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Destruction of the spin-density-wave phase by magnetic field in a quasi-one-dimensional conductor
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It is known that, in a pure one-dimensional case, the charge-density-wave phase is destroyed by a magnetic
field, whereas the spin-density-wave (SDW) phase does not “feel” the field. In reality, the SDW phase is often
observed in quasi-one-dimensional (Q1D) conductors due to the so-called “nesting” property of their electron
spectra. We show that, in the latter case, a high magnetic field generates some “antinesting” term in a Q1D electron
spectrum, which destroys the SDW phase. We suggest performing the corresponding experiments in SDW phases
of the real Q1D organic conductors with chemical formula (TMTSF)2X (X = PF6, ClO4, etc.).
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We recall that a pure one-dimensional (1D) metal is un-
stable with respect to the so-called Peierls transition into
some density-wave (DW) state [1,2]. The DW state can be
characterized by either a spatial modulation of a charge [i.e.,
charge-density-wave (CDW) phase] or spatial modulation of a
spin [i.e., spin-density-wave (SDW) one] [2–4]. Let us discuss
in briefly the above-mentioned phenomenon [1,2]. Indeed, near
two plane Fermi surfaces (FS), it is possible to linearize a 1D
spectrum,

ε(px) = −2ta cos(pxa
∗), (1)

in the following way:

ε±(px) = ±vF (px ∓ pF ), (2)

where vF and pF are the Fermi velocity and momentum,
correspondingly, anda∗ is a lattice constant. (Note that here and
everywhere below we make use for an actual electron spectrum
its tight-binding model, since we apply our results to organic
conductors [3,4], where this model is known to work well [3]).

It is important that the electron spectrum (2) possesses the
following special (i.e., “nesting”) property of electron-hole
pairing,

ε+(�px) + ε−(�px) = 0, (3)

which makes some DW with wave vector 2pF to be a ground
state at low enough temperatures [1,2]. In an external magnetic
field, the electron spectra (1) and (2) split into two branches
due to the Pauli spin-splitting effect:

ε±
σ (px) = ±vF (px ∓ pF ) − σμBH, (4)

where σ = ±1 for spin up (down) and μB is the Bohr
magneton. From Eq. (4), it directly follows that the condition
(3) for electron-hole pairing in a magnetic field is not changed
for the SDW phase and changed for the CDW one. Therefore,
we can make the well-known conclusion that the SDW phase
is stable in the presence of the Pauli spin-splitting effects in a
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magnetic field [4,5], whereas the CDW one is destroyed by the
field [6].

Let us consider a quasi-one-dimensional (Q1D) conductor
with the following electron spectrum [3]:

ε(p) = −2ta cos(pxa
∗/2) − 2tb cos(pyb

∗) − 2tc cos(pzc
∗),

(5)

where ta � tb � tc. Near two open sheets of the FS, it can be
linearized as

ε±(p) = ±vF (px ∓ pF ) − 2tb cos(pyb
∗) − 2tc cos(pzc

∗).

(6)

It is important that electron spectrum (6) still possesses the
above discussed nesting electron-hole symmetry, since for
Eq. (6) the following equation is valid:

ε+(�px,py,pz) + ε−(�px,py + π/b∗,pz + π/c∗) = 0. (7)

It is possible to make sure [7] that the nesting property (7)
corresponds to a stability of some DW with the wave vector:

Q0 = (2px,π/b∗,π/c∗). (8)

As also suggested in Ref. [7], the nesting property (7) is
responsible for the appearance of SDW in the real Q1D
conductors from chemical family (TMTSF)2X, where X =
PF6, ClO4, etc. [3,4].

In Refs. [5,7], a more realistic electron spectrum is consid-
ered:

ε±(p) = ±vF (px ∓ pF ) − 2tb cos(pyb
∗)

− 2t ′b cos(2pyb
∗) − 2tc cos(pzc

∗), (9)

where it includes also the next-neighbor electron jumping
in the tight-binding model, t ′b � tb. The electron spectrum
(9) contains the so-called “antinesting” term, 2t ′b cos(2pyb

∗).
This term destroys the ideal nesting condition (7) and thus,
at large enough values of the parameter t ′b, restores a metallic
phase. For the theory of experimentally observed in the Q1D
conductors (TMTSF)2X the field-induced spin-density-wave
(FISDW) phases [8,9], where the antinesting term in Eq. (9)
plays a central role, see Refs. [5,10]. For further development,
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it is important that electron spectra (6),(9) still show the same
properties in a parallel to the conducting chains magnetic field,
where the orbital effect [5] is negligible. More specifically, the
SDW phase still does not fill the Pauli spin-splitting effects,
whereas the CDW one is destroyed by them.

