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Theory of the supercyclotron resonance and Hall response in anomalous two-dimensional metals
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Weakly disordered superconducting films can be driven into an anomalous low-temperature resistive state upon
applying a magnetic field. Recent experiments on weakly disordered amorphous InOx have established that both
the Hall resistivity and the frequency of a cyclotronlike resonance in the anomalous metal are highly suppressed
relative to the values expected for a conventional metal. We show that both of these observations can be understood
from the flux flow dynamics of vortices in a superconductor with significant vortex pinning. Results for flux flow
transport are obtained using a systematic hydrodynamic expansion, controlled by the diluteness of mobile vortices
at low temperatures. Hydrodynamic transport coefficients are related to microscopics through Kubo formulas for
the longitudinal and Hall vortex conductivities, as well as a “vortoelectric” conductivity.
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Introduction. In conventional metals, the Hall resistivity
and the cyclotron frequency are key observables that can
often be used as proxies for the density and mass of charge
carriers, respectively. Recent measurements have probed these
quantities in the anomalous metallic state of weakly disordered
amorphous InOx films. The low-temperature superconduct-
ing state in this material becomes metallic upon applying a
magnetic field greater than Hc ≈ 2 T. In the metallic phase
at a field of 5 T the measured Hall resistivity is three orders
of magnitude smaller than in the more conventional high-
temperature state [1], and falls below experimental sensitivity
at a lower field HM2 > Hc. Furthermore, the maximum of
the frequency-dependent conductivity is at zero frequency to
within experimental resolution [2]; for a conventional Drude
peak this fact would require a cyclotron frequency at least four
orders of magnitude smaller than expected based on normal
state properties [3].

Anomalous metallic phases with resistive behavior similar
to that of amorphous InOx have been found in many two-
dimensional systems, as thoroughly reviewed in Ref. [4]. All
of these metals emerge continuously from a superconducting
phase. A rapid drop in the resistivity occurs as the temperature
is lowered, before saturating to a constant at low temperatures.
This suggests an interpretation of these regimes as “failed
superconductors.” We will show in this Rapid Communication
that the experimental facts outlined above can indeed be
explained by the flow of phase-disordering vortices in the
would-be superconductor.

Flux flow in magnetic fields. The extensive theoretical
literature on the Hall effect due to flux flow in magnetic fields
has considered a myriad of different physical effects (see, e.g.,
Refs. [5–15]). This reflects a diverse set of experimental results
in different flux flow regimes and in different materials. Much
of the existing discussion involves microscopic modeling of
the forces acting on vortices. We will instead argue that the
diluteness of the mobile vortices allows an alternative, unified,
and completely systematic treatment based on hydrodynamic
argumentation combined with Kubo formulas. Our result for

the Hall resistivity will be

ρyx = (
σH

n + σH
o

)
ρ2

xx + neff
v

ns

h̄

e�2
. (1)

In the remainder we set h̄ = e� = 2e = 1. The three terms in
(1) respectively describe a Hall signal arising from currents in
the vortex core, currents carried by Bogoliubov quasiparticles
in the superfluid, and the comotion of supercurrent parallel to
the vortex current. The Hall conductivity σH

o of the Bogoliubov
quasiparticles is typically negligible due to their approximate
particle-hole symmetry. Dominance of the first term, propor-
tional to the Hall conductivity σH

n of the vortex cores, leads
to the relation ρyx ∼ ρ2

xx obtained by Vinokur et al. [10], and
observed in some thermally activated flux flow [16–21]. This
scaling arises because—as shown by Bardeen-Stephen [5] and
rederived below—ρxx ∼ x, the fraction of the area occupied
by mobile vortex cores, is strongly temperature and field
dependent, while σH

n is not. Dominance of the final “comotion”
term, on the other hand, is crucial to understand experimental
results on free flux flow. There, the density of vortices that
comove with the superfluid neff

v ∼ H , the applied field, while
ns is the superfluid density. Thus ρyx ∼ H ∼ x ∼ ρxx , as is
observed [22,23], and predicted by Nozières and Vinen [6].

