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We propose a protocol to locally detect the Berry curvature of the ground state of a three-terminal Josephson
junction with a quantum dot based on a synchronic detection of the currents flowing into the reservoir leads
when an ac modulation is applied in the device. This local gauge invariant quantity is expressed in terms of the
instantaneous Green’s function of the Bogoliubov—de Gennes Hamiltonian, and thus correctly accounts for the
topological contribution from both the quasiparticle continuum and the Andreev bound states of the junction. We
analyze the contribution to the Berry curvature from the latter by introducing an effective low-energy model. In
addition, we propose to induce topological properties in the system by breaking time-reversal symmetry with a
microwave field in the large frequency nonresonant regime. In the last case, the Floquet-Andreev levels are the
ones that determine the topological structure of the junction, which is formally equivalent to a two-dimensional
honeycomb Haldane lattice and provides a realization of this celebrated model in a solid state device. A relation
between the Floquet Berry curvature and the transconductance of the driven system is derived.
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Introduction. Multiply connected electronic networks
threaded by flux tubes have been proposed several years
ago as a platform to develop quantized adiabatic transport
properties intimately related to topological invariants [1] with
possible realizations in Josephson junctions [2]. More recently,
band structures of Andreev bound states (ABS) in N-terminal
Josephson junctions of conventional superconductors have
been shown to host topological singularities for N > 4, such
as zero-energy Weyl points, in the artificial reciprocal lattice
space defined by the (N — 1)-independent superconducting
phases [3,4]. Even more, trijunctions may also realize
nontrivial topology [5,6] when adding a magnetic flux
through their central region and hence breaking time-reversal
symmetry. The topological structure of these devices can be
probed by means of transconductance measurements between
two voltage-biased terminals which yield, at vanishing
voltage, a quantized value proportional to the first Chern
number of the ground state [2—4]. This global topological
invariant involves an integral over phase space of a gauge
invariant geometric magnitude, the Berry curvature. A nonzero
Berry curvature manifests itself in physical effects, such as
anomalous velocities, regardless of whether the Chern number
is nontrivial [7,8]. In fact, providing experimental tools to
reconstruct maps of the curvature has been a noteworthy work
over the past few years [9-11].

Manifestations of topology in Josephson junctions of con-
ventional superconductors are still an open case of study
[12,13]. An interesting question to address is whether it is
possible to induce topological properties on a three-terminal
device by introducing a periodic driving in the superconducting
phases. Indeed, nontrivial Berry curvatures can take place
within the picture provided by the Floquet states. The purpose
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of this Rapid Communication is then twofold. First, we propose
an experimentally suitable protocol to locally measure the
Berry curvature of the ground-state wave function of the
junction. In order to do so, we exploit one of the main
advantages of these mesoscopic setups: the potential to control
the superconductor phases so as to perform local transport
measurements at each point of the artificial Brillouin zone.
Second, we study the topology of Floquet-Andreev bands in
the large frequency limit and provide a relation between their
curvature and the transconductance of a biased and periodically
driven setup. This constitutes a realization of the Haldane
model in a solid state device [14], becoming an alternative
to previous achievements in cold-atom systems [15].

Model Hamiltonian and synchronic measurement of the
Berry curvature. We begin by studying a three-terminal
Josephson junction (3TJJ) with a quantum dot bearing a single
relevant level in the energy gap region of the superconductor
(see Fig. 1). Its Hamiltonian, neglecting Coulomb interactions,
can be written as

H(t) = Zskvc;ccvcko‘v —-A Z(CIZTVCT_]QU +H.c.)
kov kv

+eg Y did, + (ne Ol ey,, +He),

kov

ey

where we defined &, = e, — n and the superconducting
phases have been gauged to the tunneling matrix elements
between the leads and the dot. Due to gauge invariance, one of
the phases is chosen to be zero without loss of generality. Even
though the band structure of the ABS in equilibrium remains
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FIG. 1. General scheme of a three-terminal Josephson junction
with a quantum dot. Two of the superconducting phases are changed
in time by voltage biasing the leads or varying the external flux in a
ring setup.

topologically trivial, its Berry curvature, defined in the (¢;,¢,)
plane, is nonzero, provided ¢, # 0 due to breaking of particle-
hole symmetry. Our first approach is to study the transport
properties of the junction when making adiabatic variations of
the fluxes threading the nanostructure. To this end, we use the

J

Keldysh formalism [16,17] working in Nambu space, where
the spinors in the leads and the dot are defined as \D;U(t) =
[cj, 1 (1), (D] and W](1) = [d](1).d, (1)), respectively. The
current flowing into the reservoir lead v can be expressed as

