance 1

2 from σ .
(iii) εGS < ε < εs : The maximum of g(x,ε) over x >

x∗∗(ε) is now less than that over x < x∗(ε). Interpreting this
result literally, one would say that most configurations belong
to a single cluster of linear size x∗(ε). A randomly selected σ ′
lies within that distance.

Keep in mind that since we estimated g(x,ε) through an
annealed average, Eq. (12) gives only approximate values for
the quantities defined above [εd , εs , x∗(ε), etc.]. In particular,
the interpretation that below εs most states belong to a single
cluster is too naive: the number of clusters is O(1) but larger
than 1, and it depends on ε [26]. However, εd as estimated
from Eq. (12) is an exact lower bound on the location of
the clustering transition. Below we shall need to compute the
energy barriers between clusters, and here as well the annealed
estimate gives exact lower bounds.

III. QUANTUM DYNAMICS IN THE LARGE- p LIMIT

Here, we describe the performance of quantum dynamics in
tunneling between the clusters of the p-spin model, specifically
in the p → ∞ limit. Our main results are the tunneling and
nonexcitation conditions (3) and (4), respectively, both of
which are necessary conditions for the dynamics to succeed in
energy matching. They express that the tunneling amplitudes
must be large enough to hybridize states between clusters,
but not so large that the system is excited out of clusters.
Even if both requirements are satisfied, the tunneling rate is
exponentially slow in system size, with the exponent given by
Eq. (5).

The Hamiltonian that we consider is

H = Hp − �
∑

i

σ̂ x
i ≡ Hp + V, (13)

with Hp (the “classical” energy) as in Eq. (6). The second
term, a uniform transverse field, causes spin flips. In the (σ z)
configuration space, it acts as a hopping term while Hp acts as
a potential. Thus, Eq. (13) can be interpreted as an Anderson
problem [32,33] in the many-body configuration space. The
p → ∞ limit corresponds to an uncorrelated potential and
small clusters, and is simplest to study for reasons which
we describe below. The bottom panel of Fig. 1 presents
the dynamical phase diagram in this limit. In the “trapped”
phase, the system does not tunnel between clusters, even on
exponentially long timescales. In the “excited” phase, the
system is excited to higher classical energy densities. Only in
the “tunneling” phase does the system tunnel between clusters
and succeed in energy matching.

We demonstrate these results using perturbation theory in
Sec. III A. In Sec. III B, we show that the tunneling rates thus
obtained, although exponentially slow in system size, provide
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exponential speedup over classical Monte Carlo simulations.
We numerically validate the dynamical phase diagram in
Sec. III C.

A. Perturbative analysis

In the p → ∞ limit, Eq. (7) for the correlation between the
classical energies becomes

E[Hp(σ )Hp(σ ′)] → N

2
δ0,x(σ,σ ′) = N

2
δσ,σ ′ . (14)

The classical energies are independent and distributed as

P1(ε) =
√

N

π
e−Nε2

, (15)

and the FPP is

g(x,ε′|ε) = −x ln x − (1 − x) ln (1 − x) − (ε′)2. (16)

The p → ∞ model is referred to as the “random energy
model” (REM) [21]. It is the simplest context in which to
study tunneling between clusters because the clusters have
no internal structure: g(x,ε) < 0 for all x less than a certain
x∗∗(ε), i.e., each “cluster” has size 0 and in fact consists of a
single configuration. x∗∗(ε) is the minimum distance between
any configurations having energy density ε.

To study tunneling between clusters, we formally use
the Schrieffer-Wolff transformation [34] together with the
forward-scattering approximation [16,35]. First, we discuss the
Schrieffer-Wolff transformation. Let P0 denote the subspace
spanned by σ z configurations having classical energy density
ε, and let Q0 denote the orthogonal subspace. We take ε <

εd , so that the configurations within P0 are organized into
clusters. Note that H couplesP0 andQ0 through the transverse
field, yet it does not directly couple configurations within
different clusters, as multiple spin flips would be required.
The Schrieffer-Wolff transformation is performed by a unitary
operator eiS such that eiSHe−iS ≡ Heff does not couple P0 and
Q0. In return, Heff does have a direct coupling between config-
urations within different clusters, denoted Veff. The situation
is illustrated in Fig. 4. We denote by H (α) the projection of H

into cluster α, and similarly for H
(α)
eff and V

(αβ)
eff . Since

〈σ ′|e−iH t |σ 〉 = 〈σ ′| e−iSe−iHefft eiS |σ 〉 , (17)

the time evolution of |σ 〉 into |σ ′〉 under H is equivalent to the
evolution of eiS |σ 〉 into eiS |σ ′〉 under Heff.

The method by which one calculates the generator S is
known in the literature [34]. We quote it in Appendix D, where
we also detail the forward-scattering approximation (FSA).
The FSA approximates 〈σ ′|Veff|σ 〉 [where ε(σ ) = ε(σ ′) = ε]
by its lowest-order terms in the transverse field �. As reviewed
in Appendix D, they correspond to directed “paths” in the
configuration space, i.e., sequences of spin flips that transform
σ into σ ′:

〈σ ′|Veff|σ 〉 ∼
∑
P

�
∏

σ ′′∈P

�

N (ε − ε(σ ′′))
. (18)

The sum is over the (Nx(σ,σ ′))! sequences of spin flips, and
the product is over the intermediate configurations along each
sequence. Figure 5 gives an example of such a path.

P0

P0

Q0

Q0

Hp + Vd

Vod

Vod Heff

Heff

H(α)

H(β)

H(γ)

H
(α)
eff

H
(β)
eff

H
(γ)
eff

V
(αβ)
eff

V
(αβ)
eff

V
(αγ)
eff

V
(αγ)
eff

V
(βγ)
eff

V
(βγ)
eff

Hp + Vd

eiS

eiS

FIG. 4. The effect of the Schrieffer-Wolff transformation. The
left side shows H , the right side shows Heff. The top shows the full
Hamiltonian, broken into P0 and Q0 subspaces. The transverse-field
operator V is broken into a block-diagonal part Vd and a block-off-
diagonal part Vod . The bottom is a schematic of the structure within
P0. The superscripts refer to different clusters.

Each ε(σ ′′) in Eq. (18) is an independent random variable
of mean 0. If we replace every ε(σ ′′) by E[ε(σ ′′)], the effective
coupling takes a simple form

|〈σ ′|Veff|σ 〉| ∼ (Nx)!

(
�

N |ε|
)Nx

∼ e−Nγ (x,ε), (19)

where

γ (x,ε) ≡ −x ln
x�

e|ε| . (20)

In fact, the distribution of |〈σ ′|Veff|σ 〉| over realizations
concentrates around this value. Write∏

σ ′′∈P

1

|ε − ε(σ ′′)| = e− ∑
ln |ε−ε(σ ′′)|. (21)

In order for Eq. (21) to scale as anything other than
exp(−Nx ln |ε|), it must be that O(N ) of the σ ′′ along path
P have ε(σ ′′) 
= 0. The probability of such an event scales

|σ = |− − − |σ = |+ −−

|σ = |+ + +

x(σ, σ ) = 1

x(σ, σ ) = 1/3

x(σ , σ ) = 2/3

FIG. 5. The configuration space (black vertices) for N = 3. The
gold arrows form a directed path from |σ 〉 to |σ ′〉. |σ ′′〉 is an
intermediate state. Distances between configurations are shown on
the right.
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as e−cN2
, with c ∼ O(1). Thus, the expected number of

paths which contribute anything other than exp (−Nx ln |ε|),
denoted Nfluc, is

E[Nfluc] = (Nx)! e−cN2 → 0, (22)

i.e., the expected number of atypical paths vanishes as N →
∞. Equation (19) thus gives the effective coupling between
clusters in the p → ∞ limit.

