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Diffusion-reaction model for positron trapping and annihilation at spherical
extended defects and in precipitate-matrix composites
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The exact solution of a diffusion-reaction model for the trapping and annihilation of positrons in small extended
spherical defects (clusters, voids, small precipitates) with competitive rate-limited trapping in vacancy-type point
defects is presented. Closed-form expressions are obtained for the mean positron lifetime and for the intensities of
the two positron lifetime components associated with trapping at defects. The exact solutions can be conveniently
applied for the analysis of experimental data and allow an assessment in how far the usual approach, which
takes diffusion limitation into account by means of effective diffusion trapping rates, is appropriate. The model is
further extended for application to larger precipitates where diffusion- and reaction-limited trapping is not only
considered for the trapping from the matrix into the precipitate-matrix interface, but also for the trapping from
inside the precipitates into the interfaces. This makes the model applicable to all types of composite structures
where spherical objects are embedded in a matrix, irrespective of their size and their number density.
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I. INTRODUCTION

The versatile technique of positron annihilation makes use
of the fact that positrons (e+) are trapped at free volume-type
defects which allows their detection by a specific variation
of the positron-electron annihilation characteristics [1–4].
Whereas the kinetics of e+ trapping at vacancy-type point
defects can be well described by rate theory (so-called simple
trapping model), it is well known that for trapping at extended
defects like grain boundaries, interfaces, voids, clusters, or
precipitates, diffusion limitation of the trapping process may be
an issue. Diffusion-limited positron trapping at interfaces and
grain boundaries has been quantitatively modeled by several
groups, ranging from entirely diffusion-controlled trapping [5],
diffusion-reaction-controlled trapping including detrapping
[6–9], up to diffusion-reaction-controlled trapping at grain
boundaries and competitive transition-limited trapping at point
defects in crystals [8,10–12].

Compared to grain boundaries, diffusion-limited e+ trap-
ping at voids and clusters has not been studied in such detail
despite the undoubted relevance of positron annihilation for
studying this important class of defects [13–15]. One approach
to deal with diffusion-limited trapping is based on effective
diffusion trapping rates which then allow an implementation
in standard rate theory (e.g., [14]). Diffusion-limited trapping
at pointlike defects was studied by Dryzek [16] for the
one-dimensional case. A full treatment of e+ trapping and
annihilation in voids in the framework of diffusion-reaction
theory was given by Nieminen et al. [17]. This treatment
of Nieminen et al. [17] is conceptionally analogous to the
subsequent work of Dupasquier et al. [6] for diffusion-limited
e+ trapping at grain boundaries, both of which lead to solutions
exclusively in terms of infinite series.
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Another treatment of the diffusion-reaction problem of
e+ trapping at grain boundaries was given by Würschum
and Seeger [7] which yields closed-form expressions for
the mean e+ lifetime and the intensity of the annihilation
component associated with the trapped state. This approach
is applied in this work to the diffusion-reaction problem of e+
trapping and annihilation in spherical extended defects (voids,
clusters, precipitates).1 Following our earlier further work on
grain boundaries [11], now in addition competitive reaction
rate-limited trapping at point defects is taken into account.
The present treatment yields closed-form expressions of the
major e+ annihilation parameters for this application-relevant
case of competitive e+ trapping in voids and point defects.
These closed-form expressions allow deeper insight in the
physical details of e+ annihilation characteristics as well as
an assessment of the so far often used approach based on
effective diffusion trapping rates. Above all, the results can
be conveniently applied for the analysis of experimental data.

In a further part, the model presented here and the pre-
vious model on positron trapping at grain boundaries are
merged in order to study precipitates embedded in matrix.
Here, diffusion- and reaction-limited trapping is considered for
both the trapping from the matrix into the precipitate-matrix
interface and for the trapping from inside the precipitates into
the interfaces.

II. MODEL

The model describes positron (e+) trapping and annihila-
tion in voids in the general case that both the e+ diffusion
and the transition reaction has to be taken into account

1For the sake of simplicity, representatively for all kinds of spherical
extended defects (voids, clusters, or precipitates) the term voids is
used in the following.
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FIG. 1. Geometry of the diffusion-reaction model: spherical voids
of radius r0 are located in a lattice with homogeneously distributed
vacancy-type defects (open square) in which reaction-controlled
trapping occurs. The outer radius R of the diffusion sphere defines
the void concentration.

(so-called diffusion-reaction-controlled trapping process). In
order to cover more complex cases, competitive transition-
limited trapping at vacancy-type points defects is also con-
sidered (see Fig. 1). This procedure follows our earlier study
where concomitant positron trapping at grain boundaries and
at point defects in crystallites has been considered [11].

The behavior of the positrons is described by their bulk
(free) lifetime τf , by their lifetime (τt ) in the voids, by their
lifetime (τv) in the vacancy-type point defects in the lattice
(matrix), and by their bulk diffusivity D. Trapping at the
point defects of the matrix is characterized by the specific e+
trapping rate σv (unit s−1), as usual. The voids are considered
as spherical-shaped extended defects (radius r0) with a specific
trapping rate α (unit m s−1) which is related to the surface area
of the void. In units of s−1 the specific trapping rate of voids
reads as

σt = α4πr2
0

�
, (1)

where � denotes the atomic volume.
The temporal and spatial evolution of the density ρl of free

positrons in the lattice is governed by

∂ρl

∂t
= D∇2ρl − ρl

(
1

τf

+ σvCv

)
, (2)

where Cv denotes the concentration of vacancy-type point
defects in the matrix. The positrons trapped in the voids are
described in terms of their density ρt obeying the rate equation

dρt

dt
= αρl(r0,t) − 1

τt

ρt . (3)

