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We present a finite-size scaling for both interaction and disorder strengths in the critical regime of the many-body
localization (MBL) transition for a spin-1/2 XXZ spin chain with a random field by studying level statistics. We
show how the dynamical transition from the thermal to MBL phase depends on interaction together with disorder
by evaluating the ratio of adjacent level spacings, and thus, extend previous studies in which interaction coupling
is fixed. We introduce an extra critical exponent in order to describe the nontrivial interaction dependence of the
MBL transition. It is characterized by the ratio of the disorder strength to the power of the interaction coupling
with respect to the extra critical exponent and not by the simple ratio between them.
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I. INTRODUCTION

Recently, many-body localization (MBL) has attracted
much interest in many-body quantum physics and statistical
mechanics [1–17]. In the MBL phase, the dynamics is non-
ergodic and the system does not thermalize, which implies
that the eigenstate thermalization hypothesis (ETH) [18–20]
is broken. The MBL phase has similarities with integrable
systems in the sense that eigenstates can be characterized by
a large number of local integrals of motion [8,12,21,22]. The
transition between the ETH and MBL phases is characterized
by several quantities such as level statistics, entanglement
entropy, the Kullback-Leibler divergence, and bipartite fluc-
tuations of subsystem magnetization (in a spin chain). For
instance, intensive numerical simulations on those quantities
[12] illustrate that the MBL transition points characterized by
them coincide with each other.

Numerical analysis of spectral properties may provide
fundamental information on many-body quantum systems.
We often investigate the level statistics of a quantum system
in order to determine whether it is integrable. If a given
Hamiltonian is integrable by the Bethe ansatz, level statistics
obeys the Poisson distribution, while if it is nonintegrable,
the Wigner-Dyson (WD) statistics is yielded. This has been
confirmed in correlated quantum spin systems [23–38] as
well as disordered systems [39–45]. The WD and Poisson
statistics also characterize the metal and insulator (localized)
phases, respectively, in the Anderson model of disordered
systems [46]. MBL generalizes Anderson localization (AL).
In disordered quantum many-body systems, level statistics
changes from the WD to Poisson statistics if we increase
disorder. The transition was found in spin systems more than
a decade ago [42,43], and they are regarded as some of the
earliest examples of MBL transitions.

*kudo@is.ocha.ac.jp

MBL transitions are usually studied in terms of disorder
strength under a fixed interaction. It has not been discussed
intensely, yet, how it depends on interaction coupling. In this
Rapid Communication, we will demonstrate that the MBL
transition indeed depends on interaction in a nontrivial manner.
We present a finite-size scaling of level statistics for both
interaction and disorder in the critical regime. The nonlinear
interaction dependence is characterized by the ratio of the
disorder strength to some power of the interaction coupling,
and we introduce a critical exponent for the power. The finite-
size scaling of level statistics with the extra critical exponent
should be useful in further studies of finite-size scaling in
the MBL transition such as that of entanglement entropy. In
fact, level statistics requires much less computational costs
than other observables such as entanglement entropy, since it
only needs eigenenergies, and it works sufficiently well for
characterizing MBL phases.

In this Rapid Communication, we investigate level statistics
for a spin-1/2 XXZ spin chain with a random field. We
introduce the model and methods in Sec. II. In Sec. III,
how the level statistics depends on disorder and interaction
is demonstrated in the gapful regime as well as the gapless
regime. Next, we focus on the MBL transition in the gapless
regime and perform a finite-size scaling analysis in Sec. IV.
Discussion and conclusions are given in Sec. V.

II. MODEL AND METHODS

Let us consider a spin-1/2 XXZ spin chain with a random
magnetic field. The Hamiltonian on L sites is given by

H =
L∑

j=1

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

) +
L∑

j=1

hjS
z
j , (1)

where Sα = 1
2σα and σα with α = x,y,z are the Pauli matrices;

� is the anisotropy parameter; hj is a random magnetic field
at site j with a uniform distribution [−h : h]; the periodic
boundary conditions are imposed. The XXZ spin chain can be
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TABLE I. The number of level spacings taken in each spectrum
and the number of disorder realizations for each system size L.

L No. level spacings No. realizations

12 100 10000
13 100 10000
14 500 2000
15 500 2000
16 1000 1000

mapped into interacting spinless fermions in a one-dimensional
lattice. In the system of spinless fermions, anisotropy �

corresponds to the interaction between such fermions that are
located on neighboring sites. We hereafter refer to � and h as
interaction and disorder, respectively.

If the smallest energy necessary for the ground state to be
excited remains nonzero and constant as the system size L goes
to infinity, we say that the spectrum has a gap or it is gapful,
while if it is proportional to 1/L or smaller than that as L goes
to infinity, we say that the spectrum has no gap or it is gapless.
When all the random fields hj vanish in the Hamiltonian (1),
its spectrum is gapful for |�| > 1 and gapless for |�| � 1.

