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Universal thermal data in conformal field theory (CFT) offer a valuable means for characterizing and
classifying criticality. With improved tensor network techniques, we investigate the universal thermodynamics
on a nonorientable minimal surface, the crosscapped disk (or real projective plane, RP2). Through a cut-and-sew
process, RP2 is topologically equivalent to a cylinder with rainbow and crosscap boundaries. We uncover that
the crosscap contributes a fractional topological term 1

2 ln k related to a nonorientable genus, with k a universal
constant in two-dimensional CFT, while the rainbow boundary gives rise to a geometric term c

4 ln β, with β the
manifold size and c the central charge. We have also obtained analytically the logarithmic rainbow term by CFT
calculations, and discuss its connection to the renowned Cardy-Peschel conical singularity.
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Introduction. Finding universal properties in the many-body
system is very important for understanding critical phenomena
[1–4], which constitutes a fascinating and influential topic in
diverse fields of physics. According to two-dimensional (2D)
conformal field theory (CFT) [5], universal terms appear in
the thermodynamics of critical quantum chains at low temper-
atures [6], and 2D statistical models at the critical tempera-
ture. Among others, logarithmic corrections proportional to a
ubiquitous central charge c are particularly interesting. Cardy
and Peschel [4] showed that free energy contains logarithmic
terms due to corners or bulk conical singularities [7–15]. This
logarithmic term is universal and has profound ramifications
in the studies of bipartite fidelity and quantum quenches of
(1+1)D models [10,16], as well as in the corner entanglement
entropy of (2+1)D quantum systems [17–20].

Recently, the universal thermodynamics of 2D CFTs on
nonorientable surfaces has been explored, including the Klein
bottle (K2) and Möbius strip [21–24]. For diagonal CFT
partition functions on the Klein bottle,FK = lnZK = πc

24vβ
L +

ln k, with a universal constant k = ∑
a da/D, where da is the

quantum dimension of the ath primary field, andD = √∑
a d2

a

is the total quantum dimension.
In this Rapid Communication, we consider the real pro-

jective plane (RP2), whose elementary polygon is shown in
Fig. 1(d). A specific realization of RP2 can be achieved by
gluing a crosscap with a disk, along the open edge, i.e., a
crosscapped disk as shown in Fig. 1(b). As a minimal surface,
RP2 is a building block in constructing other nonorientable
surfaces (e.g., K2). Therefore, exploring the possible universal
CFT thermodynamics on RP2 is of particular interest.
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Previous tensor network (TN) methods applied to K2 (say,
in Ref. [23]) are not directly applicable to RP2. Therefore, we
devise here a boundary matrix product state (BMPS) approach
to explore the residual free energy on RP2. This BMPS
technique is very efficient and can also improve the accuracy
in extracting universal data on other nonorientable manifolds
includingK2 and Möbius strip, etc. The main idea is as follows:
After a cut-and-sew process, RP2 is transformed into a plain
cylinder with special conformal boundaries [Figs. 1(c) and
1(d)], one crosscap and one so-called rainbow state. We find
the dominating eigenvector of the transfer matrix through
an iterative method, and then extract the universal term by
computing its overlap with the crosscap or rainbow boundaries.

With this efficient TN technique removing finite-size effects
(in one spatial dimension out of two), as well as CFT analysis,
we uncover two universal terms in CFT thermodynamics: the
crosscap term FC = 1

2 ln k, a fractional topological Klein bottle
entropy due to twist operations; and a geometric rainbow
term FR = c

4 ln β, as a consequence of the intrinsic “conical
singularity” on RP2, where c is the central charge and β the
lattice width (or inverse temperature in quantum cases).

Models and TN representations. We perform TN sim-
ulations on the 2D statistical and (1+1)D quantum mod-
els. The statistical models include the Ising model H =
−∑

〈i,j〉 sisj , where si = ±1; the three-state Potts H =
−∑

〈i,j〉 δsi ,sj
, with si = 0,1,2, and δ the Kronecker delta func-

tion; and the Blume-Emery-Griffiths (BEG) [25] model H =
−∑

〈i,j〉 sisj + �
∑

i s
2
i (si = 0, ± 1). As shown in Fig. 2, we

construct the partition-function TN by following either the
original lattices where the models are defined [type I, Figs. 2(a)
and 2(b)], or their “dual” lattices [type II, Figs. 2(c)–2(e)].