The general relationship (1) between the Hall and longitu-
dinal resistivities both unifies previous results and establishes
their domain of validity. It also allows for regimes in which
no single term dominates. The first two terms in (1) lead to
ρyx ∼ ρ2

xx while the final term leads to ρyx ∼ ρxx , if the density
of comoving vortices neff

v ∼ x. The full expression, therefore,
may well explain the range of scaling relations, ρyx ∼ ρ

β
xx with

1 � β � 2, reported in the experimental literature [24–27].
Competition between effects captured by the first and last terms
in (1) has previously been invoked to explain the observed
change in sign of the Hall response in some flux flow regimes
[8,9,12,28,29]. Charging of the vortex cores can lead to a sign
reversal of σH

n [30–32].
We furthermore obtain expressions for the width � and

frequency �H of a “supercyclotron resonance” [33]. This
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resonance is due to superfluid and vortex flow in a magnetic
field. It can coexist with a conventional cyclotron resonance
(due to flow of the normal fluid component). We will find

� = 2x

σn
fs and �H = − ∂jx

v

∂ux
φ

≡ neff
v

m�

. (2)

The result for � in (2) is precisely the Bardeen-Stephen
expression for vortex diffusivity [5], with σn the conductivity
of the vortex cores and fs the superfluid stiffness. In (2),
�H is given by a static susceptibility; the second step in the
expression defines neff

v . The mass scale m� is such that fs ≡
ns/m�. Therefore the phase gradient uφ ≡ ∇φ = m�vs , with
vs the superfluid velocity. We have set h̄ = 1. Finally, jv is the
vortex current. With Galilean invariance, neff

v = nv is the full
density of mobile vortices. �H is then precisely the frequency
appearing due to the comotion of vortices and supercurrent
in Nozières-Vinen [6]. More generally, pinning can strongly
break Galilean invariance, so that the effective number of
vortices that comove with the supercurrent neff

v < nv .
Experiments on anomalous metals. We can return now to

the measurements on InOx . The first observation is that �H �
10−5 � [3]. The consequences of this fact follow from (2),
whereby �H /� = 1

2σnn
eff
v /xns . The area occupied by mobile

vortex cores is x ∼ nvξ
2 ∼ nv/ns , where ξ is the supercon-

ducting correlation length. Here, x ∝ nv because in a magnetic
field we expect the flux through all the different vortices to be
aligned. The above, together with σn ∼ 10e2/h ∼ 0.4e�2/h̄

[1,3], then implies

neff
v

nv

� 10−5. (3)

It follows that there is essentially vanishing parallel comotion
of vortices and supercurrent, as quantified by the dissipa-
tionless susceptibility ∂jx

v /∂ux
φ in (2). Indeed, strong pinning

in InOx causes ρxx ∼ x to vary by more than an order of
magnitude as a function of applied field in the anomalous metal
[1]. InOx is therefore far from the “Nozières-Vinen” free flow
regime.

Second, to a good approximation, ρyx ∼ ρ2
xx , where

the Hall signal is detectable [1]. This requires the fi-
nal term in (1) to be negligible, so that neff

v /ns � ρyx .
From here we can obtain neff

v /nv ∼ neff
v /(nsx) � ρyx/x ∼

ρyx/(ρxxσn) = tan θH/σn. We used the Bardeen-Stephen re-
sult ρxx ∼ x/σn, recovered below. The measured tan θH be-
comes as small as 10−4 [1], leading to neff

v /nv � 10−4, con-
sistent with (3). The conclusion (3) is therefore reached from
two independent experiments. Furthermore, the data show that
for the anomalous metal, ρyx/ρ

2
xx = σH

n ∼ 2 × 10−6 �−1 in
(1)—recall that σH

o ∼ 0 due to particle-hole symmetry of the
Bogoliubov excitations. This is of the same magnitude as the
Hall conductivity of the high-temperature normal state [1],
and is consistent with the interpretation of σH

n as the Hall
conductivity of the vortex cores. It follows that ρyx/ρ

high T
yx ∼

(ρxx/ρ
high T
xx )2, and hence the observed ρyx ∼ 0.01 � at a field

of 5 T, suppressed by almost three orders of magnitude relative
to the high-temperature value, follows from the suppression of
ρxx in the anomalous metal.

