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Nonthermodynamic nature of the orbital angular momentum in neutral fermionic superfluids
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We discuss the orbital angular momentum (OAM) and the edge-mass current in neutral fermionic superfluids
with broken time-reversal symmetry. Recent mean field studies imply that total OAM of a uniform superfluid
depends on boundary conditions and is not a thermodynamic quantity. We point out that this does not conflict with
thermodynamics because there is no intensive external field conjugate to OAM with which a uniform superfluid
is stable in the thermodynamic limit, in sharp contrast to the orbital magnetization in a nonsuperfluid system.
We establish a simple physical picture for the sensitivity of OAM to boundaries by introducing the notion of
“unpaired fermions” and “fermionic Landau criterion” within a mean field description. In order to go beyond the
mean field approximation, we perform a density matrix renormalization group calculation and conclude that the
mean field understanding is essentially correct.
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I. INTRODUCTION

The study of orbital angular momentum (OAM) in a super-
fluid with broken time-reversal symmetry has a long history
since the discovery of 3He-A phase [1–6]. In the p-wave 3He-A
phase, each Cooper pair is expected to carry OAM ν = 1,
resulting in a bulk OAM proportional to the total number of
fermions N in the system. However, the discussions on the
magnitude of the total OAM has been controversial and called
“intrinsic angular momentum paradox.” At an intuitive level,
the OAM is estimated as Lz = ν × N/2 just by counting the to-
tal number of Cooper pairs, while OAM could also be estimated
as Lz = ν × (N/2) × (�/εF ) since the fermions only around
the Fermi energy εF would be relevant to physical quantities.
� is the gap amplitude of the superfluidity. Both of the physical
estimations seem to be reasonable, and detailed theoretical
calculations predicted various values of the spontaneous OAM
corresponding to these physical pictures [1–24].

Recently, this problem attracts renewed interest, partly
because the chiral superfluidity like 3He-A state is a proto-
typical example of topological superconductivity/superfluidity
[6,25–34]. In such a chiral topological state, the edge-mass
current Jedge flows along a sample boundary, which leads
to OAM Lz = 2Jedge × V where V is the sample volume.
Interestingly, it has been proposed that the OAM is related to
nondissipative transport phenomena in two-dimensional chiral
superfluids [35–41]; the thermal Hall conductivity κH is given
by temperature derivative of OAM, and the quantization of κH

at low temperature which is the hallmark of a chiral superfluid
as a symmetry-protected topological phase is attributed to
the quantized value of the edge mode contribution to OAM
[35,36]. Similarly, the Hall viscosity ηH at zero temperature
which is considered as an intrinsic nondissipative transport
quantity in two dimensions is shown to be proportional to OAM
per fermion at and is therefore quantized in chiral superfluids
[37–41]. The mass current Hall conductivity is also related
to the OAM via ηH [40]. Since κH and ηH are considered
as topological intrinsic quantities, their connections to OAM

would imply that Lz is independent of details of the system
such as the gap amplitude � and the Fermi energy εF .

However, surprisingly, there have been various mean field
calculations which show that the spontaneous OAM in a chiral
superfluid does depend on boundary conditions of a system and
is not an intrinsic quantity [26–32,42–45]. This is, on one hand,
quite counterintuitive, since it has been widely regarded that
OAM is a thermodynamic quantity and should be independent
of nonthermodynamic details such as boundary conditions and
shapes of a system. This can be inferred from the well-known
formula for the total OAM,

Lz = −∂F (�z)

∂�z

, (1)

where F (�z) is the free energy in the rotating frame with the
angular velocity �z along z axis [46]. On the other hand, the
sensitivity of OAM to boundaries would be rather natural, since
the origin of spontaneous OAM in a chiral superfluid is mainly
the edge-mass current and such a current could be influenced
by details of boundaries along which the current flows. For
example, we may expect that edge-mass current depends on
roughness of the sample surface. Indeed, this was shown to
occur within mean field calculations [26,42–44]. It was also
demonstrated that directions of edge-mass current can be even
reversed depending on sample shapes [45]. Similar reversal of
edge-mass current is possible at a domain boundary between
superfluids with positive and negative chiralities [47,48]. All
the contributions to the energy from boundary conditions and
system shapes themselves are at most proportional to the
surface area in a system with short-range interactions.