2 N A
(¢l Tv(®)lpo) = ;eRe Trlo: Via(1)Gg, (1. 0], @

where the trace is performed in Nambu space, [G jv]"‘ﬂ (t,t') =
i(qbo|‘~ll;“3 (t")W5(t)|¢o) are the components of the minor
Green’s function at the link between the dot and lead v, and
the time-dependent tunneling is given by V,q = y,¢’ = > (Z+
0.)/2 — y,e”t Ea 2 (Z — 0;)/2. In order to perform an adiabatic
expansion, we will work in the Wigner representation of the
two-time Green’s functions, G(w,f,,) = ffooo dte e’ G(t,1),
where we introduced the relative time t, =t — ¢’ and the
average one t,, = (t +1')/2. Time derivatives of the latter
are used as a small parameter, making feasible a perturbation
scheme [18]. The corrections up to first order of the current
expectation value are found to be [19]
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where .C';g (w,ta) = [ — H(tw)]~! is to be understood as the
causal Green’s function of the Hamiltonian defined in Eq. (1)
in the total adiabatic limit, that is to say, the propagator that
follows the perturbation instantaneously. In the last equality
we made the identification of the zeroth-order mean value
of the current with the phase derivative of the instantaneous
ground-state energy, along with the representation of the Berry
curvature of the ground state F, in terms of the single-particle
time-ordered Green’s function of the problem [20-22]. We
therefore recover the results discussed in Ref. [3] with the
virtue of identifying a way of obtaining adiabatic corrections,
taking into account the continuum states to the full extent,
without the need of working with the ground-state wave
function.

The synchronic detection protocol to measure the Berry
curvature is based on performing a periodic modulation in one
of the fluxes that fixes the superconductors phase difference
while keeping the other one constant. We take, without loss
of generality, ¢; = ¢! and @»(t) = @2 + b sin(Vt). Assuming
the amplitude of the driving field to be small b « 1 and the
adiabatic postulate to hold, the current in lead v = 1 takes the
form

(i) =~ (agg L bs1n(Vt)>
] i \og1 09209 o
— 2eF| bV cos(Vr), 4)

where we neglected terms of O(b?). Hence, the zeroth- and
first-order corrections are in quadrature with each other. A

3

(

synchronic filter of the current flowing into the reservoir lead
with the derivative of the signal can be performed, leading to
a local measurement of the Berry curvature, since

27
V [V .
— / (J1(0)) cos(Vt)dt = —eFL| 0bV. 5)
2 0
In order to compare the full numerical results with a simpler
model, we introduce a low-energy approximation of the ABS
[23-25], with an effective Hamiltonian given by

N o &4 >, The i
Her(9) = G0 =0) = <Z L i ) )
viv —cd

(6)

where the anomalous on-site interaction is expressed in terms
of the hybridization ', = —y2p(er)m. This limit is expected
to be generally accurate whenever y, < A, so that the bound
states possess a weak hybridization with the continuum above
the gap. Itis then possible to define an effective Berry curvature
given by

Fsilp) = %heff (0, Pesi X g, heir), 7
with hegr = [To + I'y cos(gr) + Tz cos(2), Ty sin(gr) +
[ sin(g2),&q] and hegr = hese/ | Besr]-

Interestingly, the Hamiltonian in Eq. (6) enjoys all the topo-
logical information of a honeycomb lattice in a tight-binding
description, identifying ¢, = k - a, with a, the displacements
of a site respect to its three nearest neighbors and 2¢; the
subblatice energy difference. In what follows, we perform an
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FIG. 2. Upper panels show the dot spectral density in units of
A along ¢ = ¢; = —¢, for a symmetric 3TJJ in equilibrium with a
hopping amplitude to the leads (I.a) y = 0.25A and (IL.a) y = 0.6A.
The dot energy was taken to be ¢, = 0.1A in both cases. Dashed lines
indicate the dispersion of Andreev levels captured by the infinite-gap
limit. Lower panels (I.b) and (I.b) show the corresponding outcome
of the filter of the cos(Vt) component of the current flowing into
the biased lead v =1 obtained using Keldysh formalism (open
circles) and its comparison with both the Berry curvature of the exact
Hamiltonian 75, [Eq. (3)] (solid line) and the one obtained with Eq. (7)
(triangles).