The temporal evolution of the number Nv of e+ trapped in the
point defects in the lattice is given by

dNv

dt
= − 1

τv

Nv + σvCvNf , (4)

where the number Nf of positrons in the free state follows
from integration of ρl :

Nf =
∫

ρldV . (5)

The continuity of the e+ flux at the boundary between the
lattice and the void surface is expressed by2

D∇ρl

∣∣∣
r=r0

− αρl(r0,t) = 0. (6)

The outer radius R of the diffusion sphere is related to the void
concentration

Ct = 3�

4πR3
. (7)

The outer boundary condition

∂ρl

∂r

∣∣∣
r=R

= 0 (8)

reflects the vanishing e+ flux through the outer border (r = R)
of the diffusion sphere. This boundary condition is the same as
applied earlier in a quite different diffusion-reaction model of
ortho-para conversion of positronium at reaction centers [18].

As initial condition we adopt the picture that at t = 0 all
thermalized positrons are in the free state and homogeneously
distributed in the lattice, i.e., initial density ρl = ρl(0), ρt (0) =
0, Nv(0) = 0. Under this initial condition, the solution of
Eq. (2) exhibits spherical symmetry.

Up to this point, the above formulated diffusion-reaction
problem is identical to that of Nieminen et al. [17] apart
from the additional rate-limited trapping at vacancy-type point
defects which is considered here. However, compared to [17],
in the following part of this work the time dependence is
handled by means of Laplace transformation which will lead
to the more convenient closed-form solutions. Applying the
Laplace transformation

ρ̃l,t (p) =
∫ ∞

0
exp(−pt)ρl,t (t)dt,

Ñv,f (p) =
∫ ∞

0
exp(−pt)Nv,f (t)dt (9)

leads to the basic equations

d2ρ̃l

dr2
+ 2

r

dρ̃l

dr
− γ 2ρ̃l = −ρl(0)

D
(10)

with

γ 2 = γ 2(p) = τ−1
f + σvCv + p

D
(11)

2Note the negative sign in contrast to the model of e+ trapping
at grain boundaries (e.g., [11]) where the corresponding continuity
equation refers to the outer boundary.

224108-2



DIFFUSION-REACTION MODEL FOR POSITRON … PHYSICAL REVIEW B 97, 224108 (2018)

and

ρ̃t = αρ̃l(r0,p)

τ−1
t + p

, (12)

Ñv = σvCv

τ−1
v + p

∫ R

r0

4πr2ρ̃l(r,p)dr, (13)

with the boundary conditions

D
dρ̃l

dr

∣∣∣∣
r=r0

− αρ̃l(r0,p) = 0 (14)

and

dρ̃l

dr

∣∣∣∣
r=R

= 0 . (15)

The solution of the differential equation (10) satisfying
Eqs. (14) and (15) can be written as

ρ̃l(r,p) = A i
(1)
0 (γ r) + B i

(2)
0 (γ r) + ρl(0)

τ−1
f + σvCv + p

(16)

with

A := α
ρl(0)

τ−1
f + σvCv + p

i
(2)
1 (γR)

−DγF1 + αF2
,

B := α
ρl(0)

τ−1
f + σvCv + p

i
(1)
1 (γR)

DγF1 − αF2
(17)

and

F1 = i
(2)
1 (γ r0)i(1)

1 (γR) − i
(1)
1 (γ r0)i(2)

1 (γR),

F2 = i
(2)
0 (γ r0)i(1)

1 (γR) − i
(1)
0 (γ r0)i(2)

1 (γR). (18)

i(1)
n and i(2)

n (n = 0,1) denote the modified spherical Bessel
functions of order n [19]:

i(1)
n (z) :=

(
π

2z

)1/2

In+1/2(z),

i
(1)
0 = sinh z

z
, i

(1)
1 = cosh z

z
− sinh z

z2
, (19)

i(2)
n (z) :=

(
π

2z

)1/2

I−n−1/2(z),

i
(2)
0 = cosh z

z
, i

(2)
1 = sinh z

z
− cosh z

z2
, (20)

where I±n±1/2(z) represents the Bessel function.
The basis for analyzing positron annihilation experiments

is the total probability n(t) that an e+ implanted at t = 0 has
not yet been annihilated at time t . Here, n(t) is given by the
number density of e+ per lattice sphere at time t :

n(t) = 1
4
3π

(
R3 − r3

0

)
ρl(0)

{∫ R

r0

4πr2ρl(r,t)dr + 4πr2
0 ρt (t) + Nv(t)

}
. (21)

The Laplace transform of n(t) can be calculated taking into account the solution of Ñv [Eq. (13)] and the solution of the differential
equation (16) which yields

ñ(p) = 1
4
3π

(
R3 − r3

0

)
ρl(0)

{(
1 + σvCv

τ−1
v + p

) ∫ R

r0

4πr2ρ̃l(r,p)dr + 4πr2
0 ρ̃t (p)

}
. (22)

Solving the integral after substituting ρ̃t (p) by Eq. (12), insertion of A and B [Eq. (17)], yields after some algebra

ñ(p) = 1

t2
f ctvtt

{
tvctf ctt + K(tf ctv − tvctt )(γ R̂ − tanh(γ R̂)[1 − γ 2r0R])

γ R̂ − tanh(γ R̂)[1 − γ 2r0R] + αr0
D

[γR − tanh(γ R̂)]