One can compare the OAM in superfluids with spontaneous
orbital magnetization (OM) in nonsuperfluid systems, and will
find a qualitative difference between these two quantities. Total
spontaneous OM for a finite-size system is simply proportional
to total OAM at zero magnetic flux density, Mz = −μBLz,
as an operator in an appropriately chosen gauge where μB

is the Bohr magneton [49]. Although one might expect that
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the spontaneous OM is also a nonthermodynamic quantity
which depends on boundaries or shapes, it is a thermodynamic
quantity and the well-known formula

Mz = −∂F (Bz)

∂Bz

(2)

is a thermodynamic relation, where Bz is the uniform magnetic
flux density [50,51]. Indeed, these have been proved to be true
in noninteracting systems [52–54], and free energy density
in interacting systems have also been discussed extensively
[55,56]. Therefore, the nonthermodynamic nature of spon-
taneous OAM discussed in the previous studies would be a
characteristic property only in superfluids.

Experimentally, direct observations of OAM and corre-
sponding edge-mass currents are challenging issues. For exam-
ple, there have been a limited number of experimental reports
on the intrinsic angular momentum paradox in the 3He-A phase
[57–59], and the magnitude of the edge charge current in the
candidate chiral p-wave superconductor Sr2RuO4 is extremely
small compared with a theoretical estimation [32,60]. If OAM
and edge currents are boundary-sensitive quantities, careful
discussions will be required for an experimental detection.

Although there have been many calculations of sponta-
neous OAM and corresponding edge-mass current for con-
crete models of superfluids within mean field approximations
[26–34,42–45], a comprehensive understanding especially on
connections to thermodynamics has not been well established.
Therefore, it is desirable to develop a simple understanding on
the physical reason why OAM in superfluids can depend on
nonthermodynamic details, and obtain an intuitive picture. In
this study, we point out that the OAM, especially the sponta-
neous OAM, in a superfluid is not a thermodynamic quantity by
focusing on absence of a thermodynamic limit under rotation
and roles of Hess-Fairbank effect under an artificial magnetic
flux density. Then, we establish a simple physical picture
for the nonthermodynamic nature of the OAM within mean
field descriptions, where two important notions, “unpaired
fermions” and “fermionic Landau criterion,” are introduced. In
order to go beyond the mean field approximations, we perform
a nonperturbative numerical calculation by using the infinite
density matrix renormalization group (iDMRG) [61–66]. It
is concluded that the mean field understanding is essentially
correct.

II. NONTHERMODYNAMICS OF OAM
IN NEUTRAL SUPERFLUID

In this section, we discuss whether or not OAM (especially
spontaneous OAM) in a uniform superfluid can be described
within the standard thermodynamics. Although this will be an
elemental discussion, to the best of our knowledge, it has never
been explicitly considered in the context of the spontaneous
OAM in chiral superfluids. This may be a reason for the
controversial discussions on the OAM, and therefore we will
clarify some important points here.

A. General discussion

The extensive thermodynamic free energy F TD
V for volume

V can be derived from the statistical mechanical free energy

density in the thermodynamic limit f∞,

F TD
V = V × f∞. (3)

If F TD
V is well defined in the presence of �z �= 0 or Bz �= 0,

Eq. (1) or (2) becomes a thermodynamic relation. Since a ther-
modynamic free energy is stable to nonextensive perturbations
such as boundary conditions and shapes, a physical extensive
quantity obtained from F TD

V should also be thermodynamic.
However, in general, it is a nontrivial problem whether or not
a microscopic model has a well-defined thermodynamic limit
and thermodynamics can be applied to the system. Indeed,
the previous mean field studies may imply that Eqs. (1) and
(2) for a uniform superfluid are not thermodynamic relations
[26–34,42–45].