The goal of our Rapid Communication is to consider
an unexpected effect—a destruction of SDW phase in Q1D
conductors with nesting properties (7) by the Pauli spin-
splitting effect. Here, we restrict our calculations to the case
of a parallel magnetic field to avoid complications due to
possible appearance of the FISDW phases as a result of
orbital electron quantization [5,8–10]. Note that below we
consider a model, which can be solved analytically, and
suggest performing the corresponding experiments in the Q1D
organic conductors (TMTSF)2X. The physical meaning of
the suggested phenomenon is as follows. We show that, due
to the nonzero Q0

y component of the SDW wave vector (8)
and due to nonlinearity of the electron spectrum along the
conducting chains, the Pauli spin-splitting effect generates a
special antinesting term. This term increases with a growing
magnetic field and eventually destroys the SDW phase. We
stress that the above mentioned statement is against a common
belief that the Pauli spin-splitting effect does not influence the
SDW phase.

Below, we consider the following 2D model of the Q1D
spectrum in the (TMTSF)2X conductors in a parallel magnetic
field:

εσ (p) = −2ta cos(pxa
∗/2) − 2tb cos(pyb

∗)

− 2t ′b cos(2pyb
∗) − μBσH. (10)

[Note that, as is well known [3,4,5,7,10], the 2D model
(10) well describes the SDW and FISDW phases in these
conductors, since tb � tc in Eq. (5)]. In contrast to all existing
works, we do not linearize the electron spectrum along the
conducting a∗ axis near two sheets of the FS, but also take into
account the next quadratic term:

ε+(px) = vF (px − pF ) + α(px − pF )2,

ε−(px) = −vF (px + pF ) + α(px + pF )2, (11)

where

vF = taa
∗

√
2

, α = ta(a∗)2

4
√

2
. (12)

[In Eqs. (10)–(12), we take into account that pF = π/2a∗ in
the (TMTSF)2X conductors.]

Let us derive electron energy spectra in a parallel magnetic
field near two sheets of the FS by means of Eqs. (10)–(12). To
this end, first let us rewrite Eq. (10) in the following way:

ε+
σ (p) = vF (px − pF ) + α(px − pF )2

− 2tb cos(pyb
∗) − 2t ′b cos(2pyb

∗) − μBσH (13)

and

ε−
σ (p) = −vF (px + pF ) + α(px + pF )2

− 2tb cos(pyb
∗) − 2t ′b cos(2pyb

∗) − μBσH. (14)

Then, we define the shapes of two sheets of the FS for the
value of small parameter α = 0 in Eqs. (13) and (14) (i.e., in

the linear approximation):

(px − pF ) = 2tb cos(pyb
∗) + 2t ′b cos(2pyb

∗) + μBσH

vF

(15)

and

(px + pF ) = −2tb cos(pyb
∗) + 2t ′b cos(2pyb

∗) + μBσH

vF

.

(16)

Now, let us put the obtained values of px−pF and px + pF ,
given by Eqs. (15) and (16), only in terms which contain the
small parameter, α �= 0, in Eqs. (13) and (14). As a result, for
tb,μBH � t ′b, we obtain the following electron spectra near
two sheets of the FS in the quadratic approximation:

ε+
σ (p) = vF (px − pF ) + t+b (py,σ ) − μBσH + �ε,

t+b (py,σ ) = −2tb cos(pyb
∗) + 2t̃ ′b cos(2pyb

∗)

+ 2tH σ cos(pyb
∗) (17)

and

ε−
σ (p) = −vF (px + pF ) + t−b (py,σ ) − μBσH + �ε,

t−b (py,σ ) = −2tb cos(pyb
∗) + 2t̃ ′b cos(2pyb

∗)

+ 2tH σ cos(pyb
∗), (18)

where tH = μBHtb/(
√

2ta), t̃ ′b = −t ′b +
t2
b /(2

√
2ta), and �ε = μ2

BH 2/(2
√

2ta). Note that Eqs. (17)
and (18) contain the magnetic field dependent term, tH ∼ H ,
which, for SDW pairing, breaks the electron-hole pairing
condition (7) and thus destroys the SDW phase at high
magnetic fields. In contrast, terms −μBH and �ε in Eqs. (17)
and (18) do not destroy SDW pairing. Indeed, term −μBH

disappears for SDW pairing, whereas term �ε just shifts the
wave vector of the SDW phase.