We employ the ratio of adjacent level spacings, which was
recently introduced in order to study level statistics [12–16].
The ratio is defined by

ri = min(δi,δi+1)

max(δi,δi+1)
, (2)

δi = Ei − Ei−1, (3)

where Ei is the ith eigenvalue (in ascending order) of a
given energy spectrum, and hence, δi is the level spacing
between the ith and (i − 1)th eigenvalues. The average values
of the ratio for the Poisson and WD distributions are given
by 〈r〉p = 2 ln 2 − 1 ≈ 0.386 and 〈r〉w ≈ 0.530, respectively
[13]. In many studies of level statistics, it is common to
use unfolded eigenvalues instead of raw eigenvalues. The
unfolding procedure is given by a method for rescaling the
energy spectrum so that the local level density becomes
unity. We make use of unfolded spectra in order to calculate
the average ratio 〈r〉, which is actually independent of the
unfolding procedure. Here, we follow the unfolding procedure
(specifically, the average cubic global version) proposed in
Ref. [14].

The system size considered below is given by L = 12, 13,
14, 15, and 16. Since the eigenvalues with different total Sz are
uncorrelated, we consider only the largest subspaces: Sz = 0
for even numbers of L and Sz = 1 for odd ones. Eigenvalues
were computed with the LAPACK library. Spectral properties
depend on the energy range [12,14]. It is safe to take only
the central part in each spectrum. The energy range of each
spectrum used below is about 6%–15% of the full spectrum.
The number of disorder realizations and the number of level
spacings taken in each realization are listed in Table I.

III. DEPENDENCE ON DISORDER AND INTERACTION

Figure 1 illustrates average ratio 〈r〉 for L = 16 as a
function of disorder h and interaction �. Average ratio 〈r〉
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FIG. 1. The average ratio 〈r〉 of adjacent level spacings for
L = 16 shows dependence on disorder h and interaction �. The
Poisson and Wigner-Dyson distributions correspond to 〈r〉p ≈ 0.386
and 〈r〉w ≈ 0.530, respectively. Error bars, which are smaller than
10−3, are omitted. For � �= 0, average ratio 〈r〉 decreases as h

increases, which indicates the MBL transition. At � = 0, 〈r〉 ≈ 〈r〉p

for an arbitrary h, which corresponds to Anderson localization.

decreases with increasing h (for � �= 0), which indicates
the MBL transition. The ratio also depends on interaction:
it increases with interaction for � � 2 and decreases for
� � 2. This is consistent with the dynamical phase diagram
for one-dimensional spinless fermions with random fields
[47,48], where the system can be mapped to the spin-1/2
XXZ spin chain with random fields. The nonmonotonic
dependence on the interaction should be considered separately
in two regimes: the gapless regime (0 � � � 1) and the gapful
(1 < �) regime. There are critical differences between the two
regimes in spectral property as well as the ground state.

In the gapless regime, while average ratio 〈r〉 decreases
with increasing disorder h (in the presence of interaction), it
increases with interaction � (for small disorder). At � = 0,
〈r〉 ≈ 〈r〉p for an arbitrary h. In other words, the Poisson statis-
tics appears in the absence of interaction. This corresponds
to AL. In the gapless regime, the disorder and interaction
dependencies of level statistics are consistent with the results
of our previous study [43].

Next consider the MBL transition in the gapless regime.
Here, the MBL transition is captured as a function of h/�μ

with μ ≈ 0.28, as shown in Fig. 2. In Fig. 2(a), average ratio
〈r〉 for different strengths of interaction (0 � � � 1) is plotted
as a function of disorder h. The same data, except for � = 0,
are plotted as a function of h/�μ with μ = 0.28 in Fig. 2(b).
The data of the same system size collapse into a single curve in
the rescaled plot. The point where the two collapsed curves for
L = 12 and 16 cross is actually consistent with critical disorder
hc. The process leading to these results is described in detail
in the next section.

In the gapful regime, however, the MBL transition cannot
be captured clearly as a function of h/�μ, where μ is expected
to be negative. The nature of the MBL transition in this regime
is different from that in the gapless regime. Actually, in the
gapful regime, energy spectra have a lot of large level spacings,
namely, energy gaps. When � is large, because of large
energy gaps, the fluctuation of energy levels is relatively small.
Moreover, in the � → ∞ limit, the system corresponds to the
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FIG. 2. (a) Average ratio 〈r〉 with different values of interaction � as a function of disorder h for L = 12 and 16. Lines are for � =
0, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1 in order from the bottom, for each L. (b) Rescaled plot of average ratio 〈r〉 as a function of h/�μ with
μ = 0.28 (� �= 0). Data of the same system size L collapse into one curve. The two curves for different sizes cross around h = hc, where
hc ≈ 3.06 (see text).