Type I TN contains vertex tensors T and bond matrices
M . For instance, in Fig. 2(a), Tsi ,sj ,sk,sl

= 1 (when si = sj =
sk = sl) or 0 (otherwise) is a generalized δ function, and the
matrix Msm,sn

= exp (−hm,n/Tc) stores the Boltzmann weight
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FIG. 1. Illustration of (a) the Klein bottle (K2) and (b) a cross-
capped disk (right) obtained by gluing four lines pairwise with the
arrows matched (left). (c), (d) show the cut-and-sew processes: One
clips the elementary polygon vertically along the dashed line, flips the
right half horizontally, and properly reglues the two pieces. K2 in (c)
transforms into a flat cylinder with two crosscap boundaries, while
in (d) RP2 there exist a crosscap and a rainbow. The two “branch”
points labeled “1(2)” and “3” in (b), and correspondingly two pairs
of orange sites in (d), play the role of effective conical singularities.

[hm,n is the interaction term on the (m,n) bond]. Hexagonal
TN in Fig. 2(b) is constructed similarly, where T is of rank 3.

Type II TN consists of plaquettes/simplex tensors T . In
Fig. 2(c), T tensors on (half of) the plaquettes connect each
other via s indices and form a square-lattice TN. Tsi ,sj ,sk ,sl

=
exp(−h�i,j,k,l

/Tc) and h�i,j,k,l
is a plaquette Hamiltonian.

Similarly, we can construct a hexagonal TN representation

FIG. 2. Various lattice statistical models [(a), (c) square, (b)
honeycomb, (d) kagome, and (e) triangular] and their corresponding
TN representations. (a), (b) show TNs defined on the original lattices,
and (c)–(e) defined on the “dual” lattices. To realize theRP2 manifold,
we connect square TNs following the conventions in (a) and hexagonal
TNs as in (b), such that the arrows match.

FIG. 3. (a) TN representation of theK2 partition function consists
of columns of transfer matrices (M), capped with two crosscaps (C).
The dominating eigenstate of M is denoted as |i0〉. (b) The Klein term
can be computed by summing over the logarithm of two overlaps. (c)
By substituting one crosscap with a rainbow state |R〉, one obtains in
(d) the RP2 universal term.

for the kagome model in Fig. 2(d). For the triangular lat-
tice in Fig. 2(e), the dual variables σij = sisj (Ising) and
e2πi(si−sj )/3 (Potts, see Ref. [26]) are introduced on each
link (i,j ). Correspondingly, the simplex tensor Tσij ,σjk,σki

=
exp(−h�i,j,k

/Tc)δσij σjkσki ,1, with h�i,j,k,
= − 1

2 (σij + σjk + σki)
(Ising) and − 1

2 [δ(σij ,1) + δ(σjk,1) + δ(σki,1)] (Potts).
Besides 2D statistical models, critical quantum

chains include the transverse-field Ising [HTFI =∑
i (−Sx

i Sx
i+1 − 1

2Sz
i )], Heisenberg XY [HXY =

−∑
i(S

x
i Sx

i+1 + S
y

i S
y

i+1)], and Z3 quantum Potts [HPotts =
−∑

i(σiσ
†
i+1 + τi) + H.c.]. The local operators Sx,y,z are

spin-1/2 operators, and σi = diag(1,ω,ω2) with ω = e2πi/3,
τi = (e3,e1,e2). en is a unit column vector with only the nth
element equal to 1 (others zero) [27]. Given the Hamiltonian
H , the thermal TN representations of quantum chains can
be obtained via the Trotter-Suzuki decomposition of e−βH ,
which resemble Fig. 2(c).