A condition analogous to (3) must also hold for the systems
mentioned above where a ρyx ∼ ρ2

xx scaling was previously

observed [16–21]. The supercyclotron resonance will be eas-
iest to observe in materials that instead exhibit free flux flow,
with negligible pinning, so that ρyx ∼ ρxx .

The Hall resistivity measurements further reveal a weak
field dependence of σxy = ρyx/ρ

2
xx , with σxy possibly van-

ishing below a field HM2 > Hc [1]. A strictly vanishing zero
temperature σxy over some field range requires that the vortex
core contribution σH

n = 0 in (1), in addition to the vanishing of
vortex/superfluid comotion implied by (3). Such particle-hole
symmetry [1] is seen away from a flux flow regime in more
disordered samples [34,35].

Hydrodynamic approach. Our analysis is anchored in the
observation [2] of a narrow peak at zero frequency in the optical
response σ (ω). This peak defines a lifetime that is around
105 times longer than that of the electronic quasiparticles
in the material. Such a hierarchy of timescales allows a
systematic hydrodynamic expansion of the collective response;
all noncollective modes have decayed before the timescales
of interest. Furthermore, the conductance peak narrows as
the magnetic field is reduced towards the onset of supercon-
ductivity at Hc. This strongly suggests that the appropriate
low-energy description of the anomalous metal is superfluid
hydrodynamics with a slow phase-relaxation timescale [2,33].
Phase relaxation requires the inclusion of vortices in the
hydrodynamic description. The hydrodynamic variables are
therefore the electrical and vortex currents j and jv and
the phase gradient uφ = ∇φ. The conductance peak in fact
survives into the superconducting phase [3]—at the very end
we explain how this can arise from the contribution of pinned
vortices to the optical conductivity.

Working within linear response and assuming homoge-
neous currents [36], the equations for the hydrodynamic
variables in the presence of a uniform electric field E are com-
pletely fixed. The Josephson relation, allowing for transverse
vortex flow, is (with h̄ = e� = 1)

u̇i
φ = Ei + εij j j

v . (4)

Here, εij is antisymmetric with εxy = 1. We must now express
the electric and vortex currents in terms of the electric field
and superfluid velocity. The most general relation that obeys
the Onsager constraint is shown in the Supplemental Material
[37] to be [38]

(
j i
o

j i
v

)
=

(
σ̂

ij
o α̂

ij
v

α̂
ij
v �̂ij /fs

)(
Ej

fsε
jkuk

φ

)
. (5)

Here, the normal component electric current jo ≡ j − fsuφ .
This “generalized Ohm’s law” introduces six transport coeffi-
cients: σ̂

ij
o = σoδ

ij + σH
o εij , �̂ij = �δij + �Hεij , and α̂

ij
v =

αvδ
ij + αH

v εij . Their physical meaning is as follows: �̂ij is
the vortex conductivity, σ̂

ij
o is the electrical conductivity of

the normal (nonsuperfluid) component, and α̂v is a “vorto-
electric” conductivity. We will drop the Hall component αH

v

in the remainder of our discussion—its only effect on charge
transport is to produce a small shift in the superfluid stiffness
fs = ns/m�. All of the earlier theoretical works referenced
above contain equations analogous to the steady state relations
(5). We have emphasized that these equations are justified when
slow phase relaxation defines a separation of timescales that
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allows the collective response to be treated hydrodynamically.
Furthermore, we will obtain precise Kubo formulas for the
transport coefficients that we then evaluate systematically.

Solving for jv and uφ using (4) and (5) gives Ohm’s law
j i = σ ijEj with the low-frequency conductivities [33]

σxx(ω) = fs

(
1 − α2

v

)
(−iω + �) + 2αv�H

(−iω + �)2 + �2
H

+ σo, (6)

σxy(ω) = fs

2αv(−iω + �) − (
1 − α2

v

)
�H

(−iω + �)2 + �2
H

+ σH
o . (7)