}
(23)

with

K = 3αr2
0

R3 − r3
0

, (24)

R̂ = R − r0, (25)

and the abbreviations

tt = τ−1
t + p; tv = τ−1

v + p;

tvc = τ−1
v + σC + p; tf c = τ−1

f + σC + p. (26)

The Laplace transform ñ(p) [Eq. (23)] represents the solution
of the present diffusion and trapping model from which both
the mean positron lifetime and the positron lifetime spectrum
can be deduced. The mean positron lifetime τ is obtained by

taking the Laplace transform at p = 0:

τ = ñ(p = 0) =
∫ ∞

0
n(t)dt . (27)

The positron lifetime spectrum follows from ñ(p) by means
of Laplace inversion. The single poles p = −λi of ñ(p) in the
complex p plane define the decay rates λi (i = 0,1,2, . . . ) of
the positron lifetime spectrum:

n(t) =
∞∑
i=0

Ii exp(−λit), (28)

where Ii denote the relative intensities.

III. ANALYSIS

At first, we consider the most important case that e+
trapping exclusively occurs at voids, i.e., we omit e+ trapping
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at point defects in the lattice (Cv = 0). For this case, we
present the solution of the general diffusion-reaction theory
(Sec. III A) and compare it with the limiting cases of en-
tirely reaction-controlled trapping (Sec. III B) and entirely
diffusion-controlled trapping (Sec. III C). Finally, the case of
competitive reaction-controlled trapping at lattice defects is
considered (Sec. III D) and an extension to larger precipitates is

presented for describing precipitate-matrix composite struc-
tures (Sec. III E).

A. General case with trapping at voids, exclusively (Cv = 0)

For negligible trapping at vacancies within the lattice (Cv =
0), the diffusion-reaction model according to Eq. (23) yields
for positron trapping in voids as the single type of trap

ñ(p) = 1

τ−1
f + p

{
1 + K

(
τ−1
f − τ−1

t

)
(
τ−1
t + p

)(
τ−1
f + p

) γ R̂ − tanh(γ R̂)[1 − γ 2r0R]

γ R̂ − tanh(γ R̂)[1 − γ 2r0R] + αr0
D

[γR − tanh(γ R̂)]

}
(29)

and, hence, for the mean positron lifetime

τ = ñ(0) = τf

{
1 + K(τt − τf )

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
]

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
] + αr0

D
[γ0R − tanh(γ0R̂)]

}
. (30)

The pole of Eq. (29) for p = −τ−1
t corresponds to the positron lifetime component τt of the void-trapped state for which the

following intensity is obtained:

It = K

τ−1
f − τ−1

t

γt R̂ − tanh(γt R̂)
[
1 − γ 2

t r0R
]

γt R̂ − tanh(γt R̂)
[
1 − γ 2

t r0R
] + αr0

D
[γtR − tanh(γt R̂)]

. (31)

In Eqs. (29), (30), and (31),

γ 2 = τ−1
f + p

D
; γ 2

0 = τ−1
f

D
; γ 2

t = τ−1
f − τ−1

t

D
. (32)

In addition to the annihilation component τ−1
t of the void-trapped state, ñ(p) [Eq. (29)] comprises a sequence of first-order poles

p = −λ0,j for λ0,j > τ−1
f . These components λ0,j , which define the fast decay rates (λ0,j > τ−1

f ) of the e+ lifetime spectrum,
are given by the solutions of the transcendental equation

tan(γ �R̂) = γ �(αr0R + DR̂)

D(1 + γ �2r0R) + αr0
(33)

with

γ �2 = λ0,j − τ−1
f

D
(34)

in agreement with the aforementioned earlier work of Nieminen et al. [17].3,4 As usual for this kind of diffusion-reaction problem
(see, e.g., [11]), the intensities of these decay rates rapidly decrease. Experimentally, only a single fast decay rate can be resolved
in addition to the decay rate τ−1

t of the trapped state. An experimental two-component e+ lifetime spectrum is practically entirely
defined by τ [Eq. (30)] and by τt with the corresponding intensity It [Eq. (31)].

The appearance of a second-order pole in Eq. (29) at p = −τ−1
f (i.e., γ = 0) is spurious. Closer inspection by applying Taylor

expansion shows that the intensity associated with this pole cancels.
Following the consideration of Dryzek [20], in analogy to the mean e+ lifetime [Eq. (30)] a respective relation for the mean

line-shape parameter S of Doppler broadening of the positron-electron annihilation can be given:

S = Sf

{
1 + K(St − Sf )

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
]

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
] + αr0

D
[γ0R − tanh(γ0R̂)]

}
, (35)

where Sf and St denote the line-shape parameters of the free and trapped states, respectively.
For the sake of completeness, we quote ñ(p) without derivation for the case that at time zero positrons are homogeneously

distributed in the voids and the lattice, i.e., for the initial condition ρt (0) = r0ρl(0)/3:

ñ(p) = 1

τ−1
f + p

{
1 + r3

0

R3

τ−1
f − τ−1

t

τ−1
t + p

+3αr2
0

R3

τ−1
f − τ−1

t(
τ−1
t + p

)(
τ−1
f + p

) γ R̂ − tanh(γ R̂)
[
1 − γ 2r0R

]
γ R̂ − tanh(γ R̂)[1 − γ 2r0R] + αr0

D
[γR − tanh(γ R̂)]

}
.

(36)

3Equation (33) is identical to the corresponding Eq. (15) in the work of Nieminen et al. when ν in [17] is identified with 4πr2
0 α.