We next use time-dependent perturbation theory to calculate
the transition amplitude from |σ 〉 to |σ ′〉 given in Eq. (17). One
can show that taking eiS |σ 〉 ∼ |σ 〉 and eiS |σ ′〉 ∼ |σ ′〉 does not
affect the lowest-order terms (see Appendix D). Furthermore,
we neglect “self-energy” corrections that would modify the
diagonal elements of Heff: the corrections to the energy
densities are only O(1/N) [36], and the classical energies are
distributed randomly regardless. Then, the standard derivation
[37] gives

Pσ ′(t) ≡ |〈σ ′|e−iH t |σ 〉|2

= 4
∣∣〈σ ′|Veff|σ 〉|2

N2(ε(σ ′) − ε(σ ))2
sin2

(
N (ε(σ ′) − ε(σ ))t

2

)
. (23)

We are interested in ε(σ ′) ∼ ε(σ ) ∼ ε, but it is important
that we do not set ε(σ ′) exactly equal to ε(σ ). The smallest
energy difference among all σ ′ is typically of the order of
level spacing, which may be either smaller or larger than
〈σ ′|Veff|σ 〉 since both scale exponentially with N . More
precisely, the level spacing among |σ ′〉 at distance x scales
as e−Ng(x,ε), with g(x,ε) given by Eq. (16) (setting ε′ = ε).
If g(x,ε) < γ (x,ε), then Eq. (23) is exponentially small for
every final state at distance x. Furthermore, the total weight
on all states at distance x, obtained by summing Pσ ′(t) over
all |σ ′〉 having the specified energy density and distance, is
exponentially small: those |σ ′〉 for which ε(σ ′) − ε(σ ) ∼ e−Nd

give a total contribution e−2Nγ+2NdeNg−Nd = e−2Nγ+Ng+Nd ,
which increases with d until the smallest possible spacing at
d = g. Thus, the probability of transitioning to any state at
distance x vanishes in the thermodynamic limit, for all times
t . Since clusters lie at distances x ∈ [x∗∗(ε),1 − x∗∗(ε)], if
g(x,ε) < γ (x,ε) for all such x then the system never transitions
into a different cluster, even on exponentially long timescales.
This gives the tunneling condition presented in the Introduction
as a necessary condition for quantum dynamics to succeed in
energy matching:

max
x∈[x∗∗(ε),1−x∗∗(ε)]

[g(x,ε) − γ (x,ε)] > 0.

(Tunneling condition)
(3)

Using Eqs. (16) and (20), the tunneling condition becomes

max
x∈[x∗∗(ε),1−x∗∗(ε)]

[
x ln

�

e|ε| − (1 − x) ln (1 − x) − ε2

]
> 0,

(24)

where x∗∗(ε) solves −x ln x − (1 − x) ln (1 − x) = ε2. The
curve �tun(ε) on which the left-hand side is 0 constitutes a
sharp dynamical phase boundary, separating phases in which
the system does and does not tunnel between clusters.

Note that the tunneling transition also manifests in proper-
ties of the many-body eigenstates, as discussed in Ref. [38].
At � < �tun(ε), the eigenstates are only slightly perturbed

from the classical states |σ 〉, whereas at � > �tun(ε), the
eigenstates are superposed from all classical states at energy
density ε. This picture was confirmed by extensive numerics
in Ref. [16]. The use of perturbation theory and the FSA were
also validated, by evaluating Eq. (18) numerically for instances
of finite-size systems. It was found that the location of the
tunneling transition predicted by the numerical FSA agrees
very well with the location found by exact diagonalization.

If Eq. (3) is satisifed, then Fermi’s golden rule gives
the rate at which the system tunnels between clusters. To
ensure that we handle the exponentially small scales in the
level spacing and effective coupling correctly, we present a
derivation here. Consider |σ ′〉 at distance x and fixed time t .
If N |ε(σ ′) − ε(σ )| � t−1, then Pσ ′(t) behaves as e−2Nγ (x,ε)t2,
and if N |ε(σ ′) − ε(σ )| � t−1, then Pσ ′(t) has already reached
its maximum value and begun oscillating. Thus, the portion
of the weight at distance x which is growing with time,
denoted Ptun(x,t), is obtained by summing Pσ ′(t) over |σ ′〉
with |ε(σ ′) − ε(σ )| � (Nt)−1. To exponential order,

Ptun(x,t) ∼ (e−2Nγ (x,ε)t2)(eNg(x,ε)t−1)

= e−N(2γ (x,ε)−g(x,ε))t, (25)

from which the tunneling rate is apparent. The rate τ−1
q at which

the system exits its initial cluster is given by integrating over
x, which since Ptun(x,t) scales exponentially gives the result
stated in the Introduction:

1

N
ln τq = min

x∈[x∗∗(ε),1−x∗∗(ε)]
[2γ (x,ε) − g(x,ε)].

(Tunneling timescale)
(5)

A sufficiently strong transverse field is required to satisfy
Eq. (3), yet the perturbation theory breaks down if the trans-
verse field is too strong. eiS |σ 〉 has weight not only in the
P0 subspace but also in Q0, and these two components of
eiS |σ 〉 evolve separately over time (see Fig. 4). In order for
perturbation theory to be valid, the total weight in Q0 should
be small. Let |σ ′〉 now be a state in Q0, so that ε(σ ′) ≡ ε′ 
= ε.
Within the same approximations as above, one finds (see
Appendix D)

〈σ ′|eiS |σ 〉 ∼ 〈σ ′|iS|σ 〉 ∼
∑
P

∏
σ ′′∈P

�

N (ε − ε(σ ′′))
. (26)

The sum is again over the direct paths from |σ 〉 to |σ ′〉, and the
product is again over intermediate states |σ ′′〉.

As before, we can take ε(σ ′′) → E[ε(σ ′′)] = 0.
Equation (26) becomes

|〈σ ′|eiS |σ 〉| ∼
(

x�

e|ε|
)Nx

≡ e−Nγ (x,ε′ |ε). (27)

Even though γ (x,ε′|ε) does not depend on ε′ [and in fact
γ (x,ε′|ε) = γ (x,ε) from Eq. (20)], we keep mention of it in
our notation. The lack of ε′ dependence is due to the lack
of correlations in the p → ∞ limit. As soon as one includes
finite-p corrections, as in Sec. IV, γ (x,ε′|ε) depends on ε′.

224201-7



C. L. BALDWIN AND C. R. LAUMANN PHYSICAL REVIEW B 97, 224201 (2018)

The total weight in the Q0 subspace is∫ 1

0
dx

∫
dε′ |〈σ ′|eiS |σ 〉|2eNg(x,ε′ |ε)

∼
∫ 1

0
dx

∫
dε′ eN(g(x,ε′ |ε)−2γ (x,ε′|ε)). (28)

The result must be exponentially small if perturbation theory
is to be valid. This is the nonexcitation condition given in the
Introduction:

max
x∈[0,1]

[
max

ε′
[g(x,ε′|ε) − 2γ (x,ε′|ε)]

]
< 0.

(Nonexcitation condition)
(4)

For the REM, the maximization over ε′ is trivial and we have
the requirement

max
x∈[0,1]

[
2x ln

�

e|ε| + x ln x − (1 − x) ln (1 − x)

]
< 0. (29)

Strictly speaking, violation of Eq. (4) only means that the
perturbation theory is inconsistent. However, it has an im-
mediate physical interpretation: the system excites out of its
initial cluster and into higher classical energy densities. This
corresponds to another failure mechanism for energy matching,
as a measurement of the system will not yield the desired
energy density.

Thus, we have obtained two necessary conditions for quan-
tum dynamics to succeed in energy matching. If Eq. (3) is
violated, the system never escapes its initial cluster. If Eq. (4)
is violated, the system excites out of clusters and does not
return. Generically, satisfying both conditions requires that the
transverse field be neither too strong nor too weak, and this
regime may be narrow or nonexistent depending on ε and the
model in question. Indeed, Fig. 1 shows that one cannot satisfy
both conditions at low ε in the REM.

Ultimately, the Schrieffer-Wolff transformation and the
FSA are uncontrolled approximations in this context. In
Sec. III C, we therefore study the random energy model
numerically via exact diagonalization. We find clear evidence
for the tunneling transition, although finite-size effects prevent
us from confirming its specific functional form. Finite-size
effects also prevent us from unambiguously identifying the
excitation transition predicted by Eq. (4). However, we do
find that the first-order thermodynamic transition into a quan-
tum paramagnetic phase [39] is relevant for the Hamiltonian
dynamics. It is itself an excitation transition in which the
system excites to classical energy density 0, and is another
breakdown of energy matching. As the transition is first order,
the perturbative expansion in � does not locate it. Instead,
the phase boundary was calculated using the replica method
in Ref. [39]. We include it in Fig. 1, which highlights the
limitations of quantum dynamics in energy matching.