As follows, we stick to the notation L (β) for length
(width) in terms of TNs, for both square-lattice [Figs. 2(a)

FIG. 4. (a) The Klein and crosscap terms of Ising models on
various lattices. The crosscap term equals exactly one-half the Klein
term. The inset shows the deviation of calculated FK to the exact value.
D = 256 bond states are retained in the BMPS, i.e., numerically exact.
(b) shows FC of the kagome Potts model at different temperatures,
and the inset plots the deviation |2FC − ln k|. In this plot, Fig. 5, and
Table I, “S” stands for square lattice, “TS” for the square lattice with
tilted TN representation, “K” for kagome, “H” for honeycomb, and
“T” for the triangular lattice.
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FIG. 5. Logarithmic rainbow terms of several critical (a) 2D
statistical models and (b) quantum chains. For each model, FR data
collapse in three cases, i.e., on kagome, honeycomb, and triangular
lattices.

and 2(c)] and honeycomb-lattice TNs [Figs. 2(b), 2(d) and
2(e)]. We always assume the thermodynamic limit L � β �
1, under which condition the relevant universal terms are well
defined.

Efficient extraction of universal data. In previous TN studies
[23], given a density operator ρ, we evaluate ZK = Tr[
ρ(β)]
(
 is a spatial reflection operator) to extract universal data on
the Klein bottle. The residual term ln k can then be obtained
by computing the ratio k = ZK(2β,L/2)

ZT (β,L) , where ZT (β,L) is the

torus partition function [21,22], or by extrapolating lnZK to
L = 0 [23].

However, this scheme is not directly applicable to RP2.
Here, we propose a BMPS-based TN technique exploiting
the cut-and-sew process in Fig. 1. Successive projections
of the transfer matrix M [see Fig. 3(a)] to BMPS are per-
formed to determine the (nondegenerate) dominant eigen-
vector |i0〉 and then compute the universal data. In prac-
tice, 200–500 iterations suffice to converge the BMPS of
bond dimension D = 100–500, offering us results with high
precision [28].

To be specific, we insert a complete set of orthonormal bases
{|iμ〉} into the partition function Z( L

2 ,2β) = 〈BL|ML/2|BR〉,
where μ counts the eigenstates |iμ〉 of the real symmetric
transfer matrix M . We thus get Z = ∑

μ 〈BL|iμ〉λL/2
μ 〈iμ|BR〉,

in which only the dominant eigenvalue λ0 and corresponding
eigenvectors |i0〉 survive in the thermodynamic limit, leading
to lnZ = ln[〈BL|i0〉λL/2

0 〈i0|BR〉] = L
2 ln λ0 + F0. Clearly, the

term L
2 ln λ0 corresponds to the bulk free energy. Note the

transfer matrix M is exactly the same as that of the Klein bottle

(see Fig. 3), therefore the universal bulk correction is also πc
24β

L

[23]. Besides, the residual term reads directly as

F0 = ln 〈BL|i0〉 + ln 〈i0|BR〉. (1)

The cut-and-sew process transforms RP2 into a cylinder
with a crosscap |C〉 and rainbow states |R〉 on two ends,
i.e., 〈BL| = 〈R| and |BR〉 = |C〉 [cf. Fig. 1(d)]. Therefore, the
residual term F0 = FC + FR, where FC = ln〈i0|C〉 (crosscap
term) and FR = ln〈R|i0〉 (rainbow term).

Crosscap free-energy term. K2 is topologically equivalent
to a cylinder with two crosscaps on the boundary, as shown
in Figs. 1(c), 3(a), and 3(b). Therefore, FK = ln 〈C|i0〉 +
ln 〈i0|C〉 = ln k, and it is convenient to see that a fractional term
FC = 1

2 ln k constitutes an elementary unit of the topological
term, associated with a single crosscap boundary |C〉.

Figure 4(a) shows the Klein and crosscap terms of the
Ising model on various lattices, which converge to the values
FK = ln (1 + √

2/2) and FC = 1
2FK, respectively. The latter

relation is also consistent with the CFT predictions of the
RP2 partition function [29]. In particular, one can observe
that FC data converge exponentially fast toward the universal
CFT value as β increases, regardless of the specific lattice
geometries, or even remain identical with 1

2 ln k up to machine
precision [TS case in Fig. 4(a)].