For a general system, we would naively expect that an
extensive quantity M is stable to nonextensive perturbations
if and only if it is derived from a thermodynamic free energy.
Indeed, if the thermodynamic free energy is obtained in the
presence of a conjugate intensive field h to M , we have

MTD
V (h) = −∂F TD

V (h)

∂h
, (4)

where MTD
V is the thermodynamic value of the statistical

mechanical quantity M [67,68]. Similarly, if the statistical
mechanical expectation value 〈M〉V is robust to nonextensive
perturbations, the statistical mechanical free energy FV with
the intensive conjugate field h �= 0 obtained as

FV (h) − FV (0) = −
∫ h

0
dh′〈M〉V (h′) (5)

will also be stable to the perturbations, if possible changes in
FV (0) by the perturbations are at most o(V ) [69]. For such a
stable FV (h), one would naively expect existence of a well-
defined thermodynamic limit.

An important subtle point in OAM is that the OAM operator
itself is not extensive [20,22,70]. For a system on V ⊂ R3, the
OAM operator is defined as

Lz =
∫

V

ψ†[r × p]zψ d3x =
∫

V

[r × j ]zd
3x, (6)

j (r) = −i(ψ†∇ψ − ∇ψ†ψ)/2, (7)

where pj = −i∇j and j is the mass current density. Or,
equivalently, in the first quantization form,

Lz =
N∑

i=1

r i × pi =
∫

V

[r × j ]zd
3x, (8)

j (r) =
N∑

i=1

{δ(r − r i), pi}/2. (9)

Although it is not trivial from these expressions, its expectation
value at equilibrium scales as 〈Lz〉V = O(V ), if an equilibrium
state is well defined. This is because j (r) is usually localized
around the boundary of V in such a state [71], and the above
expressions can be reduced to

〈Lz〉V �
∫

∂V

[r × J edge]zd
2x‖, (10)

J edge(r‖) =
∫

〈 j (r)〉V dx⊥, (11)
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where J edge is the net edge current which is the integral of
〈 j 〉V over the perpendicular direction x⊥ to the surface [72].
Then, it is clear that 〈Lz〉V = O(V 2/3) × O(V 1/3) = O(V ).

We note that it is impossible to express the operator Lz as a
sum of local “OAM density operator” which is translationally
symmetric [20,22]. This can be understood as follows. Suppose
that there exists a local OAM density operator of the form
l(r) = [ψ†(r)l̂(∇)ψ(r) + (H.c.)] where l̂ is independent of r .
We expand l̂j = a1j + a2jk∇k + · · · where a1j ,a2jk, · · · ∈ C.
Then, it is easy to see that there is no solution for the commu-
tation relation [li(r),lj (r ′)] = iδ(r − r ′)εijklk(r). Therefore,
the operator l(r) does not exist [73–75]. This is in sharp
contrast to the familiar spin magnetization operator which
can be equivalently expressed either of the form

∫
V

d3x s(r)
or

∫
V

d3x[r × (∇ × s(r))] with s(r) = ψ†σψ/2. These are
consistent with our naive expectation that spin is an internal
degree of freedom which has the spatial position-independent
generator of SU(2) symmetry, while an orbital motion is a
spatially extended object and therefore there is no local, trans-
lationally symmetric generator of SO(3) rotational symmetry.

In the following, we will consider several theoretical setups
in which OAM might possibly be obtained by derivative of
a thermodynamic free energy; we introduce two kinds of
external fields, a uniform rotation with or without additional
confinement potentials corresponding to Eq. (1), and an artifi-
cial constant magnetic flux density corresponding to Eq. (2).
In each case, we explain that F TD

V (h) is not obtained for
a superfluid with a uniform density, and OAM cannot be
regarded as a thermodynamic quantity.