B. Comparison to thermal activation rate

The rate of tunneling between clusters, when it occurs at all,
is always exponentially slow in system size. This is clear from
the expressions for the rate [Eq. (5)] and the nonexcitation
condition [Eq. (4)]: if Eq. (4) is satisfied, then N−1 ln τq in
Eq. (5) is necessarily positive since it optimizes over fewer

variables. Thus, quantum dynamics cannot succeed at energy
matching in polynomial time. However, it may nevertheless
be exponentially faster than simple classical algorithms. We
now show this for the REM, by comparing the tunneling rate
found above to the equilibration timescale for stochastic (e.g.,
Monte Carlo) dynamics. We then additionally compare to an
unstructured search algorithm in which new configurations are
chosen randomly.

Stochastic dynamics can be used for energy matching as
follows: from a starting configuration σ , run a Monte Carlo
simulation at the temperature T corresponding to ε(σ ) by
Legendre transform. Since the temperature is properly chosen,
one will observe a configuration having the same energy
density at later times with high probability. However, the later
configuration will belong to the same cluster unless one waits
long enough for the system to be thermally activated over the
energy barriers that separate clusters. This activation timescale
is the time required for Monte Carlo dynamics to succeed in
energy matching.

It is straightforward to calculate the activation timescale in
the REM. The N neighboring configurations to a given σ all
have energy density 0 with high probability, as follows from
Eq. (15). Thus, in a Monte Carlo simulation with single-spin
update rules (e.g., Metropolis), the simulation time required to
leave state σ is eNβ|ε(σ )|. The thermodynamic entropy density
of the REM is

s(ε) = ln 2 − ε2 (30)

(see Ref. [26]), from which it follows that β(ε) = −2ε. The
activation timescale in the REM starting from energy density
ε is therefore

τth ∼ e2Nε2
. (31)

The tunneling timescale τq also scales exponentially with
N and is given by Eq. (5). Using the explicit expressions for
γ (x,ε) and g(x,ε),

1

N
ln τq = min

x∈[x∗∗(ε),1−x∗∗(ε)]

[
−2x ln

�

e|ε| − x ln x

+(1 − x) ln (1 − x) + ε2

]
. (32)

It is straightforward to evaluate Eq. (32) numerically. Fig-
ure 6 shows the tunneling timescale as a function of � at
representative values of ε, alongside the activation timescale.
Tunneling is exponentially faster than thermal activation at
energy matching. One can check that this is true for all ε and
� in the tunneling phase of the REM. However, in general the
tunneling phase may have both a regime in which tunneling
is slower than activation (small �) and a regime in which
tunneling is faster (large �). Just as in the single-particle
setting, activation timescales depend on the height of energy
barriers whereas tunneling timescales depend on a combination
of the height and width. Either can be faster depending on the
details of the energy landscape.

Note that there is another method of performing energy
matching which is particularly trivial: ignore the given σ and
pick a new configuration σ ′ uniformly out of all possible 2N ,
check if ε(σ ′) = ε, and repeat until true. The probability of
selecting a σ ′ with the correct energy density is eNs(ε)/2N (and
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FIG. 6. Timescales for energy matching in the REM, as a function
of � at the indicated ε. Red is τq, black is τth. In each panel, the
left dashed line is the location of the tunneling transition and the
right dashed line is the location of the excitation transition. τq is
meaningful only in-between the two. The nonanalyticity in τq comes
from a change in the argmin of Eq. (32).

the event that σ ′ = σ is unlikely), thus the timescale τunstr for
this unstructured search is

τunstr ∼ eNε2
. (33)

Clearly, τunstr � τth, and indeed, the unstructured search is the
most efficient classical algorithm for the REM since the energy
levels are completely independent. Unfortunately, we find that
τunstr � τq throughout the tunneling phase as well. However,
this observation is specific to the REM and not representative of
real optimization problems, which do have distance-dependent
correlations between energy levels. The correlations lead to
energy barriers with smaller (but still macroscopic) heights
and widths, improving the runtime of both activated dynamics
and quantum tunneling relative to the unstructured search.
Indeed, we show in Sec. IV that tunneling can be superior to
both unstructured search and activated dynamics in the more
realistic finite-p-spin model.

C. Numerical results

As noted above, we made uncontrolled approximations in
deriving Eqs. (3) and (4), namely, using the Schrieffer-Wolff

transformation and truncating the perturbation series via the
FSA. Thus, we use exact diagonalization (ED) studies of the
REM to confirm that the dynamical phases in Fig. 1 exist.

Closely related work was performed in Ref. [16], in the
context of eigenstate phases of the quantum REM. The tun-
neling transition is also a transition between localized and
extended eigenstates in the configuration space, and the authors
used multiple measures of localization to detect the transition
numerically using ED. They also compared the location of
the transition obtained by ED to the location obtained by
evaluating the forward-scattering expression for 〈σ ′|Veff|σ 〉
numerically. They found very good agreement, supporting the
validity of Schrieffer-Wolff and the FSA. Here, we supplement
these results by studying explicitly dynamical properties of the
quantum REM.

We construct instances of H ≡ HREM − �
∑

i σ̂
x
i , where

HREM is diagonal in the σ̂ z basis with entries independently
distributed according to Eq. (15). We then perform a “quench”
simulation: find the σ̂ z eigenstate |σ 〉 with classical energy den-
sity closest to a specified ε, then compute |�(t)〉 ≡ e−iH t |σ 〉.
We evaluate two observables at time t , denoted x̂ and ε̂, which
are the operators corresponding, respectively, to the distance
from |σ 〉 and the classical energy density (both are diagonal in
the σ̂ z basis). Since we evaluate the full 2N × 2N matrix e−iH t

via exact diagonalization, we are limited to very small system
sizes, namely, N � 14.

Results for 〈�(t)|x̂|�(t)〉 and 〈�(t)|ε̂|�(t)〉 are shown in
Fig. 7. Both quantities reach saturated values, denoted x∞
and ε∞. For all � and ε, x∞ lies between 0 and 1

2 and ε∞
lies between ε and 0. Since we study finite-size systems,
the dependence on the parameters is smooth. The difference
between the three phases is in the flow of x∞ and ε∞ as N

increases:
(i) Trapped phase: x∞ → 0 and ε∞ → ε.
(ii) Tunneling phase: x∞ → 1

2 and ε∞ → ε.
(iii) Excited phase: x∞ → 1

2 and ε∞ 
→ ε.
In Fig. 7, the behavior of the system is consistent with the

trapped phase at small � (left panel), the tunneling phase at
intermediate � (middle panel), and the excited phase at large
� (right panel). Furthermore, it appears that the timescale on
which the system approaches x∞ is indeed exponential with N

in the tunneling phase.
The middle panel, which shows behavior consistent with the

tunneling phase, is at a (�,ε) point which Fig. 1 predicts is in
the trapped phase. There are two possible explanations for the
discrepancy. First, we cannot rule out that the system becomes
trapped at larger system sizes. Our analytical arguments focus
only on the leading exponential order of the quantities relevant
for computing the phase boundaries, and polynomial prefactors
may lead to significant finite-size effects for N � 14. Second,
since the analysis of Sec. III A is based on perturbation theory in
�, it may only be quantitatively correct at small �. Regardless,
previous numerical work on the eigenstate phases provides
separate finite-size estimates of the phase boundaries, next to
which our results are quantitatively consistent [16,38].

We are unable to conclusively identify the small-� por-
tion of the excited phase shown in Fig. 1. Figure 8 plots
〈�(t)|x̂|�(t)〉 and 〈�(t)|ε̂|�(t)〉 for a (�,ε) point well within
that region of the phase diagram. x∞ = 1

2 as expected,
signifying that the system is not trapped within a cluster.
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FIG. 7. Quantum dynamics in the REM, starting from a classical state at energy density ε. (Top) Average distance relative to the initial
configuration E[〈x̂(t)〉] ≡ E[〈�(t)|x̂|�(t)〉]. Three representative � at fixed ε are shown. The dashed line is x = 1

2 . (Bottom) Average classical
energy density E[〈ε̂(t)〉] ≡ E[〈�(t)|ε̂|�(t)〉]. The same � and ε as in the top panels are used. The dashed line is the initial energy density ε.
Statistical error bars are smaller than the linewidths in all panels. The “tunneling phase” label refers to the observed behavior, not the location
relative to the perturbatively obtained phase boundaries in Fig. 1 (see the discussion in Sec. III C).