Our goal is to describe quantitatively the destruction of
SDW by a magnetic field due to the antinesting term in
Eqs. (17) and (18), which contains magnetic field dependent
parameter tH . Let us calculate the linear response of our system
to the following external field, corresponding to SDW pairing:

ĥ(Q) = (σ̂x)αβ exp(iQr). (19)

We do this in a similar way as it is done in Ref. [5] for different
Q1D spectrum without the above mentioned magnetic field
dependent term. In mean field approximation, we obtain for
susceptibility the so-called Stoner’s equation:

χ (Q) = χ0(Q)

[1 − gχ0(Q)]
. (20)

Here g is the effective electron coupling constant and χ0(Q) is
susceptibility of noninteracting electrons:

χ0(Q) = T
∑
ωm

∑
σ

∫
dpy

2π

∫
dx1g

++(iωn,py ; x,x1; σ )

× g−−(iωn,py − Qy ; x1,x; −σ ), (21)

where ωn is the so-called Matsubara’s frequency [11].
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In Eq. (21), slow varying parts of the electron Green’s
functions near two sheets of Q1D FS are related to the electron
Green’s functions by the following equation:

G++(iωn,py ; x,x1; σ ) = eipF (x−x1)g++(iωn,py ; x,x1; σ ),

(22)

G−−(iωn,py ; x,x1; σ ) = e−ipF (x−x1)g−−(iωn,py ; x,x1; σ ).

(23)

Slow varying parts of Green’s functions of noninteracting
electrons are possible to determine by using the method similar

to that suggested in Ref. [5]. As a result, we obtain the following
equations:[

iωn + ivF

d

dx
− t+b (py,σ ) + μBσH − �ε

]

×g++(iωn,py ; x,x1; σ ) = δ(x − x1), (24)[
iωn − ivF

d

dx
− t−b (py,σ ) + μBσH − �ε

]

×g−−(iωn,py ; x,x1; σ ) = δ(x − x1), (25)

where δ(x − x1) is the Dirac’s delta function. It is important
that Eqs. (24) and (25) can be exactly solved:

g++(iωn,py ; x,x1; σ ) = sgn(ωn)

ivF

exp

[
−ωn(x − x1)

vF

− i

vF

t+b (py,σ )(x − x1) + i

vF

μBσH (x − x1) − i

vF

�ε(x − x1)

]
,

ωn(x − x1) > 0, (26)

g−−(iωn,py ; x,x1; σ ) = sgn(ωn)

ivF

exp

[
ωn(x − x1)

vF

+ i

vF

t−b (py,σ )(x − x1) − i

vF

μBσH (x − x1) + i

vF

�ε(x − x1)

]
,

ωn(x − x1) < 0. (27)

Now, let us substitute the known Green’s functions [i.e.,
Eqs. (26) and (27)] into Eqs. (20) and (21). After straightfor-
ward but rather lengthy calculations, we obtain the following
equation, which determines a stability region of the SDW
phase:

1

g
= max

k̃,�t

∫ ∞

d

2πTcdz

vF sinh

(
2πTcz

vF

)〈
cos

[
4�t

vF

sin(pyb
∗) z

−4t̃ ′b
vF

cos(2pyb
∗) z + k̃z

]
cos

[
4tH

vF

cos(pyb
∗) z

]〉
py

, (28)

where Qy = π/b∗ + q (qb∗ � 1), �t = tbqb∗/2, k̃ = k −
2�ε/vF , and d is a cutoff distance; 〈. . .〉py

stands for aver-
aging procedure over variable py . Note that, in Eq. (28), we
maximize the SDW transition temperature, Tc, with respect
to longitudinal, k, and transverse, Qy , wave vectors under the
condition that tb � t ′b.

As follows from Eq. (28), the last term with tH will
eventually destroy the SDW phase at high magnetic fields.
In this Rapid Communication, we do not intend to investigate
Eq. (28) for all possible cases and all possible values of the
parameters tb, Tc, and t̃ ′b. Our goal is to demonstrate that
high enough magnetic field indeed destroys SDW phase even
at Tc = 0 and estimate the corresponding critical field. To
this end, we consider the case of very high magnetic fields,
where tH � t̃ ′b at Tc = 0. As we show below, this case can be
analytically solved. Indeed, at tH � t̃ ′b and Tc = 0, we have
from Eq. (28)

1

g
= max

k̃,�t

∫ ∞

d

dz

z

〈
cos

[
4�t

vF

sin(pyb
∗) z + k̃z

]

× cos

[
4tH

vF

cos(pyb
∗) z

]〉
py

. (29)

For t̃ ′b = 0 and H = 0, from Eq. (28), we can obtain another
simple equation, which connects the electron coupling con-
stant, g, with the SDW transition temperature at H = 0, Tc0:

1

g
=

∫ ∞

2πTc0d

vF

dz

sinh(z)
. (30)

Our current problem is to find the maximum of the integral
(29) over longitudinal and transverse momenta. This maximum
defines the critical field, H0, which can be expressed through
Tc0, using Eq. (30).