4We note that the same problem was treated in the framework of a more general theoretical approach by Kögel [8]. The quoted specific
function in dependence of γ R̂ [Eq. (75) in [8]], which determines the mean e+ lifetime and the intensity of the trap component, however, is not
readily applicable.
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Equation (36) includes in the limiting case of negligible trap-
ping (α = 0) as mean e+ lifetime τ = ñ(0) = [(R3 − r3

0 )τf +
r3

0 τt ]/R3 the expected volume-averaged mean value of τf and
τt .

B. Limiting case of entirely reaction-limited trapping (Cv = 0)

If the e+ diffusivity is high (γ R̂ � 1), the hyperbolic
tangent in Eq. (29) can be expanded. Expansion up to the third
order

tanh(z) ≈ z − z3

3
(37)

yields the mean e+ lifetime

τ = τf

1 + Kτt

1 + Kτf

(38)

and for the e+ lifetime component τt the intensity

It = K

τ−1
f + K − τ−1

t

(39)

with K according to Eq. (24). Equations (38) and (39) are
the well-known solutions of the simple trapping model when
we identify K for vanishing defect volume with the trapping
rate σtCt [Eqs. (1) and (7)]. Note that the standard trapping
model does not take into account the finite defect volume (here
4πr3

0 /3) and, therefore, does not contain the subtrahend r3
0 as

in Eq. (24). With this subtrahend, Eqs. (38) and (39) correctly
contain the exact values τ = τt and It = 1 as limiting case for
R = r0.

C. Limiting case of entirely diffusion-limited trapping (Cv = 0)

The present solution includes in the limiting special case
α → ∞ the relationships for an entirely diffusion-limited
trapping, i.e., for Smoluchowski-type boundary condition

ρl(r0,t) = 0. (40)

In this limit one obtains from the Laplace transform [Eq. (29)]
the mean e+ lifetime

τ = τf

{
1 + 3r0D

R3 − r3
0

(τt − τf )

× γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
]

γ0R − tanh(γ0R̂)

}
(41)

and for the trap component τt the intensity

It = 3r0D

R3 − r3
0

1

τ−1
f − τ−1

t

γt R̂ − tanh(γt R̂)
[
1 − γ 2

t r0R
]

γtR − tanh(γt R̂)
(42)

with γ0, γt according to Eq. (32).

D. General case with voids and lattice vacancies

The positron annihilation characteristics of diffusion-
reaction-controlled trapping at voids and concomitant
transition-limited trapping at point defects in the lattice is given
by Eq. (23) in combination with Eqs. (27) and (28). The mean
positron lifetime [Eq. (27)], obtained from Eq. (23) for p = 0,
reads as in the general case

τ = 1(
τ−1
f + σvCv

)2

{(
τ−1
f + σvCv

)(
τ−1
v + σvCv

)
τv+

K
((

τ−1
f + σvCv

)
τt − (

τ−1
v + σvCv

)
τv

)
(γ0R̂ − tanh(γ0R̂)[1 − γ 2r0R])

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
] + αr0

D

[
γ0R − tanh(γ0R̂)

]
}

(43)

with

γ 2
0 = τ−1

f + σvCv

D
. (44)

In addition to the pole p = −τ−1
t which characterizes the void trapped state, ñ(p) [Eq. (23)] contains the further defect-related

pole p = −τ−1
v for the vacancy-type defect in the lattice. From the residues of ñ(p) [Eq. (23)], the corresponding relative intensities

It = K

τ−1
f + σvCv − τ−1

t

γt R̂ − tanh(γt R̂)
[
1 − γ 2

t r0R
]

γt R̂ − tanh(γt R̂)
[
1 − γ 2

t r0R
] + αr0

D
[γtR − tanh(γt R̂)]

(45)

and

Iv = σvCv

τ−1
f + σvCv − τ−1

v

{
1 − K

τ−1
f + σvCv − τ−1

v

γvR̂ − tanh(γvR̂)
[
1 − γ 2

v r0R
]

γvR̂ − tanh(γvR̂)
[
1 − γ 2

v r0R
] + αr0

D
(γvR − tanh(γvR̂)]

}
(46)

are deduced with

γ 2
t,v = τ−1

f + σvCv − τ−1
t,v

D
. (47)

E. Extended model for larger precipitates with e+ trapping
from both sides of precipitate-matrix interface

The model presented above describes e+ annihilation from
a trapped state (τt ) in spherical defects. Particularly, for larger
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precipitate sizes a situation may prevail where e+ annihila-
tion inside the precipitates occurs from a free state with a
characteristic e+ lifetime τp and where also from this free
precipitate state positrons may get trapped into the spherical
interfacial shell between the precipitate and the surrounding
matrix. This means that the precipitates are characterized by
two components, one corresponding to the precipitate volume
(τp) and one corresponding to the trapped state in the matrix-
precipitate interface (τt ).

The present model can be extended in a straightforward
manner to this case under the reasonable assumption that the
e+ trapping from inside the precipitates is entirely reaction
controlled. This is pretty well fulfilled as long as the precipitate
diameter is remarkably lower than the e+ diffusion length in
the precipitate.5 In this case, the extension can be described by
an additional rate equation for the temporal evolution of the
number Np of e+ inside the precipitates

dNp

dt
= −

(
1

τp

+ 3β

r0

)
Np, (48)

where β denotes the specific trapping rate (in units of m/s)
at the spherical interfacial shell. This trapping from inside

the precipitates, which occurs in addition to the diffusion-
and reaction-limited trapping into the interfacial shell from
the surrounding matrix, has to be taken into account in the
rate equation for ρt [Eq. (3)] by the additional summand
βρp(t) with the number density ρp = 3Np/(4πr3

0 ) of e+ in the
precipitate.