exact calculation of the current as expressed in Eq. (2) taking
into account the perturbation to all orders by making use of the
time periodicity of the Green’s functions [19] and compare its
synchronic filter with the Berry curvature. In Fig. 2 results for
asymmetric 3TJJ (y, = y) are shown. The dot spectral density
Ag(w) = —(1/m)Im Tr(G);) is depicted for different values
of y/A along the high-symmetry path ¢; = —¢;, finding a
good agreement with the bands of I:Ieff (indicated with dashed
lines) for y = 0.25A [Fig. 2(1.a)]. As expected, this description
turns out to be insufficient for y = 0.6A [Fig. 2(1l.a)]. In both
cases the dot energy is &4 = 0.1A. The lower panels (I.b)
and (IL.b) show the corresponding filter of the current flowing
into the reservoir lead v = 1 as obtained from Eq. (5) and its
comparison with both F5, [see Eq. (3)] and the low-energy
approximation of this quantity given by the effective model
FET [Eq. (7)]. In the spirit of the adiabatic approximation to
be Valid, the frequency was chosen to be VV = 1072A and the
field amplitude » = 10~*A. We observe that the synchronic
protocol gives a precise information on the curvature of the
Andreev bands captured by the low-energy theory even when
the hybridization with the states above the superconductor gap
is relevant. We can comprehend this behavior by noticing that
the Berry curvature in this model is a low-energy localized
quantity. In both cases, even though the integral over the whole
phase space of the Berry curvature is zero, the current has a
topological Thouless contribution whenever the phases of the
junction are near the Dirac points.

This procedure can be done along the whole phase space,
so as to obtain a map of the Berry curvature with the proposed
transport measurement. In Fig. 3 we show the comparison for
an asymmetric junction with hoppings y; = 0.3A, 3, = 0.5A,
and y3 = 0.6A of the low-energy model with the results of the
finite-gap Hamiltonian using the Keldysh formalism. We find
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FIG. 3. (a) Synchronic filter of the of the current flowing into the
biased lead v = 1 as obtained from Eq. (5) using Keldysh formalism
throughout the whole phase space. (b) Berry curvature obtained within
the low-energy effective Hamiltonian describing the infinite-gap limit.

an excellent agreement between both, which guarantees the
validity of the approximation given by Eq. (6). We thus con-
clude that the effect of the continuum states on the topological
properties of this model is negligible. It is worth emphasizing,
however, that our expression for the transconductance [second
term in Eq. (3)] reproduces the correct quantized average value
[26] even when the continuum does contribute as in the model
presented in Ref. [5].

Inducing topology by driving. Floquet-Andreev physics.
When introducing a periodic driving that breaks time-reversal
symmetry (TRS) into the three-terminal junction, the resulting
Floquet system can have topological properties which differ
from the original one. This can be engineered by introduc-
ing an “elliptically” polarized driving of the form é¢,(f) =
Ag cos(Q2t + x,) with x; — x2 not a w-multiple [27]. The Flo-
quet Hamiltonian of the system is given by [H ], = (Hy —
m2)8un + Up—n, with Hy representing the undriven Hamilto-
nians of the dot and leads and U,,_, = 1/T fOT e m=mS (1)
the (m — n)th harmonic of the time-dependent tunneling. The
Floquet Green’s functions satisfy [ — Hr]GF (w) = T, and
its matrix elements can be used to reconstruct the full two-
time-dependent original Green’s function [28]

Q
5 dw
g(t,t/) § :/ 2 71(w+mQ)t l(w+l’lQ)t g:;n(w) (8)
m,n 0

In Fig. 4(a) we show the spectral density of the Floquet
Green’s function of the dot projected onto the zeroth replica
Al = —(1/m)Im Treo[ Gl ()] for x1 — xo =7/2, €4 =0,
Q =0.4A, and Ag = 0.8. In this case symmetric hoppings
¥, = 0.25A were chosen and a representation along the path
@2 = —¢y is shown. The breaking of TRS removes the degen-
eration at the diabolical Dirac points, producing the appearance
of a zero-energy gap in the Floquet spectrum. In Fig. 4(b) we
show a zoom of the spectral density near the Fermi level along
with a comparison with the Floquet eigenergies obtained from
the effective low-energy theory, expected to remain suitable for
these parameters. Indeed, since the energy of the microwave
field is larger than the bandwith of the Andreev bands, the only
relevant topological change can take place at zero energy, since
no gaps at the first Floquet zone boundary (¢ = +hk€2/2) can
be present. On the other hand, the first Floquet replicas of the
Andreev band structure lie within the superconductors gap so
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FIG. 4. (a) Spectral density of the Floquet Green’s function of
the dot projected onto the zeroth replica for 2 = 0.4A, Ag = 0.8, and
&4 = 0. (b) Zoom of the spectral density near zero energy, where a gap
opens due to breaking of TRS. Dashed lines indicate the dispersion
relation of the Floquet eigenergies obtained within the infinite-gap
approximation. (c) Berry curvature of the Floquet-Andreev band in
phase space with parameters as in (a). (d) Floquet Chern numbers of
the junction as a function of the polarization of the driving.