As a useful application, we show that FC can be employed
to accurately determine the critical points, even for challenging
models such as the three-state kagome Potts and square-lattice
BEG models [28]. In Fig. 4(b) we show the results for
kagome Potts: When T approaches critical temperature Tc, FC

converges to 1
2 ln k (k =

√
3 + 6√

5
), which otherwise deviates

from the universal value. Therefore, from distinct behaviors of
the FC curves [see |2FC − ln k| in the inset of Fig. 4(b)], we
can pinpoint the critical temperature as 1/Tc � 1.056 55(5).
This value constitutes a rather accurate estimate of Tc, which
is in very good agreement with 1/Tc = 1.056 56(2) estimated
in Ref. [30], as well as 1.0565 602 231(1) in Ref. [31].

The crosscap term deeply relates to topology. Based on the
above observation for RP2, as well as that in the Möbius-band
case [23], we conjecture that manifolds with a nonorientable
genus κ (i.e., with κ crosscaps) give rise to a universal
topological term κ

2 ln k.
The rainbow free-energy term. Besides the constant cross-

cap contribution, there exists another logarithmic term in the
RP2 free energy due to the rainbow boundary |R〉, i.e.,

FR = c

4
ln β + b, (2)

TABLE I. Fitted central charge c of 2D lattices (with z the coordination number) and 1D quantum chains (labeled as Q). For statistical
models, c is fitted with the data of β > 3, while for quantum models c is fitted in the range β > 1. The numbers in parentheses represent the
fitting error bar.

Model Ising (c = 0.5) BEG (0.7) Potts (0.8) XY (1)

Lattice S TS H T K Q S S TS H K Q Q

Tc cosh(2/Tc) cos(π/z) = 1 [32] 4
ln(3+2

√
3)

[33] 0.609a 1
ln(1+√

3)
[34] 0.6738 [34] 0.9465b

Slope 0.1250(2) 0.1250(2) 0.1250(1) 0.1250(1) 0.1250(1) 0.124(1) 0.172(1) 0.200(1) 0.200(1) 0.200(1) 0.199(1) 0.1996(5) 0.249(2)
Fitted c 0.4998(8) 0.5000(7) 0.5000(1) 0.5000(1) 0.5000(1) 0.496(4) 0.688(4) 0.800(4) 0.798(2) 0.797(2) 0.804(3) 0.798(2) 0.996(8)

aFor the BEG model, the tricritical point corresponds to � = 1.966 at Tc = 0.609 [28,35–38].
bResults of this work; see Fig. 4(b).
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FIG. 6. (a) Overlap 〈R|i0〉 of the rainbow state with the scale-
invariant MERA can be translated into a folded MERA in (b),
where the pure tensors (isometries and unitaries) cancel each other
into identities, while the “corner” tensors are folded by themselves
[right down in (b), coinciding double lines of the original tensor are
combined into single indices of the folded one] and located within the
boundary causal cone again shown in (a).

where c is the central charge, and b is the nonuniversal constant.
In Fig. 5, we show that, for both 2D statistical models (Ising,
Potts, BEG) and 1D critical quantum chains (Ising, Potts, and
XY), the rainbow term scales logarithmically versus β. The
central charge c can be fitted from the slope, and the results are
summarized in Table I, where a perfect agreement with CFT
is observed.

Universal logarithmic terms often appear on lattic geome-
tries with corners (such as open strips [4,12,13]), conical
singularities [8], or even a slit [10,14]. Although RP2 is a
closed manifold without any corners or conical angles, a closer
look into the lattice geometry in Fig. 1(d) [and Figs. 3(c) and
3(d)] reveals that there exist two pairs of points which are
connected twice by lattice bonds (and thus identified twice in
the continuous limit), forming effective “conical singularities”
on the rainbow boundary. These intrinsic conical points are
responsible for the logarithmic term on RP2.