Assuming a homogeneous distribution of e+ at time zero
in the matrix and the precipitate [ρl(0) = ρp(0)] without e+ in
the trapped state [ρt (0) = 0] for t = 0, one obtains with the
Laplace transform of Eq. (48)

Ñp = Np(0)

τ−1
p + 3β

r0
+ p

(49)

the additional summand(
r0

R

)3( 3β

r0

τ−1
t + p

+ 1

)
1

τ−1
p + 3β

r0
+ p

(50)

in Eq. (23) of ñ(p). Moreover, in the brackets of Eq. (23)
the first summand is extended by the weighting factor [1 −
(r0/R)3] and the trapping rate K [Eq. (24)] in the second
summand is replaced by 3αr2

0 /R3.
For Cv = 0 this leads to the mean e+ lifetime

τ = τf

{[
1 −

(
r0

R

)3]
+ 3αr2

0

R3
(τt − τf )

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
]

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
] + αr0

D
[γ0R − tanh(γ0R̂)]

}

+
(

r0

R

)3

τt

τ−1
t + 3β

r0

τ−1
p + 3β

r0

, (51)

as compared to Eq. (30). Equation (51) includes in the limiting
case of negligible trapping (α = β = 0) as mean e+ lifetime
τ = [(R3 − r3

0 )τf + r3
0 τp]/R3 the expected volume-averaged

mean value of τf and τp.
The additional pole for p = −(τ−1

p + 3β/r0) of ñ(p) yields
the intensity of the e+ lifetime component τp in the precipitate:

Ip =
(

r0

R

)3(
1 −

3β

r0

τ−1
p + 3β

r0
− τ−1

t

)
. (52)

Apart from the weighting prefactor [(r0/R)3], Ip corresponds
to the solution of the simple trapping model.6 Without trapping
(β = 0), Ip simply takes the form of the weighting prefactor
(r0/R)3.

Since e+ trapping into the precipitate-matrix interface oc-
curs both from inside the precipitate and from the surrounding
matrix, the intensity of the trap component τt is given by the
sum

It = I
precip
t + Imatrix

t with I
precip
t =

(
r0

R

)3 3β

r0

τ−1
p + 3β

r0
− τ−1

t

,

(53)

5A further model extension avoiding this constraint will be outlined
below.

6Note that Ip characterizes the free state in the precipitate.

where Imatrix
t corresponds to the intensity It according to

Eq. (31) with K replaced by 3αr2
0 /R3.7

We note that the two e+ trapping processes into the
precipitate-matrix interface, namely, that from inside the pre-
cipitate and that from the surrounding matrix, are completely
decoupled. The trapping process from inside the precipitate
can, therefore, be treated independently. This also means that
the process is not restricted to the case of entirely reaction-
controlled trapping as given above, but that e+ trapping
at the precipitate-matrix interface from inside the spherical
precipitates can also be treated in the framework of diffusion-
reaction theory. Hence, the available solutions for diffusion-
and reaction-limited trapping at grain boundaries (GBs) of
spherical crystallites [7,11] can be directly applied. For this
purpose, the solutions for the GB model have simply to be
weighted by the factor (r0/R)3 which denotes the volume
fraction of the precipitates.8

For instance, for the mean e+ lifetime, the last summand in
Eq. (51), i.e., the rate-equation solution, has to be replaced by
that calculated for diffusion- and reaction-limited trapping at

7The identical equation for It [Eq. (53)] follows from the root
p = −τ−1

t of the Laplace transform ñ(p) in which the above-
mentioned extensions of Eq. (23) are taken into consideration.

8Given the above initial condition ρl(0) = ρp(0) and ρt (0) = 0.
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GBs [7,11], yielding

τ = τf

{[
1 −

(
r0

R

)3]
+ 3αr2

0

R3
(τt − τf )

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
]

γ0R̂ − tanh(γ0R̂)
[
1 − γ 2

0 r0R
] + αr0

D
[γ0R − tanh(γ0R̂)]

}

+
(

r0

R

)3{
τp + (τt − τp)

3βL(γ ′
0r0)

r0γ
′
0(β + γ ′

0DL(γ ′
0r0))

}
, (54)

with γ ′
0 = (τpD)−1/2, γ0 = (τf D)−1/2 and the Langevin func-

tion

L(z) = coth z − 1

z
. (55)

Likewise, the intensity component I
precip
t of the rate-

equation solution in Eq. (53) has to be replaced by [7,11]

I
precip
t =

(
r0

R

)3 3β

r0
(
τ−1
p − τ−1

t

)
{

γ ′
t DL(γ ′

t r0)

β + γ ′
t DL(γ ′

t r0)

}
(56)

with

γ ′2
t = τ−1

p − τ−1
t

D
. (57)

FIG. 2. (a) Mean e+ lifetime τ and (b) relative intensity It

of void component τt in dependence of diffusion radius R for
diffusion-reaction model (solid line) [Eqs. (30) and (31)], for stan-
dard rate (dashed line) [Eqs. (38) and (39)], and for limiting case
of entirely diffusion-limited trapping (dotted line) [Eqs. (41) and
(42)]. Parameters: τf = 160 ps, τt = 400 ps, D = 2 × 10−5 m2s−1,
α = 3 × 103 ms−1, r0 = 3 nm. Note that R is related to the void
concentration [Eq. (7)].