These formulas predict a “supercyclotron resonance” due to
the poles at ω� = ±�H − i�, tying dc transport to an optical
response. We see that � determines the superfluid relaxation
rate. Positivity of entropy production requires α2

v � σo�/fs .
Kubo formulas. The transport coefficients in (6) and (7) are

given by Kubo formulas, derived in the Supplemental Material
[37] using the hydrodynamic Green’s functions that follow
from Eqs. (4) and (5). The vortex conductivity is given by the
retarded Green’s function of the vortex current operator Jv .
This can in turn be expressed in terms of the Green’s function
for the time derivative J̇φ = i[H,Jφ] of the supercurrent,

�̂ij = fs lim
ω→0

lim
x�1

1

ω
Im GR

J
i
vJ

j
v
(ω) (8)

= fs

(
lim
ω→0

lim
x�1

1

ω
Im GR

J̇
i

φ J̇
j

φ

(ω) − χ
J̇

i

φJ
j

φ

)
. (9)

The final contact term in (9) is a static susceptibility. The vor-
toelectric conductivity depends also on the normal component
current operator Jo ≡ J − fsJφ ,

αv = lim
ω→0

lim
x�1

1

ω
Im GR

J
y
v J

y
o
(ω) (10)

= lim
ω→0

lim
x�1

1

ω
Im GR

J̇
x

φ J
y
o
(ω). (11)

Finally, the normal component conductivity σ̂
ij
o follows sim-

ilarly from the Green’s function for Jo. Writing the vortex
conductivities in terms of J̇φ as in (9) and (11) will enable
them to be directly related to a microscopic mechanism for
phase relaxation.

In evaluating the Kubo formulas for the vortex conductivi-
ties �̂ and αv it is necessary to take the limit x � 1—wherein
mobile vortices occupy a small fraction of the sample area,
ensuring slow phase relaxation—before the zero frequency
limit. This can be seen explicitly from the hydrodynamic
Green’s functions given in the Supplemental Material [37].
In the remainder we evaluate (9) and (11) for phase relaxation
due to vortex flux flow. In Ref. [33] the Bardeen-Stephen phase
relaxation rate � was recovered in this way. We can now extend
that result to obtain �H and αv .

Supercurrent relaxation due to flux flow. The supercurrent
operator is given by the gradient of the phase integrated
outside of vortex cores, where the phase is well defined,
Jφ ≡ ∫

R2\cores ∇φ d2x. This definition holds in the limit of
weak phase relaxation with dilute, independent vortices in
an otherwise well-defined background phase—corresponding
to the x � 1 limit in the Kubo formulas, taken prior to any
low-frequency limit. The supercurrent operator is relaxed by

charge fluctuations that are described by a “self-charging” term
in the Hamiltonian, H = 1

2χ

∫
n2 d2x, where n is the charge

density and χ the charge compressibility [39]. The commutator
[φ(x),n(y)] = iδ(x − y) and single-valuedness of the density
operator n everywhere then leads to the expression

J̇φ = 2

χ

∫
cores

∇n d2x. (12)

This operator relation can now be used to obtain the Green’s
functions (9) and (11). The factor of 2 in (12) was missed
in our previous work [33], but is physically important. When
computing J̇φ one must allow for the fact that the location of
the core is time dependent; in this way only mobile vortices
are seen to contribute. See the Supplemental Material [37] for
details.

The operator relation (12) is at the heart of our approach.
Taking the expectation value of (12) in a state with a single
large vortex and using 〈∇n〉 = χ∇μ in the core leads to the
standard classical relation between the vortex current and the
microscopic electric field −∇μ in the core [40].

If (i) correlations between excitations in distinct vortex
cores are neglected and (ii) the vortex cores are assumed to
be large compared to the mean free path of the normal state in
the core, then the Kubo formulas can be evaluated explicitly.
Using the operator (12), the first contribution to (9) becomes

1

ω
Im GR

J̇
i

φ J̇
j

φ

(ω) = −x
4

χ2

∫
core

lim
ω→0

∂i∂j

Im GR
nn(ω,y)

ω
d2y,

(13)

with x the fraction of the total area covered by mobile vortex
cores. The integral is over a single core. The control parameter
in this entire computation is x � 1, so that dilute vortices
lead to slow phase relaxation. The large core assumption
allowed the Green’s function in the core to be translationally
invariant so that GR(x,y) = GR(x − y). In the large core limit
the charge density diffuses so that GR

nn(ω,k) = σnk
2/(−iω +

Dk2). The conductivity of the normal state in the core σn =
χD, with D the diffusivity. The integral in (13) is then easily
evaluated to give