So, let us first consider Eq. (29). By means of simple but
rather lengthy calculations, it is possible to demonstrate that it
is equivalent to the following simpler equation:

1

g
= max

k̃,�t

∫ ∞

d

dz

z
J0

[√(
4�t

vF

)2

+
(

4tH

vF

)2

z

]
cos(k̃z),

(31)

where we use the following formula for the zeroth-order Bessel
function [12]:

J0(z) =
∫ π

−π

dφ

2π
exp(iz sin φ). (32)

From Eq. (31), it directly follows that the integral (31) takes
its maximum at �t = 0 (i.e., for transverse component of the
SDW wave vector Qy = π/b∗). Therefore, Eq. (31) can be
simplified as

1

g
= max

k̃1

∫ ∞

4tH d

vF

dz

z
J0(z) cos(k̃1z), k̃1 = vF k̃

4tH
. (33)

Here, we express the inverse electron coupling constant
through the SDW transition temperature in the absence of
t̃ ′b and magnetic field, H = 0, and cutoff distance, d, using
Eq. (30). Exact integration of integral (30) over variable z
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gives us the following relationship in the so-called logarithmic
approximation:

1

g
= ln

(
vF

πTc0d

)
. (34)

Our task now is to find the maximum of Eq. (33) with
respect to variable k̃1 and express the critical magnetic field
for destruction of SDW, H0, as a function of Tc0 by means of
Eq. (34). It is easy to rewrite Eq. (33) for small values of the
cutoff parameter, d, in the following way:

1

g
= max

k̃1

{∫ ∞

0

dz

z
J0(z) [cos(k̃1z) − 1]

+
∫ ∞

0

dz

z
[J0(z) − cos(k̃1z)]

+
∫ ∞

dk̃

dz

z
cos(z)

}
. (35)

To simplify (35), we use the following mathematical formulas
[12]: ∫ ∞

0

dz

z
[J0(z) − cos(αz)] = ln(2α), α > 0, (36)

∫ ∞

0

dz

z
[1 − cos(αz)]J0(βz) = arccosh

(
α

β

)
, 0 < β < α,

(37)∫ ∞

0

dz

z
[1 − cos(αz)]J0(βz) = 0, 0 < α < β, (38)

−
∫ ∞

x

cos(z)

z
dz = C + ln(x) +

∫ x

0

cos(z) − 1

z
dz, (39)

where C = ln(γ ) is the so-called Euler constant. As directly
follows from Eqs. (36)–(39), the integral (35) has maximal
value at |k̃| < 4tH /vF , which is equal to

1

g
= ln

(
vF

2γ tHd

)
, (40)

where γ ≈ 1.78. Comparison of Eqs. (34) and (40) results in
the following value of magnetic field, H0, which destroys the
SDW phase at T = 0:

tH0 = πTc0

2γ
, H0 = 1

μB

(
πTc0

2γ

)(√
2ta

tb

)
. (41)

To summarize, in the Rapid Communication, we have
shown that magnetic field generates some antinesting term in
Q1D conductors due to the Pauli spin-splitting effect. This
term destroys SDW phases, which exist in some Q1D con-
ductors due to the “nesting” condition. We suggest perform-
ing the corresponding experiments in the organic conductors
(TMTSF)2X. Let us estimate the critical magnetic field, which
destroys the SDW phase. From Eq. (41), it follows that at
ambient pressure, where Tc0 = 12 K in (TMTSF)2PF6, the
critical magnetic field is H0 = 185 T. Although such high
magnetic field is experimentally available (see, for example,
Refs. [13,14]), we recommend applying pressure to decrease
the value of H0. Indeed, at pressure P = 5 kbar, the SDW tran-
sition temperature in the (TMTSF)2PF6 conductor becomes
Tc0 = 5 K [15] and thus the critical magnetic field can be
estimated as H0 = 77 T. Here, let us discuss briefly the validity
of the above suggested estimations by Eq. (41) of the critical
magnetic fields to destroy the SDW phase in the real Q1D
compound (TMTSF)2PF6. Note that, in Eq. (41), we don’t ex-
plicitly take into account the first antinesting term, containing
unknown parameter t̃ ′b [see Eqs. (13)–(18)]. Our application
of Eq. (41) to the real compound (TMTSF)2PF6 is based
on the suggestion that both antinesting terms independently
decrease the SDW transition temperature. This suggestion is
based on the fact that the two antinesting terms have different
momentum dependence and thus cannot, for example, cancel
each other. Of course, this is just a reasonable suggestion and,
therefore, the above mentioned calculations of the values of the
critical magnetic fields in (TMTSF)2PF6 at ambient pressure
and P = 5 kbar are just some reasonable estimations.

We are thankful to N. N. Bagmet (Lebed) for useful
discussions.
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