Ising model, which is integrable. In integrable systems, level
statistics obeys the Poisson distribution. This means that energy
levels have no correlation. On the other hand, disorder-induced
localization such as MBL and AL also breaks correlation of
energy levels and leads to the Poisson statistics. In the gapful
regime, energy-level correlation is diminished by large energy
gaps related to integrability rather than MBL.

IV. FINITE-SIZE SCALING ANALYSIS

We estimate exponent μ in the gapless regime with the
procedure of finite-size scaling analysis as follows. We assume
that the data of average ratio 〈r〉 collapse into a single curve of a
finite-size scaling function g[(h/�μ − hc)L1/ν], where hc and
ν are the critical disorder and critical exponent, respectively.
In the case of � = 1, the following procedure corresponds
to the finite-size scaling procedure introduced in Ref. [14].
First, a curve gL(h) is calculated from the average ratio data
with � = 1, for each L. Next, we calculate the variance over
different values of L, which is defined by

fvar(h) = VarL{gL[(h − hc)L1/ν]}, (4)

and the average of squared errors over L and �, which is
defined by

fmse(h) = AvgLAvg�{gL[(h/�μ − hc)L1/ν] − 〈r〉}2, (5)

where 0 < � � 1. Note that average ratio 〈r〉 here is a
function of disorder, interaction, and the system size: 〈r〉 =
〈r(h,�,L)〉. The curves gL[(h/�μ − hc)L1/ν] should coincide
with g[(h/�μ − hc)L1/ν] for appropriate values of hc, ν, and
μ that minimizes the cost function,

S(hc,ν,μ) = 1

�h

∫ hmax

hmin

[fvar(h) + fmse(h)]dh, (6)

where �h = hmax − hmin. We took hmin = 2 and hmax = 4 in
the simulations. Minimization was performed by evaluating
the cost function for every combination of 2.5 � hc � 3.5,
0.5 � ν � 1.0, and 0.2 � μ � 0.4 at each interval of 0.01.

It is clear in Fig. 3 that a novel data collapse occurs
for average ratio 〈r〉 in the finite-size scaling analysis. The
plots of the data are rescaled by not only system size L and
disorder h but also interaction �. The critical disorder and
the critical exponent are estimated as hc ≈ 3.06 and ν ≈ 0.80,
respectively. Although the values are slightly smaller than
those of Ref. [14], hc ≈ 3.35 and ν ≈ 0.86, they are in a
reasonable range of parameter values estimated in other works
[10–12]. The critical exponent of interaction � is estimated as
μ ≈ 0.28.

V. DISCUSSION AND CONCLUSIONS

We suggest that the finite-size scaling in terms of both
the interaction and disorder strengths should be interesting
from the viewpoint of application of renormalization group
arguments to MBL transitions. We remark that renormalization
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FIG. 3. Finite-size scaling of average ratio 〈r〉, which is also
rescaled in terms of interaction (0 < � � 1). Average ratio 〈r〉 is
plotted as a function of (h/�μ − hc)L1/ν with hc = 3.06, ν = 0.80,
and μ = 0.28. The data with different size and different interaction
collapse into a single curve. The values of 〈r〉 for the Poisson and
Wigner-Dyson statistics, which are indicated as lines, are 〈r〉p ≈
0.386 and 〈r〉w ≈ 0.530, respectively.
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group arguments have been applied to study the asymptotic
behavior of entanglement entropy [49]. We also remark that
the extra exponent μ is estimated less than 1 in the gapless
regime. As a result, the effect of change in interaction coupling
is weaker than that of disorder.

The rescaled plot in the form of finite-size scaling function
in Fig. 3 clearly illustrates the interaction dependence of
the MBL transition. It successfully avoids some problems
which can occur for a small or large disorder. When we
study the MBL transition in terms of interaction strength with
fixed disorder, a naive problem arises: what value of disorder
strength we should take. Obviously, no transition occurs for
a large disorder, as shown in Fig. 1. For a small disorder, the
change in average ratio 〈r〉 is seen clearly and easily. However,
for a very small disorder, spectral properties are affected by the
integrability of the system [43]. Here, we recall that the XXZ
Hamiltonian with a random magnetic field in Eq. (1) returns
to being integrable if the random field vanishes completely.
We therefore suggest that it should be nontrivial to investigate
directly how the MBL transition behaves in the case of a very
small disorder. Here we remark that the MBL transition is

usually investigated in terms of disorder strength under a fixed
interaction, and also that critical properties around the critical
disorder are often described well by the finite-size scaling
analysis with respect to disorder strength when interaction is
fixed.

We have demonstrated how the interplay between interac-
tion and disorder affects level statistics. The data collapse in
Fig. 3 suggests a nontrivial relation between disorder h and
interaction � regarding the MBL transition. The MBL tran-
sition is observed as a function of h/�μ with some exponent
μ in the gapless regime. Although the nontrivial dependence
is evident in numerical results, it has no theoretical support
yet. Theoretical analysis of this dependence will provide deep
insights into many-body interaction in quantum systems as
well as the MBL transition.
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