However, ε∞ shows a slight downward flow as N increases,
and it is not clear whether the timescale on which the system
approaches x∞ is scaling exponentially or subexponentially. It
is possible that the system is excited out of clusters, but it may
instead be in the tunneling phase with very strong finite-size
effects.

Regardless, we do find strong signatures of all three dynam-
ical phases at lower ε, as shown in Fig. 7.

IV. FINITE- p CORRECTIONS

Here, we extend the above analysis to the finite-p-spin
model and demonstrate two results: first, the leading-in-1/p

corrections are small and thus the picture we have developed
is robust to small but nonzero cluster sizes (Secs. IV A–
IV C); and second, tunneling can now outperform all known
classical algorithms in certain regions of the tunneling phase,
including the unstructured search which is optimal for the
REM (Sec. IV D) [40]. This analysis has the added complexity
that clusters no longer consist of isolated configurations and
the ε(σ ′′) that enter into Veff are no longer independent.
Section IV A discusses the geometry of the clusters, Sec. IV B
calculates the intercluster tunneling amplitudes, Sec. IV C
describes the resulting phase diagram, and Sec. IV D calculates
the tunneling rates and compares to classical algorithms.

A. Geometry of clusters

First, we consider the geometry of clusters at large but
finite p. The radius of a cluster is no larger than x∗(ε), where
x∗(ε) is the smallest nonzero root of the equation g(x,ε) = 0
(see Fig. 3). g(x,ε) is given by Eq. (12), from which we find

that

x∗(ε) ∼ e−O(p), (34)

x∗∗(ε) ∼ x∗∗(ε)p→∞ − e−O(p), (35)

where x∗∗(ε)p→∞ is the REM value of x∗∗(ε). Thus, the
distance between clusters is much larger than their radii at large
but finite p. The macroscopic energy barriers which separate
clusters are also quantified by the FPP. Setting g(x,ε′|ε) = 0 at
fixed x gives us a bound ε′

−(x): all configurations at distance x

have energy densities greater than ε′
−(x). For x between x∗(ε)

and x∗∗(ε),

ε′
−(x) = (1 − 2x)pε

−
√

[1 − (1 − 2x)2p][−x ln x − (1 − x) ln (1 − x)],

(36)

which is strictly greater than ε. The shape of ε′
−(x) is plotted

in Fig. 9. At large p, the peak of the barrier is at

xpeak ∼ ln p

4p
, (37)

with a height of

ε′
−(xpeak) − ε ∼ |ε| − ln p

2
√

p
. (38)

Given that each cluster has a nonzero radius, and thus
that the tunneling paths between |σ 〉 and |σ ′〉 have portions
lying within the clusters, the forward-scattering expansion of
〈σ ′|Veff|σ 〉 is more complicated than what is given in Eq. (18)
for the REM. Recall that the REM expression is simply a sum
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FIG. 8. Quantum dynamics in the REM starting from a high-
energy classical state. (Top) Average distance relative to the ini-
tial configuration E[〈x̂(t)〉] ≡ E[〈�(t)|x̂|�(t)〉]. The dashed line
is x = 1

2 . (Bottom) Average classical energy density E[〈ε̂(t)〉] ≡
E[〈�(t)|ε̂|�(t)〉]. The dashed line is the initial energy density ε.
Statistical error bars are smaller than the linewidths in both panels.

over paths, each term of which takes the same form:

〈σ ′|Veff|σ 〉 ∼
∑
P

�
∏

σ ′′∈P

�

N (ε − ε(σ ′′))
. (18)

At finite p, however, paths acquire different weights and differ-
ent energy denominators depending on how they pass within
clusters (see Appendix D). We are unable to quantitatively
account for these intracluster contributions to 〈σ ′|Veff|σ 〉.
However, we do not expect them to modify the qualitative
picture developed for the REM since the cluster size is much
smaller than the separation between clusters. The majority of
each tunneling path lies outside of the clusters and contributes
factors of �/N(ε − ε(σ ′′)) exactly as in Eq. (18). We expect the
intracluster portions to give additive contributions to γ (x,ε′|ε)
which scale as O(x∗(ε)). Since x∗(ε) is exponentially small in
p, these effects are negligible compared to those corrections
which we describe below, and we shall continue to use Eq. (18)
for 〈σ ′|Veff|σ 〉.

We expect the shifts in energy that arise from diagonalizing
the intracluster effective Hamiltonians (H (α)

eff in Fig. 4) to be
subleading as well. The number of states within a cluster

0.0 0.1 0.2 0.3 0.4 0.5

x

−0.8

−0.6

−0.4

−0.2

0.0

(x∗∗ )

No states

States

FIG. 9. Regions of the (x,ε ′) plane in which the FPP is positive
(white) and negative (gray), for p = 100 and ε = −0.5 (dashed line).
Configurations at distance x have energy densities exclusively in the
white region. x∗∗(ε) is marked, and x∗(ε) is too close to 0 to be visible
on this scale. The curve separating white and gray is ε ′

−(x) [Eq. (36)]
[the corresponding upper root ε ′

+(x) is barely visible in the top-left
corner].

scales as

exp

(
N max

x∈[0,x∗(ε)]
g(x,ε)

)
∼ exp(Ne−O(p)). (39)

Assuming that the hybridization energy among these states
scales as the logarithm of Eq. (39), we find that the energy
densities shift by amounts exponentially small in p. We neglect
this effect in what follows.

B. Intercluster tunneling

The second difference between the finite-p model and the
REM is that the factors of �/N(ε − ε(σ ′′)) are no longer
independent. We make the approximation

ε(σ ′′) ≈ E[ε(σ ′′)] ε(σ ) = ε

ε(σ ′) = ε′
, (40)

which accounts for the correlations between σ ′′ and the two
endpoints but neglects further correlations among the path
amplitudes. The error in making this approximation is only
O(1/p), as we now show.

Consider those tunneling paths along which the energy
densities are a given function ε(y) (0 < y < x). Let the number
of such paths be denoted N (ε(y)). We can then write Eq. (18)
as a path integral over ε(y):

|〈σ ′|Veff|σ 〉| ∼
∫

Dε(y)N (ε(y)) e
N

∫ x

0 dy ln �
N |ε−ε(y)| . (41)

We enforce the conditioning on ε(σ ) and ε(σ ′) through bound-
ary conditions: ε(y = 0) = ε and ε(y = x) = ε′. Equation (41)
is formally exact since now N (ε(y)) is the random variable
which depends on the disorder realization. Importantly, we in-
tegrate only over ε(y) that are nowhere equal to ε since the
tunneling paths lie outside of the clusters. We next make
another “annealed” approximation:

N (ε(y)) → E[N (ε(y))] = (Nx)! P (ε(y)), (42)
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where P (ε(y)) is the probability of a given path having energy
densities ε(y). Calculating P (ε(y)) exactly is intractable, yet
we can infer the scaling with both N and p from the covariance
matrix of the classical energies [Eq. (7)]:

E[ε(σ1)ε(σ2)] = 1

2N
[1 − 2x(σ1,σ2)]p. (43)

At large p, the right-hand side is independent of p on a length
scale x(σ1,σ2) ∼ O(1/p). Thus, 1/p can be identified as the

“correlation length” for the classical energies. If ε(y) deviates
from its mean throughout a distance x, then since the number
of correlation lengths involved is px, this roughly corresponds
to a number px of independent fluctuations, each of which is
exponentially rare in N . Thus,

P (ε(y)) ∼ e−Np c(ε(y)), (44)

where c(ε(y)) is independent of both N and p, and
c(E[ε(y)]) = 0. Thus, Eq. (41) becomes

|〈σ ′|Veff|σ 〉| ∼
∫

Dε(y) eN(x ln x�
e

−∫ x

0 dy ln |ε−ε(y)|−p c(ε(y))). (45)

At p → ∞, the saddle point of the path integral is at ε0(y) ≡ E[ε(y)] (see Sec. III A). To compute the correction from large but
finite p, write ε(y) = ε0(y) + δε(y) and expand the exponent:

−
∫ x

0
dy ln |ε − ε(y)| − p c(ε(y)) ∼ −

∫ x

0
dy ln |ε − ε0(y)| +

∫ x

0
dy

δε(y)

ε − ε(y)
− p

∂2c(ε0(y))

∂ε(y)∂ε(z)
δε(y)δε(z). (46)

There are no first derivatives of c(ε(y)) because ε0(y) is the location of its minimum. Competition between the second and third
terms in Eq. (46) determines the location of the saddle point. They are comparable for δε(y) ∼ O(1/p), which changes the
value of the exponent at the saddle point by O(1/p). This is the error made to 〈σ ′|Veff|σ 〉, or rather γ (x,ε′|ε), by approximating
ε(y) ≈ E[ε(y)], i.e., δε(y) ≈ 0. It is indeed small at large p.