1

ω
Im GR

J̇
i

φ J̇
j

φ

(ω) = 2x

σn
δij . (14)

The susceptibility term in (9) can be written

χ
J̇

i

φJ
j

φ
= 1

fs

∂u̇i
φ

∂u
j

φ

= εik

fs

∂jk
v

∂u
j

φ

. (15)

The first equality uses χAB = ∂〈A〉/∂sB . Here, sB is the source
for B, and in the case at hand suφ

= fsuφ . The second equality
uses the Josephson relation (4). The electric field term, which
is in fact E − ∇μ in general, drops out because E is held fixed
and χJφ∇μ = 0 at any nonzero temperature (where the response
at low wave vector k is nonsingular, so that χJφ∇iμ ∼ ki → 0).
Putting (14) and (15) together gives the results for � and
�H stated in (2) above. Finally, the inclusion of correlations
between distinct vortex cores and finite size corrections to
Green’s functions in the cores (i.e., lifting the two assumptions
made above) do not lead to additional contributions to �H , as
we note in the Supplemental Material [37].
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With the same assumptions, the vortoelectric conductivity
similarly gets a contribution from inside the vortex cores given
by

αv = − x

χ

∫
core

lim
ω→0

1

ω
Im GR

n εij ∂i jj
(ω,y)d2y. (16)

The contribution from outside of the cores turns out to
be suppressed by powers of x compared to the inside-core
contribution, as we show in the Supplemental Material [37].
The Green’s function in the core appearing in (16) again
follows from the diffusive normal state dynamics. It is given
by GR

nεij ∂i jj
(ω,k) = −iωσH

n k2/(−iω + Dk2) and is derived

in the Supplemental Material [37]. Here, σH
n is the Hall

conductivity of the normal state in the core. Using this Green’s
function we obtain

αv = x
σH

n

σn
= −x tan θH

n . (17)

Here, θH
n is the Hall angle of the normal state.

Conductivity and resistivity. Inserting the flux flow results
(2) and (17) into the hydrodynamic expressions (6) and (7)
gives the dc conductivities at small x,

σxx = σn

2x
, (18)

σxy = σH
n + σH

o + σ 2
xx

neff
v

ns

. (19)

The final term in (19) is larger than the first two by a factor of
1/x, because σ 2

xx ∼ 1/x2 and neff
v ∼ x. We saw in our earlier

discussion, however, that the other terms can dominate when
neff

v is suppressed. Assuming σxy � σxx then gives the Hall
resistivity (1).

Final remark. The hydrodynamic theory can be extended
into the superconducting phase, and explains how dynamical

depinning of vortices leads to the zero frequency conductance
peaks observed in Ref. [3]. Ignoring the (small) parity-odd
terms, the optical conductivity (6) is a simple Lorentzian
σ (ω) = fs/(−iω + �). We have noted that � is the vortex
conductivity. A simple model of vortex pinning is to let � →
�(ω) = ω�/(ω + iωo). Here, ωo is a pinning frequency. This
form arises in the limit of strong momentum relaxation from
the general hydrodynamics of pinned lattices [41]. The upshot
is then the optical conductivity

σ (ω) = fs

� + ωo

(
ωo

−iω
+ �

−iω + � + ωo

)
. (20)

A superconducting delta function arises once the pinning
frequency ωo becomes nonzero. It is accompanied by a zero
frequency Lorentzian peak whose width is continuous across
the superconducting-anomalous metal transition (which is
driven by ωo → 0, not � → 0). This is what the data show
[3], further supporting the picture of the anomalous metal as
being due to the flux flow of mobile vortices. Indeed, zero field
amorphous InOx shows a canonical Berezinskii-Kosterlitz-
Thouless (BKT) transition as a function of temperature. The
conductance peak in the high-temperature BKT phase [42] is
due to mobile unpaired vortices, and is continuously connected
in the phase diagram to the conductance peak seen in the
anomalous metal [2,3].
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