For the sake of completeness, we quote the mean e+ life-
time for reaction-controlled trapping from both inside and
outside:

τ = τt

(
1 −

[
r0

R

]3)τ−1
t + 3αr2

0

R3−r3
0

τ−1
f + 3αr2

0

R3−r3
0

+ τt

(
r0

R

)3 τ−1
t + 3β

r0

τ−1
p + 3β

r0

.

(58)

A further extension for taking into account additional e+
trapping at point defects inside the matrix (Sec. III D) and
inside the precipitates (in analogy to the GB model [11]) is
straightforward, so that the corresponding equations have not
to be stated explicitly.

IV. DISCUSSION

A. Voids, clusters, small precipitates

The presented model with the exact solution of diffusion-
reaction controlled trapping at voids (or other extended spher-
ical defects like clusters and small precipitates) and competi-
tive transition-limited trapping at vacancy-type defects yields
closed-form expressions for the mean positron lifetime τ

[Eq. (43)] and for the relative intensities It [Eq. (45)] and Iv

[Eq. (46)] of the e+ lifetime components τt and τv of the void
and the vacancy trapped states, respectively.

We start the discussion considering exclusively diffusion-
reaction-controlled trapping at voids (Sec. III A). The model
contains as limiting cases both the solution of the simple
trapping model (Sec. III B) and the one of the entirely
diffusion-limited trapping (Sec. III C). The mean e+ lifetime
τ [Eq. (30)] and the intensity It [Eq. (31)] in dependence
of the radius R of the diffusion sphere are compared in
Fig. 2 with the two limiting cases. Note that R is related
to the the void concentration [Eq. (7)]. For illustration, the
following characteristic e+ annihilation parameters are used:
a free e+ lifetime τf = 160 ps as typical for aluminium, an e+
lifetime τt = 400 ps as typical for voids [15], an e+ diffusion
coefficient D = 2 × 10−5 m2s−1, a void radius r = 3 nm,
and a specific e+ trapping rate α = 3 × 103 ms−1 reported
by Dupasquier et al. [6] for interfaces in Al. For surfaces of
Al, a value α = 7.6 × 103 ms−1 was calculated by Nieminen
and Lakkonnen [13]. Using an atomic volume � for Al of
�−1 = 6 × 1028 m−3, α = 3 × 103 ms−1 corresponds to a
trapping rate σt = 2 × 1016 s−1 [Eq. (1)] which is similar to
that deduced by Bentzon and Evans [14] for voids in Mo.9

9A value σt = 4 × 1016 s−1 is deduced from the trapping rate of
3.2 × 109 s−1 at 300 K and a void number density of 5.3 × 1021 m−3

quoted in [14].
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FIG. 3. Ratio of approximate intensity and exact intensity of void
component τt in dependence of the exact intensity It according to
Eq. (31). Approximate intensity: entirely diffusion-limited trapping
(dotted line) [Eq. (42)], entirely reaction-controlled trapping (dashed
line) [Eq. (39)], and simple trapping model [Eq. (39)] with effective
diffusion trapping rate Keff [Eq. (60)] (solid line). Note the different
scales of the ratio axis for ratios <1 and >1. Parameters: �−1 =
6 × 1028 m−3, others as in Fig. 2.

Both τ [Fig. 2(a)] and It [Fig. 2(b)] exhibit the characteristic
sigmoidal increase from the free state to the saturation-trapped
state with decreasing R, i.e., increasing void concentration Ct .
Compared to the exact solution of the present model, the stan-
dard trapping model and the limiting case of entirely diffusion-
limited trapping show qualitatively the same trend for τ and It .
However, both special cases systematically overestimate τ and
It , i.e., predict stronger trapping since either the rate-limiting
effect or the diffusion-limiting effect are neglected in these
approximations. For instance, if one would determine the
void concentration from a typical, experimentally measured
intensity It of 45% [21], a concentration 36% too low would
be deduced from the standard trapping model compared to the
exact theory for the parameter set according to Fig. 2(b).

The deviations of the two limiting cases from the exact
solution become even more clear when the ratios of the trap
component intensities of the limiting and exact solution is
considered as shown in the upper part of Fig. 3. The deviation
from the exact solution substantially increases with decreasing
intensity, i.e., with decreasing void concentration. In this low-
concentration regime, the deviations attain a factor of about
1.5 (reaction limit) or larger than 3 (diffusion limit) for the
present set of parameters, i.e., the entirely diffusion-limiting
case deviates in this example more strongly than the reaction-
limited case. Diffusion limitation gets even more pronounced
when e+ diffusivity is reduced, e.g., due to scattering at lattice

FIG. 4. Relative intensity It of void component τt in dependence
of voids concentration Ct for diffusion-reaction model (solid line)
[Eq. (31)], for limiting case of entirely diffusion-limited trapping
(dotted line) [Eq. (42)], as well as for simple trapping model [Eq. (39)]
with effective trapping rate of diffusion Kdiff [Eq. (59)] (dashed line)
or with effective diffusion- and transition-limited trapping rate Keff

[Eq. (60)] (dashed-dotted line). Parameters: �−1 = 6 × 1028 m−3,
others as in Fig. 2.

imperfections. Regarding the opposite side of high-defect
concentrations, Fig. 3 (upper part) nicely demonstrates that
deviations from the exact theory vanish upon approaching e+
saturation trapping since in this regime kinetic effects tends to
become irrelevant.