Next, consider howE[ε(y)] is modified by correlations with ε(σ ) and ε(σ ′). A straightforward calculation given in Appendix C
shows that

E[ε(y)]| ε(σ ) = ε

ε(σ ′) = ε′
= μ(y) − μ(x)μ(x − y)

1 − μ(x)2
ε + μ(x − y) − μ(x)μ(y)

1 − μ(x)2
ε′, (47)

where μ(z) ≡ (1 − 2z)p. Then, |〈σ ′|Veff|σ 〉| ∼ e−Nγ (x,ε′ |ε) with

γ (x,ε′|ε) = −x ln
x�

e|ε| +
∫ x

0
dy ln

∣∣∣∣1 − μ(y) − μ(x)μ(x − y)

1 − μ(x)2
− μ(x − y) − μ(x)μ(y)

1 − μ(x)2

ε′

ε

∣∣∣∣. (48)

In the large-p limit, assuming x ∼ O(1) [41],

γ (x,ε′|ε) ∼ −x ln
x�

e|ε| − K

p
, (49)

where

K ≡ π2

12
−

∫ ∞

0
dy ln

(
1 − ε′

ε
e−2y

)
. (50)

The correction relative to Eqs. (20) and (27) for the REM is indeed O(1/p).

C. Phase boundaries

The same arguments as in Sec. III A give Eq. (3) as a necessary condition for tunneling between clusters to occur:

max
x∈[x∗∗(ε),1−x∗∗(ε)]

[g(x,ε) − γ (x,ε)] > 0, (3)

only now with Eq. (12) for g(x,ε) and Eq. (49) for γ (x,ε). Since x∗∗(ε) ∼ O(1) with respect to p, g(x,ε) differs from the REM
expression [Eq. (16)] by an amount exponentially small in p and γ (x,ε) differs from Eq. (20) by O(1/p). Thus, the same Eq. (24)
determines the tunneling transition in the finite-p models to within O(1/p).

The excitation transition in the finite-p models is more subtle. Within the approximations that we have made, Eq. (48) holds
for all x. However, Eq. (49) only holds for x ∼ O(1). At x � 1/p, we instead have

γ (x,ε′|ε) ∼ −x ln
e�

2p2|ε| +
(

x + ε′ − ε

2p2|ε|x
)

ln

(
x + ε′ − ε

2p2|ε|x
)

− ε′ − ε

2p2|ε|x ln
ε′ − ε

2p2|ε|x , (51)

g(x,ε′|ε) − 2γ (x,ε′|ε) ∼ x ln
e3�2

4p4ε2x
− (ε′ − ε − 2p|ε|x)2

4px
− 2

(
x + ε′ − ε

2p2|ε|x
)

ln

(
x + ε′ − ε

2p2|ε|x
)

+ ε′ − ε

p2|ε|x ln
ε′ − ε

2p2|ε|x .

(52)
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The maximum over ε′ is at ε′ − ε = 2p|ε|x + O(1/p), and

max
ε′

[g(x,ε′|ε) − 2γ (x,ε′|ε)] = x ln
e3�2

4p2ε2x
+ O

(
1

p3

)
.

(53)

The maximum over x is then at

xm = e2�2

4p2ε2
(54)

and, importantly, the value of the maximum is positive. Equa-
tion (4) is never satisfied, and the system is excited to higher
classical energy densities. However, this does not imply that
the system escapes from its starting cluster: Eq. (54) indicates
that the system moves through a distance O(1/p2), and thus
the classical energy changes by O(1/p), which is much too
small to surmount the energy barrier at distance O(1/p) and
height O(1) [Fig. 9 and Eq. (37)]. To check if the system is
excited out of clusters, one should modify Eq. (4) to maximize
over x � O(1/p). Then, the finite-p corrections to γ (x,ε′|ε)
are subleading, and Eq. (4) determines the excitation transition
to within O(1/p).

The thermodynamic transition into a quantum paramag-
netic phase, constituting another excitation transition, is also
present at finite p [42,43]. The phase boundary terminates at
energy density −O(1/

√
p) [42]. On the other hand, by setting

minx [g(x,ε)] = 0, one finds that

εd ∼ −
√

ln p

p
. (55)

Since the energy landscape of the p-spin model is organized
into clusters only below εd , the large-� excitation transition is
present at all ε for which energy matching is nontrivial.

D. Tunneling rates

Tunneling continues to be exponentially faster than activa-
tion for large but finite p. This follows from the fact that for
x ∼ O(1), the density of states has exponent

g(x,ε) = max
ε′

[g(x,ε′|ε)] − ε2 + e−O(p), (56)

and the effective coupling has exponent

γ (x,ε) = γ (x,ε′ 
= ε|ε) − O

(
1

p

)
. (57)

See Eqs. (12) and (49), respectively. Thus, N−1 ln τq is cor-
rected only by O(1/p) relative to the REM value. Similarly,
given that the height of the energy barriers is close to the REM
value [Eq. (38)] and the distance from the cluster centers is
close to 0 [Eq. (37)], N−1 ln τth also has corrections small in
1/p. These corrections cannot compensate for the leading-
order result that N−1 ln τq < N−1 ln τth by O(1).

The comparison between tunneling and unstructured search
is more interesting at finite p, and indeed tunneling is now
faster in a portion of the tunneling phase. It is known that
the entropy density of the p-spin model is exactly equal to the
REM expression [Eq. (30)] for all ε > εs [23], thus, the runtime
for unstructured search is again given by Eq. (33). From

Eqs. (56) and (57),

1

N
ln τq = − max

x∈[x∗∗(ε),1−x∗∗(ε)]
[g(x,ε) − 2γ (x,ε)]

= − max
x∈[x∗∗(ε),1−x∗∗(ε)]

[
max

ε′
[g(x,ε′|ε) − 2γ (x,ε′|ε)]

]

+ ε2 − O

(
1

p

)
. (58)

Precisely on the excitation boundary, the first term on the
right-hand side is zero by definition [44]. Thus, N−1 ln τq is
smaller than ε2 = N−1 ln τunstr by O(1/p) on the boundary.
By continuity, tunneling is faster than unstructured search for
an entire range of � < �exc(ε) in the tunneling phase.

As trivial as the unstructured search is, we are not aware of
any classical search algorithm that can perform better at large
p, where the energy landscape is similar to the uncorrelated
landscape of the REM (for which unstructured search must
be optimal since the energy levels are independent). Thus,
to the best of our knowledge, the quantum energy-matching
algorithm presented here is more efficient than any classical
method for solving matching problems in this regime. The
algorithm does not require exponential precision or knowledge
of the level structure. While one must be able to identify the
tunneling phase and tune the transverse field close to the excita-
tion boundary, these requirements do not scale with the size of
the problem. This approach thus has a fundamental advantage
over other quantum algorithms, which require unreasonable
amounts of control [45].

V. CONCLUSION

We have demonstrated that the application of quantum dy-
namics to energy-matching problems is severely constrained,
but that it is capable of outperforming all known classical
algorithms in the tunneling phase. Our test bed is the p-spin
model at large p, for which we use perturbation theory and
exact diagonalization. The goal of energy matching is to find
states at a target energy given one state at the same energy. In
general, finding low-energy states is difficult when the energy
landscape is rugged, i.e., contains many local minima separated
by large barriers. Ideally, starting at a low energy state serves
as a “hint” for finding others, but the same ruggedness makes
energy matching difficult: in order to find sufficiently distinct
target states, any classical algorithm that flips only a few
spins per step must return to and explore high-energy states
at intermediate steps. This raises the possibility for quantum
dynamics to provide a speedup over classical algorithms by
tunneling through those energy barriers.