that the continuum states will renormalize only perturbatively
the dispersion relation of the Floquet bands at low energy. In
Fig. 4(c) the Berry curvature of the lower Floquet-Andreev
band obtained with the driven effective model is shown. In
this case, both Dirac points contribute with the same topo-
logical charge leading to a nontrivial Chern number. Standard
Brillouin-Wigner perturbation theory in 1/ yields, in this
regime, a Haldane-like effective Floquet Hamiltonian on the
projected zero photon subspace [29,30], with renormalized
parameters of the form

2a(9") = eq — tegesin () — @9) sin(1 — x2),
F1(2) = T'12)Jo(Ap), 9

and te = 410, JIZ(AO) /h2 acting as a second-neighbor ef-
fective hopping in the previously mentioned honeycomb lat-
tice description. The Dirac points in the symmetric model
(I'y =T) are displaced from their original position along
the path @9 = —g? such that cos(¢0) = —1/2Jy(Ap). The
topological phase diagram of the driven trijunction is shown
in Fig. 4(d) as a function of polarization, which measures the
breaking of TRS. The dot energy has been normalized to the
value it takes when the gap closes for “circularly” polarized
driving.

A crucial issue concerns the possibility of following adia-
batically the Floquet states in order to accurately probe their
properties. The equilibrium populations are strongly modified
whenever a gap opens in the spectrum so that the most probable
scenario is that the wave function at these singular phases be-
haves as a superposition of Floquet states, leading to a nonther-
mal occupation of the Floquet bands. Nonetheless, if the phases
of the superconductors are set up far away from the latter,
there is a precise adiabatic connection between the unperturbed
Hamiltonian and the dressed Floquet-Andreev bands. We now
show that voltage biasing these adiabatically connected states
can provide information on the Berry curvature of the Floquet

bands. In order to do so we appeal to the two-time formalism
[31-33]. Under this formulation, an extended Schrodinger
equation is taken into account, [H(t,7) — iho]|¥(¢,7))) =
iho.|Y¥(t,7))), where the time variable 7 is associated with the
fast time-periodic evolution of frequency €2, while t accounts
for the slow time dynamics generated by the bias voltages at
the leads, i.e., the phases are such that ¢, (¢,7) = 6,(¢) + ¢,(7),
with 6,(1) = Agcos(Q + 1,) and ¢, (1) = @) + XV, 1. The
notation |---)) indicates that the two-time wave functions
are to be treated in a Hilbert space with the internal product
(W @YD) = 7 fo (Y(t,0)|¥P(z,1))dt. The adiabatic
basis of the problem is the Floquet basis, meaning that these
are the states |u§ (t,7))) that satisfy the instantaneous Floquet
equation [H(z,7) — ihd;]|lug (1,7))) = ef (v)|ug (1,7))), where
B = 1,2 indexes the two bands of the first Floquet zone with
quasienergies —iQ2/2 < sg < h2/2. When treating the bias
as an adiabatic perturbation in the slow scale, the mean value
of the current operator at each lead is found to be

2 8
(T = = e

ZFF"’[¢(T) b, (10)

where the first term corresponds to the adiabatic Floquet-
Josephson supercurrent and the second accounts for the Berry
curvature of the «-Floquet state,

‘F\f;)a = l[((aw\ u(f'a%v Ol >> ((8Wﬂu5|3§”v 0())] (11)

We arrive at an expression for the currents with a transcon-
ductance term proportional to the gauge field, in analogy
with the results obtained for undriven setups in Ref. [3]. If
incommensurate voltages were to be applied, so that the entire
phase space is probed after a considerable time, then Eq. (10)
results in a topologically quantized transconductance since

d2
L, Gt ZCW (12

where C 5)"‘ is the Chern number of the Floquet band «.

Conclusion. We have proposed a protocol to perform local
measurements of the Berry curvature of the ground-state wave
function of Josephson junctions. This gauge invariant quantity
[Eq. (3)] is obtained with the Feynman propagator of the
Hamiltonian which includes the quasiparticle continuum and
compared with a low-energy effective model of the ABS
spectrum. We found a good agreement between both since
the gauge field of the model is localized at energies close
to zero. On the other hand, we have put forward a way
of inducing topological properties on three-terminal devices
by introducing a periodic driving that breaks time-reversal
symmetry and generates dressed Floquet-Andreev bands with
nontrivial Haldane-like Chern numbers. We have proposed that
the transconductance of the driven junction yields information
of the Floquet Berry curvature when voltage biasing states
adiabatically connected to the Floquet bands.
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