We provide an intuitive explanation with the multiscale
entanglement renormalization ansatz (MERA) [39], i.e., a
holographic view. As shown in Fig. 6(a), the dominant eigen-
vector |i0〉 of the transfer matrix is a critical quantum state,
which has a scale-invariant MERA representation consisting
of rank-4 unitary and rank-3 isometry tensors. Following the
rainbow boundary condition, we fold MERA along two vertical
lines and arrive at a double “MERA” in Fig. 6(b). Due to the
reflection symmetry, the isometry and unitary tensors in the
bulk cancel into identities and do not contribute in 〈R|i0〉,
while only the “corner” tensors (due to folding) contribute to

-1 1

FIG. 7. The conformal transformation ϕ1 : z = √
t maps (a) the

complex plane to (b) the upper half plane, which is then mapped onto
a semi-infinite rectangle via the Schwarz-Christoffel transformation
ϕ2 : w = 2β

π
arcosh(z). Fields defined on the complex plane are as-

sumed to take the same values on the highlighted red and blue lines,
giving rise to a rainbow and cylindrical boundary conditions in (c).

TABLE II. Nonorientable universal thermodynamics F0.

Manifolds Klein bottle Möbius strip RP2

κ 2 1 1
η 1 1/2 1/2
μ 0 0 c/4
ν πc/24 πc/24 πc/24

the final trace. Note that on the lowest row of MERA the two
self-folded corner tensors (colored orange) connect the four
special “corner” sites indicated in Fig. 1(d). Besides the two
corner tensors in the physical layer, there exist O(ln β) such
“self-folded” boundary tensors, constrained in the past causal
cone [dashed region shown in Fig. 6(a)] of MERA. Each
boundary “impurity” contributes the same factor due to the
scale invariance, and thus 〈R|i0〉 ∼ aln β (i.e., ∼βγ ), giving
rise to a logarithmic “corner” term FR ∼ ln β.

CFT analysis of the rainbow term. We also analytically
derive the rainbow term [28] by noting the two successive
transformations (ϕ1 and ϕ2 in Fig. 7). They map the complex
plane to a half-infinite cylinder with a rainbow state on segment
[0,2iβ] in Fig. 7(c), where ϕ2(−1) = 2βi and ϕ2(1) = 0.
Neglecting the nonuniversal term and assuming 〈T (t)〉 =
0, we obtain 〈T (w)〉 = − cπ2

8(2β)2 [ sinh2(πw/2β)
cosh2(πw/2β)

+ cosh2(πw/2β)
sinh2(πw/2β)

] +
cπ2

12(2β)2 according to the transformation of the stress ten-
sor. As the metric tensor gμν changes with a tiny vari-
able δgμν = 2εδμ1δν1, the logarithm of the partition func-
tion (denoted as F0) varies as δF0 = 1

2

∫
d2x

√
gδgμν〈T μν〉 =

1
π

∫ 2β

0 dw1
∫ L/2+iw1

iw1 dw0〈T (w)〉 δβ

β
. We integrate it and arrive

at the universal term F0 = πcL
24β

+ c
4 ln β. The first term πcL

24β
also

appears in the Klein bottle and Möbius strip cases [21–23], as
a consequence of the nonorientability for these manifolds. The
second c

4 ln β is the logarithmic rainbow free-energy term we
have observed numerically.

Discussion and summary. The logarithmic rainbow term is
geometry dependent and can be related to the renowned Cardy-
Peschel conical singularity term F0(θ ) = cθ

24π
[( 2π

θ
)
2 − 1] ln L,

with L the characteristic system size. Due to the particular lat-
tice realization of RP2 as in Figs. 2(a) and 2(b), there exist two
effective π -angle conical singularities in the TN [see Fig. 1(d)],
which in total contribute 2F0(π ) = c

4 ln β (with β ∼ L). Note
that the conical angle changes as we alter the specific geometry
of the RP2 TN, which introduces a multiplicative geometric
factor, following the Cardy-Peschel formula above [28].

In Table II, we briefly summarize the results on nonori-
entable universal thermodynamics, in the form F0 = η ln k +
μ ln β + νL/β. Remarkably, the coefficient γ is proportional
to the nonorientable genus κ of the surface, i.e., a topo-
logical term, and μ scales linearly with the central charge
c, with a geometry-dependent slope. More connections of
these universal data to topology and geometry deserve further
investigations.
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