In many regimes of transverse-field strength and target
energy, quantum dynamics cannot succeed in energy matching
even if allowed arbitrarily long runtime. If the applied field is
too weak, the system never tunnels out of its starting cluster of
states. If the applied field is too strong, the system is excited
to higher (classical) energy densities and thus never locates
target states. Only at intermediate fields does the system suc-
cessfully tunnel between clusters while roughly conserving the
classical energy density. These possibilities constitute distinct
dynamical phases, demarcated by sharp phase boundaries in
the thermodynamic limit (Fig. 1). The combination of three
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features of the energy landscape underlies the physics: the
macroscopic height of energy barriers, the macroscopic width
of those barriers, and the exponential number of clusters in
which to tunnel (referred to in the spin-glass community as the
“complexity” of the model). These features are typical in many
of the well-studied classes of optimization problems [46–49],
thus, we expect the results of this paper to apply more generally.

A remarkable feature of the dynamical phase diagram for
the p-spin model is that there is no tunneling phase at energies
close to the ground state. The barriers between such low-energy
states are too large and wide, and the complexity of clusters
is too small. As a result, it is not possible to tunnel between
ground or near-ground states of the p-spin model for any
applied transverse field. However, ground-state tunneling may
be possible in problems with larger ground-state complexity,
e.g., the satisfiability problem [2,27,50], and we leave this as
an interesting open question.

If the system is in its tunneling phase, the timescale for
intercluster tunneling is exponential in system size. Thus,
quantum dynamics never solves the energy-matching prob-
lem in polynomial time. However, we find that tunneling is
exponentially faster than certain simple classical algorithms,
such as Metropolis Monte Carlo simulation, throughout the
tunneling phase. Furthermore, tunneling outperforms even the
unstructured search close to the excitation boundary at large
but finite p. The unstructured search is the optimal classical
algorithm in the infinite-p limit, and we do not know of any
classical method that could perform better at large p [40].

It would in particular be interesting to compare with the
performance of quantum Monte Carlo (which is still a classical
algorithm). Recent work suggests that quantum Monte Carlo
algorithms can perform as well as incoherent tunneling pro-
cesses [14]. However, that analysis is limited to “single-path”
tunneling in integrable and/or highly symmetric models, and
it is unclear whether a similar statement can be made for
nonintegrable disordered models.

One drawback to the approach presented here is that the
rates we find are exponentially slower than those which could
be achieved by a universal quantum computer implementing a
variation of Grover’s algorithm [45]. Indeed, in the REM (p →
∞ limit), there are strong arguments that no algorithm can
outperform Grover’s since the energy landscape is unstructured
[51]. However, Grover’s algorithm requires both exponential
tuning precision and detailed knowledge of the adiabatic level
structure. The advantage of the algorithm presented here is
that it requires neither. Effective Hamiltonians of the form in
Eq. (1) are realizable in near-term quantum annealing devices
[19,20], and the energy-matching protocol proposed here is
straightforward to implement and test on them.
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APPENDIX A: NP-COMPLETENESS OF GROUND-STATE
ENERGY MATCHING IN K-CSPs

Here, we show that the matching problem for the ground
states of K-body constraint satisfaction problems (CSPs) is
NP-complete when K � 4. To be precise, we define the
decision problem [52]:

Matching K-CSP

Input: (H,σ, x), where H is a classical energy
function encoding a K-CSP, σ ∈ {0, 1}N is a sat-
isfying ground state of H, and x ∈ (0, 1) is a frac-
tional Hamming distance.
Output: YES if there exists a satisfying state
σ such that x(σ, σ ) x.

It is clear that matching K-CSP is in NP. In order to
show that it is NP-complete, we construct a reduction from
(K − 1)-CSP to matching K-CSP. Since (K − 1)-CSP is NP-
complete for K − 1 � 3, this proves that matching K-CSP is
NP-complete for K � 4.

Let Hp be an instance of (K − 1)-CSP acting on N bits
si . We construct an instance of matching K-CSP by intro-
ducing M = 2N auxiliary bits τj and defining the K-CSP
Hamiltonian:

H̃p = Hp ⊗
⎛
⎝ 1

2M

M∑
j=1

(1 + τj )

⎞
⎠

+I ⊗
⎛
⎝M − 1

M

M∑
j,j ′=1

τj τj ′

⎞
⎠, (A1)

where the left factor in each tensor product refers to the original
bits and the right factor to the auxiliary bits. The first term
interpolates between 0 when all τj = −1 and Hp when all
τj = +1. The second term contributes an energy cost when
any two auxiliary bits are antialigned. Clearly, H̃p involves no
more than K-body interactions.

A state |s〉 ⊗ |τ 〉 has zero energy under H̃p if it satisfies one
of the following conditions:

(1) All τj = −1.
(2) All τj = +1 and Hp |s〉 = 0.
All other states have positive energy under H̃p. The given

zero-energy state of the matching problem is |−〉 ⊗ |−〉, i.e.,
all original and auxiliary bits have value −1, which satisfies
condition 1.

It is then clear that Hp has a zero-energy state if and
only if H̃p has a zero-energy state at distance greater than
1
3 from |−〉 ⊗ |−〉. If Hp has a zero-energy state |s〉, then
H̃p( |s〉 ⊗ |+〉 ) = 0 and |s〉 ⊗ |+〉 is at distance greater than
2
3 from |−〉 ⊗ |−〉. If H̃p has a zero-energy state |s〉 ⊗ |τ 〉
at sufficient distance, then |s〉 ⊗ |τ 〉 cannot satisfy condition
1 as that would imply a distance less than 1

3 and so must
satisfy condition 2, i.e., |s〉 is a satisfying configuration of Hp.
We thus have the desired mapping from any instance Hp of
(K − 1)-CSP to an instance (H̃p, |−〉 ⊗ |−〉 ,1/3) of matching
K-CSP.
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APPENDIX B: FPP IN THE CANONICAL
AND MICROCANONICAL ENSEMBLES

The Franz-Parisi potential is typically presented in the
canonical ensemble [26,28–30]. It represents the free energy of
a system at inverse temperature β ′ constrained to be at distance
x from a system in equilibrium at inverse temperature β:

v(x,β ′|β) = E

[
Trσ

[
e−Nβε(σ )

Z(β)
ln Trσ ′[δx,x(σ,σ ′)e

−Nβ ′ε(σ ′)]

]]
,

(B1)

where Z(β) is the partition function. However, in this paper it
is more natural to use g(x,ε′|ε) as defined in Eq. (10). Here,
we show the relationship between the two.

First consider

E

[
Trσ

[
e−Nβε(σ )

Z(β)
f (σ )

]]

for a function f (σ ) growing slower than exponential with N

but otherwise arbitrary. The trace is dominated by those σ at
the energy density ε which maximizes s(ε) − βε, where s(ε) is
the disorder-averaged entropy density [the sample-to-sample
fluctuations about s(ε) are expected to vanish as N → ∞].
The configurations at other energy densities collectively give
an exponentially small contribution. Thus, as N → ∞,

E

[
Trσ

[
e−Nβε(σ )

Z(β)
f (σ )

]]
∼ E

[
Trσ

[
δ(ε − ε(σ ))

N (ε)
f (σ )

]]
,

(B2)

where ε = arg maxz[s(z) − βz] and N (ε) = eNs(ε).
Equation (B2) applies to v(x,β ′|β) with

f (σ ) = ln Trσ ′[δx,x(σ,σ ′)e
−Nβ ′ε(σ ′)]. (B3)

In fact, since all configurations σ are statistically equivalent,
the argument of the trace is independent of σ and we have that

v(x,β ′|β) = E[ln Trσ ′[δx,x(σ,σ ′)e
−Nβ ′ε(σ ′)]]|ε(σ )=ε, (B4)

for an arbitrary reference configuration σ .
Next, write

Trσ ′[δx,x(σ,σ ′)e
−Nβ ′ε(σ ′)]

=
∫

dε′e−Nβ ′ε′
Trσ ′[δx,x(σ,σ ′)δ(ε′ − ε(σ ′))]. (B5)

Assuming, as is typical, that g(x,ε′|ε) is self-averaging, the
trace on the right-hand side is precisely eNg(x,ε′ |ε) [cf. Eq. (10)].
The integral is dominated by ε′ = arg maxz′ [g(x,z′|ε) − β ′z′].
We thus have the desired relationship between the canonical
FPP v(x,β ′|β) and the microcanonical FPP g(x,ε′|ε);

v(x,β ′|β) = g(x,ε′|ε) − β ′ε′, (B6)

ε = arg max
z

[s(z) − βz], (B7)

ε′ = arg max
z′

[g(x,z′|ε) − β ′z′]. (B8)

Note that the relationship between ε′ and β ′ is not set by the
full entropy s(ε) but rather by the distance-resolved entropy
g(x,ε′|ε).