1. Comparison with effective rate approach

Next, we compare the present model with approximations
according to which diffusion limitation is taking account in
the standard trapping model by means of a diffusion-limited
trapping rate [14,22]:

Kdiff = 4πr0D

�
Ct . (59)

The case of both transition- and diffusion-limited trapping is
treated in this approximation by means of the effective trapping
rate [14,22]

Keff = KdiffσtCt

Kdiff + σtCt

(60)

with σt and Ct according to Eqs. (1) and (7), respectively.
We note that the diffusion-limited trapping rate according to
Eq. (59) is also included in the present model; in fact, Kdiff

is identical to the prefactor of It for entirely diffusion-limited
trapping [Eq. (42)] when the subtrahend r3

0 in the nominator,
which is associated with the defect volume, is omitted.

In Fig. 4 the concentration dependence of the relative
intensity It of the e+ lifetime component τt in voids is
shown for the exact models of diffusion reaction [Eq. (31)]
or entire diffusion limitation [Eq. (42)] in comparison with
the corresponding approximations using the above-mentioned
effective or diffusion trapping rates [Eqs. (59) and (60)] with
the simple trapping model [Eq. (39)]. Although the effective-
rate approximations of the diffusion limitation describe the
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sigmoidal curve fairly well, deviations from the exact diffusion
models are also apparent, e.g., for the example, It = 45 %,
mentioned above the deviation in concentration is about 7 %
compared to the exact diffusion-reaction theory.

The deviations become clearer once more when we consider
the intensity ratio of the effective-rate model and the exact
theory, as plotted in the lower part of Fig. 3. Remarkably,
since the effective trapping rate Keff is lower than both the
reaction trapping rate σtCt and the diffusion trapping rate
Kdiff , the intensity It deduced from the effective trapping
model is smaller than the exact value. Deviations from the full
model occur throughout the entire intensity regime, although
these deviations are less pronounced compared to the two
limiting cases (fully reaction or diffusion limited, upper part
of Fig. 3). For applications in the analysis of experimental
data, the accuracy of the effective-rate approach [Eq. (60)]
can be assessed by plotting the intensity ratio (lower part of
Fig. 3) for the respective parameter set. Irrespectively whether
deviations of the effective-rate approach are strong or minor
only, the present model founded on diffusion-reaction theory
is that which covers the underlying physics most accurately.

2. Competitive trapping at point defects

Now, we discuss the general case that in addition to
diffusion-reaction-controlled trapping at voids, also compet-
itive transition-limited trapping at vacancy-type defects in
the lattice occurs (Sec. III D). The relative intensities of the
void component It [Eq. (45)] and of the vacancy component
Iv [Eq. (46)] are plotted in Fig. 5 in dependence of void
concentration Ct (a) and vacancy concentration Cv (b), for a
given fixed Cv or Ct , respectively. For the vacancy-type defect,
an e+ lifetime component τv = 250 ps and a specific trapping
rate σv = 4 × 1014 s−1 [23] are assumed; the other parameters
are the same as used above. The competitive e+ trapping at
voids and vacancy-type defects becomes evident. For a given
vacancy concentration, the intensity It of the void increases
and the intensity Iv of the vacancy component decreases with
increasing void concentration due to the increasing fraction of
e+ that reaches the voids [Fig. 5(a)]. Likewise, for a given void
concentration, Iv increases and It decreases with increasing
vacancy concentration [Fig. 5(b)].

3. Comparison with e+ trapping at grain boundaries

In the end of this section (Sec. IV A), the results of the
present model on diffusion-reaction-limited e+ trapping at
extended spherical defects will briefly be compared with the
corresponding model of e+ trapping at grain boundaries of
spherical crystallites with radius R [7,11]. Whereas in the
latter case the surface of the diffusion sphere with area 4πR2

acts as e+ trap, in the present case with voids of radius r0,
the trapping active area 4πr2

0 is much smaller. Moreover, the
trapping rate 3α/R for grain boundary trapping [11] decreases
much more slowly with increasing R compared to the trapping
rate 3αr2

0 /(R3 − r3
0 ) of spherical extended defects with radius

r0 [Eq. (24)]. This is the reason why diffusion limitation affects
the kinetics of e+ trapping at grain boundaries more strongly
than in the case of voids, which is nicely demonstrated in Fig. 6
where the exact solutions are compared with those of infinite
diffusivities. In Fig. 6 the mean e+ lifetime according to the

FIG. 5. Relative intensities It (solid line) [Eq. (45)] of void
component τt and Iv (dashed line) [Eq. (46)] of vacancy component
τv in dependence of (a) void concentration Ct and (b) vacancy
concentrationCv . Parameters: τv = 250 ps,σv = 4 × 1014 s−1.�−1 =
6 × 1028 m−3, others as in Fig. 2. (a) Cv = 10−5, (b) Ct = 10−6.

exact solutions and those of the standard rate theory for the
two types of extended traps are plotted. The exact solution for
e+ trapping at grain boundaries of spherical crystallites with
radius R reads as [7,11]

τ = τf + (τt − τf )
3αL(γ0R)

Rγ0{α + γ0DL(γ0R)} with

L(z) = coth z − 1

z
. (61)

The more stronger deviation between the exact solution and the
rate theory in the case of grain boundary trapping is obvious
(Fig. 6).