Equations (B6)–(B8) express v(x,β ′|β) in terms of
g(x,ε′|ε) through a Legendre transform. By inverting the
transform, one obtains g(x,ε′|ε) in terms of v(x,β ′|β).

APPENDIX C: CORRELATIONS AMONG
ENERGY LEVELS

Here, we calculate the conditional expectation values
needed in the main text, namely, for obtaining g(x,ε′|ε) and
γ (x,ε′|ε) at finite p [Eqs. (12) and (48)]. The joint distribution
of energy levels in the classical p-spin model follows imme-
diately from the fact that the energies are Gaussian distributed
with covariances given by Eq. (7). For a subset of levels
ε ≡ (ε(σ1) . . . ε(σn))T , the joint distribution is

Pn(ε) = e−NεT −1ε (C1)

up to normalization, where

 ≡

⎛
⎜⎜⎜⎜⎝

1 (1 − 2x12)p · · · (1 − 2x1n)p

(1 − 2x12)p 1 · · · (1 − 2x2n)p

...
...

. . .
...

(1 − 2x1n)p (1 − 2x2n)p · · · 1

⎞
⎟⎟⎟⎟⎠, (C2)

with xij shorthand for x(σi,σj ). Thus, the distribution for a
single level ε is

P1(ε) = e−Nε2
, (C3)

and the distribution for a pair of levels ε and ε′ is

P2(ε,ε′) = exp

(
−N

ε2 − 2(1 − 2x)pεε′ + ε′2

1 − (1 − 2x)2p

)
. (C4)

The conditional distribution of ε′ given ε is

P2(ε′,ε)

P1(ε)
= exp

(
−N

[ε′ − (1 − 2x)pε]2

1 − (1 − 2x)2p

)
, (C5)

from which Eq. (12) follows.
To obtain Eq. (47), we need to average over ε′′ in the joint

distribution P3(ε,ε′,ε′′). Write the 3 × 3 matrix −1 in block-
diagonal form as

−1 =
(

A b

bT c

)
, (C6)

where A is 2 × 2 and acts in the (ε,ε′) subspace, b is 2 × 1,
and c is 1 × 1. Then,

P3(ε,ε′,ε′′)

= exp (−N (cε′′2 + 2bT εε′′ + εT Aε))

= exp

(
− Nc

(
ε′′ + bT ε

c

)2

− NεT

(
A − bbT

c

)
ε

)
, (C7)

where ε ≡ (ε ε′)T . We see that

E[ε′′]|ε,ε′ = − bT ε

c
. (C8)

A direct calculation of the inverse gives that

−1

c
b =

( (1−2y)p−(1−2x)p(1−2x+2y)p

1−(1−2x)2p

(1−2x+2y)p−(1−2x)p(1−2y)p

1−(1−2x)2p

)
, (C9)

from which Eqs. (47) and (48) follow.
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APPENDIX D: SCHRIEFFER-WOLFF
AND FORWARD SCATTERING

1. Effective coupling

Consider a Hamiltonian H = H0 + ηV with projectors P0

and Q0 ≡ 1 − P0, such that H0 = P0H0P0 + Q0H0Q0 (i.e.,
H0 is block diagonal with respect to P0 and Q0). Owing
to V , one may have that H is not block diagonal. The
Schrieffer-Wolff transformation is a unitary transformation U

such that Heff ≡ UHU † is block diagonal, i.e., P0HeffQ0 =

Q0HeffP0 = 0. Here, we discuss how to compute the generator
of U within the forward-scattering approximation, which
amounts to retaining the lowest-order-in-η terms for each
matrix element of Heff (different matrix elements may become
nonzero at different orders, and we work to lowest nonzero
order for each separately).

We use the review by Bravyi et al. [34] as our starting point.
First, we present their notation. V is broken into diagonal and
off-diagonal parts

Vd ≡ P0V P0 + Q0V Q0, Vod ≡ P0V Q0 + Q0V P0. (D1)

Eigenstates of H0 are used as the basis, denoted |i〉,|j 〉, . . . with corresponding energies Ei,Ej , . . . . The unitary transformation
U is expressed as eS , with S anti-Hermitian. For consistency with [34], we shall use this convention throughout the Appendix,
even though we refer to a Hermitian generator in the main text. Finally, Bravyi et al. define superoperators

Ŝ( · ) ≡ [S, · ], (D2)

L( · ) ≡
∑
i ∈ P0
j ∈ Q0

(
|i〉 〈i| · |j〉

Ei − Ej

〈j | + |j 〉 〈j | · |i〉
Ej − Ei

〈i|
)

, (D3)

where the center dot denotes an arbitrary operator. Note that Eq. (D3) only has off-block-diagonal matrix elements. With this
notation, the condition that Heff be block diagonal gives an equation for the generator S:

S = LŜ(ηVd ) + LŜ coth(Ŝ)(ηVod ). (D4)

The effective Hamiltonian is

Heff = H0 + ηVd + tanh

(
Ŝ

2

)
(ηVod ). (D5)

See [34] for the derivation.
Equation (D4) is naturally suited to an expansion in η:

S =
∞∑

n=1

ηnSn, (D6)

with each Sn an anti-Hermitian operator. From Eq. (D4),

S1 = L(Vod ), S2 = LŜ1(Vd ), Sn = LŜn−1(Vd ) +
∞∑

j=1

a2j

∑
n1, . . . ,n2j � 1

n1 + · · · + n2j = n

LŜn1 . . . Ŝn2j
(Vod ), (D7)

where the last line refers to n � 3, and a2j is the 2j th Taylor coefficient of x coth x about 0. Consider the first two orders:

S1 =
∑
i ∈ P0
j ∈ Q0

(
|i〉 〈i|Vod |j 〉

Ei − Ej

〈j | + |j 〉 〈j |Vod |i〉
Ej − Ei

〈i|
)

, (D8)

S2 =
∑
i ∈ P0
j ∈ Q0
k ∈ Q0

(
|i〉 〈i|Vod |j〉 〈j |Vd |k〉

(Ei − Ek)(Ei − Ej )
〈k| − |k〉 〈k|Vd |j〉 〈j |Vod |i〉

(Ek − Ei)(Ej − Ei)
〈i|

)

+
∑
i ∈ P0
j ∈ P0
k ∈ Q0

(
|i〉 〈i|Vd |j〉 〈j |Vod |k〉

(Ei − Ek)(Ej − Ek)
〈k| − |k〉 〈k|Vod |j〉 〈j |Vd |i〉

(Ek − Ei)(Ek − Ej )
〈i|

)
. (D9)

It becomes very tedious to write higher-order terms, yet one already sees the structure of the expansion. Each term in Sn has a
numerator which is a string of matrix elements of V and a denominator which is a string of energy differences. Note that each
matrix element can be either Vd or Vod , and each energy denominator is between a state in P0 and a state in Q0. The same structure
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holds when we insert the expansion of S into Eq. (D5) and obtain an expansion of Heff in powers of η. For example, two of the
fourth-order terms in Heff are

Heff = · · · + η4

2
|i〉 〈i|Vod |j〉 〈j |Vd |k〉 〈k|Vd |l〉 〈l|Vod |m〉

(Ei − El)(Ei − Ek)(Ei − Ej )
〈m| + η4

2
|i〉 〈i|Vd |j 〉 〈j |Vod |k〉 〈k|Vd |l〉 〈l|Vod |m〉

(Ei − El)(Ei − Ek)(Ej − Ek)
〈m| + · · · . (D10)

Thus far, all that we have presented is completely general. Now, we show how the above equations, which are ultimately used
to determine Heff, are considerably simplified by making the forward-scattering approximation (FSA). It is best to first consider
the FSA within a simple toy problem, a one-dimensional nearest-neighbor tight-binding model with open boundary conditions:

H =
L∑

i=0

Ei |i〉 〈i| − η

L−1∑
i=0

(|i〉 〈i + 1| + |i + 1〉 〈i|). (D11)

Suppose that E0 and EL are much lower than all other Ei , and we want to study tunneling from site 0 to site L. We take P0 to
project onto |0〉 and |L〉, V to be the hopping term, and aim to compute 〈0|Heff|L〉 to lowest order in η.

The lowest-order terms are O(ηL) since at least L applications of the hopping term are required to couple |0〉 and |L〉. However,
alongside those Lth-order terms which do couple |0〉 and |L〉, there are many Lth-order terms in Heff which do not. Only terms for
which the operator string is VodVd

L−2Vod contribute to 〈0|Heff|L〉 at Lth order since {|0〉 , |L〉} ∈ P0 and {|1〉 , . . . , |L − 1〉} ∈ Q0.
For example, taking L = 4, the first term in Eq. (D10) does contribute to 〈0|Heff|4〉 at fourth order (taking i = 0, j = 1, etc.) but
the second term does not.

In fact, only two terms at Lth order have the correct operator string:

〈0|Heff|L〉 ∼ ηL

2

( 〈0|Vod |1〉 〈1|Vd |2〉 . . . 〈L − 2|Vd |L − 1〉 〈L − 1|Vod |L〉
(E0 − E1)(E0 − E2) . . . (E0 − EL−2)(E0 − EL−1)

+〈0|Vod |1〉 〈1|Vd |2〉 . . . 〈L − 2|Vd |L − 1〉 〈L − 1|Vod |L〉
(EL − E1)(EL − E2) . . . (EL − EL−2)(EL − EL−1)

)
+ O(εL+1). (D12)

If E0 = EL, the final expression is particularly simple:

〈0|Heff|L〉 ∼ η

L−1∏
i=1

η

E0 − Ei

. (D13)

Compare to Eq. (18) in the main text (noting that the
toy problem has only one path from 0 to L). This is the
FSA, in which only the lowest-order terms in 〈0|Heff|L〉 are
kept.

To add another level of complexity, let us consider the REM
in a transverse field, i.e., the p → ∞ limit of Eq. (13) in which
the classical energy levels become independent and a finite-ε
“cluster” corresponds to a single configuration. Now, P0 is the
projector onto configurations with classical energy density ε,
V = −�

∑
i σ̂

x
i , and we calculate 〈σ |Heff|σ ′〉 for |σ 〉 , |σ ′〉 ∈

P0. Let the distance between σ and σ ′ be x. 〈σ |Heff|σ ′〉 ∼
O(�Nx), and although there are many more terms atNxth order
than in the toy problem, the same arguments hold here. Each
surviving term has an operator string of the form VodV

Nx−2
d Vod ,

with the intermediate states constituting a sequence of spin
flips transforming σ into σ ′ (a “path” in configuration space).
This gives us Eq. (18) in the main text. The only subtlety is that
some paths may pass through other states in P0, giving operator
strings VodV

Ny−2
d Vod

2V
N(x−y)−2
d Vod . However, such paths are

an exponentially small fraction of the total, and thus negligible:
out of the (Nx)! paths from σ to σ ′, the expected number with
at least one intermediate configuration having energy density ε

scales as Ne−Nε2
(Nx)! [53]. Note that these atypical paths do

not have amplitudes large enough to compensate for the smaller
quantity, as the Schrieffer-Wolff formalism ensures that there
are no resonant denominators.

2. Time evolution

Since the Schrieffer-Wolff transformation is unitary, time
evolution from |σ 〉 to |σ ′〉 through H is equivalent to time
evolution from eS |σ 〉 to eS |σ ′〉 through Heff. Keep in mind that
Heff is block diagonal with respect to P0 and Q0. Therefore,
eS |σ 〉 consists of two components, one that evolves within P0

and one that evolves within Q0. Furthermore, S is off block
diagonal since every term in its expansion involves an odd
number of Vod factors [see Eq. (D7)]. Thus, cosh (S) |σ 〉 is the
P0 component and sinh (S) |σ 〉 is the Q0 component. In the
main text, we simply take eS |σ 〉 ∼ |σ 〉, and time-dependent
perturbation theory in Veff then gives the rate at which the
system tunnels between clusters. However, to justify this,
we must consider two effects which are not described by
time-dependent perturbation theory. First, cosh (S) |σ 〉 has
amplitude not only in the initial cluster, but in other clusters
as well. The overlap with final states vanishes at t = 0 since
〈σ ′|e−SeS |σ 〉 = 0, yet this is due to interference between the
terms in the expansion of eS . Such interference presumably
decoheres by t ∼ O(1), meaning that the system may develop
significant amplitude in other clusters on O(1) timescales.
Second, sinh (S)|σ 〉 has nonzero weight, corresponding to
probability for the system to be excited to higher classical
energy densities. The dynamics within the Q0 subspace cannot
be described by our method either. In this section, we develop
the conditions under which one can neglect these two effects.

Consider cosh (S) |σ 〉. We want to calculate the amplitude
on |σ ′〉 ∈ P0. We will continue to work within the FSA,
meaning that we compute 〈σ ′| cosh (S)|σ 〉 to lowest nonzero
order in �. By the same arguments as above, the relevant terms
again have the operator string VodV

Nx−2
d Vod , which all come

from 1
2S2 in the expansion of cosh(S). Unlike above, however,
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there are many more terms: the string in the first factor of S

must begin on |σ 〉 but can terminate on any intermediate |σ ′′〉,
and the string in the second factor must then begin at |σ ′′〉 and
terminate on |σ ′〉. Thus,

〈σ ′| cosh(S)|σ 〉 ∼ 1

2

∑
σ ′′

∑
Pσ ′′

∏
σ ′′′∈Pσ ′′

�

N (ε − ε(σ ′′′))
. (D14)

The outer sum is over all |σ ′′〉 intermediate between |σ 〉 and
|σ ′〉. The inner sum is over paths Pσ ′′ that pass through |σ ′′〉.

Focus on the REM for simplicity. Then, we again take
ε(σ ′′′) → E[ε(σ ′′′)] = 0, and

|〈σ ′| cosh(S)|σ 〉|

∼
∫ x

0
N dy

(
Nx

Ny

)
(Ny)!(N (x − y))!

(
�

N |ε|
)Nx

= Nx(Nx)!

(
�

N |ε|
)Nx

∼ Nxe−Nγ (x,ε), (D15)

with γ (x,ε) as in the main text. The extra factor of Nx does
not modify the exponential scaling and can be neglected. To
obtain the total weight on other clusters, we multiply e−2Nγ (x,ε)

by eNg(x,ε) and integrate over all x ∈ [x∗∗(ε),1 − x∗∗(ε)]. The

result is e−Nr(ε) with

r(ε) = min
x∈[x∗∗(ε),1−x∗∗(ε)]

[2γ (x,ε) − g(x,ε)]. (D16)

Interestingly, the total weight is governed by the same ex-
ponent as the Fermi’s golden rule rate [Eq. (5)]. The field
strength required for the transformed state cosh(S)|σ 〉 to have
significant weight on other clusters, which could then decohere
and become observable on O(1) timescales, is exactly the
field strength required for the tunneling rate to become O(1)
regardless. If the tunneling rate is O(1), our use of perturbation
theory is questionable anyway. Thus, as long as we focus on the
portion of the phase diagram for which r(ε) > 0, it is justified
to take cosh (S) |σ 〉 ∼ |σ 〉.

Next, consider sinh(S)|σ 〉. We compute 〈σ ′| sinh(S)|σ 〉
with |σ ′〉 
∈ P0. Thus, ε(σ ′) ≡ ε′ 
= ε. The lowest-order op-
erator strings are of the form V Nx−1

d Vod , which come from S

in the expansion of sinh (S). There is only one such term in
Eq. (D7), giving

〈σ ′| sinh(S)|σ 〉 ∼
∑
P

∏
σ ′′∈P

�

N (ε − ε(σ ′′))
. (D17)

The notation is the same as for Eqs. (18) and (26) in the
main text. For the REM, we evaluate Eq. (D17) as before and
obtain Eq. (27). The conditions under which the total weight
of sinh(S)|σ 〉 is negligible then follow as discussed in the main
text.
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