B. Larger precipitates: e+ trapping from both sides of
precipitate-matrix interface

In Sec. (III E) we extended the model for applying it to
larger precipitates taking into account free e+ annihilation
within the precipitate. The e+ trapping from the precipitate
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FIG. 6. Comparison of mean e+ lifetime τ for diffusion-reaction-
limited e+ trapping (a) at grain boundaries of spherical crystallites
with radius R [7,11] and (b) at extended spherical defects (this work,
Fig. 2). (a) Exact solution according to Eq. (61) [7] (solid line) and
solution for standard rate theory (dashed line) [Eq. (38)] with trapping
rate K = 3α/R; (b) exact solution [Eq. (30)] (solid line) and solution
for standard rate theory (dashed line) [Eq. (38)] with trapping rate
3αr2

0 /(R3 − r3
0 ) [Eq. (24)]. Parameters as in Fig. 2.

into the precipitate-matrix interface is handled either by rate
theory, for special cases where the precipitate radius is well
below the e+ diffusion length, or else by diffusion-reaction
theory, for the more general case that the precipitate radius
is in the range of or larger than the e+ diffusion length.
With this extension, the present model is applicable to a
wide variety of structurally complex scenarios, namely, to all
types of composite structures where spherical precipitates are
embedded in a matrix irrespective of the size and the number
density of the precipitates.

Whereas for extended defects with smaller size, which were
discussed in Sec. IV A, the deviations between the exact model
and the rate theory may be of less relevance since the trapping
active area 4πr2

0 is small, for larger precipitates the diffusion-
limitation in any case gets relevant owing to the much larger
trapping active area, similar as for e+ trapping at GBs (see
Fig. 6). This is demonstrated in Fig. 7, where the variation
of the mean e+ lifetime with radius R is compared for four
different solutions, namely, diffusion limitation of trapping into
the precipitate-matrix interface from both the matrix and the
precipitate, from the matrix only, and for entirely reaction-
limited trapping from both sides with standard-trapping rate
or with effective diffusion-limited trapping rate. The latter is
obtained by replacing in Eq. (58) the standard-trapping rates
by the effective diffusion-limited trapping rate according to
Eq. (60), i.e., 3αr2

0 (R3 − r3
0 )−1 by 3αDr2

0 R−3(αr0 + D)−1 and
3βr−1

0 by 3βDr−1
0 (βr0 + D)−1.

In contrast to the case of small extended defects (Fig. 6), for
larger precipitates (example r0 = 100 nm) substantial devia-
tions between the solutions occur for the entire concentration
regime if the diffusion limitation is neglected (Fig. 7). Even
the rate approach with effective diffusion-limited trapping
rate, which at least for small extended defects is a reasonable
approximation (Sec. IV A 1, Fig. 4), turns out to be completely
inadequate for the larger precipitate size. The deviations are
much less if the diffusion limitation is only neglected for

FIG. 7. Mean e+ lifetime in dependence of radius R (i) for
diffusion- and reaction-limited e+ trapping into the precipitate-
matrix interface from both the matrix and the precipitate (solid line)
[Eq. (54)], (ii) for diffusion- and reaction-limited e+ trapping from the
matrix and entirely reaction-controlled trapping from the precipitate
(dashed line) [Eq. (51)], (iii) for entirely reaction-controlled trapping
from both the matrix and the precipitate (dotted line) [Eq. (58)],
and (iv) for rate model as for (iii), but with effective diffusion-
limited trapping rate [Eq. (60)] (dashed-dotted line). Precipitate radius
r0 = 100 nm. Other parameters: τf = τc = 160 ps, τt = 400 ps,
D = 2 × 10−5 m2s−1, α = β = 3 × 103 ms−1. Note that R is related
to the precipitate concentration [Eq. (7)].

the trapping from the precipitate into the interface since the
precipitate size (in contrast to the precipitate distance) remains
in the range of the e+ diffusion length independent of the
precipitate concentration. Anyhow, for a precise description
even for such small precipitate sizes, the exact theory of
diffusion- and reaction-controlled trapping has to be applied
for the trapping from the interior of the precipitates.

Finally, we compare this model with that presented by
Dryzek [9,24] for studying recrystallization in highly deformed
metals. In that case, recrystallized grains are embedded in a
highly deformed matrix. Diffusion-limited e+ trapping occurs
from the grains into the matrix, whereas within the matrix
saturation trapping of e+ prevails due to the high-defect
density. In this sense, the model of Dryzek represents an
extension of the diffusion-reaction theory for trapping at grain
boundaries, where instead of GBs a surrounding deformed
matrix is considered. The model presented here represents
a further extension where diffusion- and reaction-controlled
trapping also from the matrix into the interfaces is considered.

V. CONCLUSION

The present model with the exact solution of the diffusion-
reaction theory for the e+ trapping at extended spherical
defects and competitive transition-limited trapping at atomic
defects yields a basis for the quantitative description of the e+
behavior in materials with complex defect structure. It could
be shown that the model includes as special cases the simple
trapping model and the entirely diffusion-limited trapping, but
both of these limiting cases represent approximations only.
For the full model, closed-form expressions were obtained
for the mean positron lifetime τ and for the intensities of
the e+ lifetime components associated with trapping. This
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exact model allowed a quantitative assessment of the usual
approach, which takes diffusion limitation for the trapping at
voids into account by effective diffusion trapping rates. The
present closed-form solutions also renders this effective-rate
approach unnecessary.

The presented theory goes even much further beyond
existing models since it is not only applicable to small ex-
tended defects (such as voids or clusters), but also to larger
precipitates where positron trapping from the precipitates into
the precipitate-matrix interface is taken into consideration.
Therefore, the model presents the basis for studying all types

of composite structures where spherical precipitates are em-
bedded in a matrix irrespective of their size and their number
density.
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