B. System under rotation

The robustness of 〈M〉V is guaranteed by the existence
of a thermodynamic limit of fV (h) = FV (h)/V under the
intensive conjugate field h for fixed N/V , which is often
implicitly assumed in condensed matter physics. Although
this assumption is indeed satisfied in many systems, there
are several important exceptions and a system of particles
under a uniform rotation, for example, confined in a cylinder
of radius R is the case [68,76–79]. This is simply because
the centrifugal potential Vcen ∝ −(�zr⊥)2 (r⊥ is the in-plane
distance from the rotation axis) will push the particles onto the
boundary of a system and velocities of those particles �zR will
be infinitely fast when the system size R becomes R → ∞
with keeping �z �= 0. Indeed, it is easy to show that such a
system described by Schrödinger Hamiltonian with a stable,
short-range interaction does not have stability of Hamiltonian
of the second kind, i.e., ¬(H > const × V ), and therefore does
not have a thermodynamic limit when the particles are confined
in a rigid wall container [76]. For example, we consider
variational single-particle wave functions

ψj (rj ,θj ,zj ) � eilj θj ψ̃j (rj ), (12)

where lj = �z/�j with �j = 1/mR2
j and the particle mass

m. ψ̃j (rj ) is localized at rj = Rj = O(R) and satisfies a given
boundary condition at rj = R. Although we only consider
particular values of �z for which ψj is consistent with a
given boundary condition on θj , there are many such �zs
when �0 = 1/mR2 is sufficiently small. We then construct
an antisymmmetric many-body wave function var for N

particles from these single-particle wave functions, which
obviously gives 〈var|H |var〉 ∼ −I0�

2
z/2 = O(V 5/3) with

I0 = mNR2 in the leading order. It is noted that the expectation
value of a stable, short-range interaction term in the Hamilto-
nian is at most O(V ), and therefore it is irrelevant here.

For such a system to have a thermodynamic limit, one
needs to keep �zR = O(1) at a fixed value when taking
R → ∞, which means that the angular velocity �z is no
longer an intensive field conjugate to OAM [80–83]. Therefore,
Eq. (1) is an equation which holds only in a small size system
and is not a thermodynamic equation. In fact, for such a
case, the coupling term in the free energy is −�z〈Lz〉 =
O(R−1)O(V ) = O(V 2/3) when OAM is O(V ), and this energy
gain is comparable with possible surface perturbations and
therefore cannot guarantee thermodynamic nature of OAM.
Note that it could be considered that the state with a uniform
density distribution [84,85] is metastable (or nonequilibrium)
and is not a true equilibrium/ground state of a rotating three-
dimensional system.

One may expect that the Hamiltonian can be made stable
for fixed �z = O(1) by use of a mathematical trick of in-
troducing an additional confinement potential such as Vcon =
Cnr

n
⊥, and taking an appropriate limit of Cn ↓ 0. This might

reproduce the desired thermodynamic limit of the original free
energy, if Vcon dependence of the free energy density could
be removed. In order to do so, we wish to take the limit
limCn↓0 limN↑∞ FN (�z)/N for fixed �z = O(1). However, for
such a Hamiltonian with a confinement potential, one needs
to take a scaling limit of Cn and N to have an extensive
free energy. For example n = 2, the kinetic Hamiltonian can
be written as ( p − A)2/2m + m�̃2

zr
2
⊥/2 where A = m� ×

r and �̃2
z = (C2 − �2

z) > 0 with an appropriately chosen
C2. Although C2 ↓ 0 limit cannot be taken for keeping the
Hamiltonian with a fixed �z �= 0 stable, a scaling limit is
required similarly to other n cases. Indeed, to have an extensive
free energy FN ∝ N of the fermion model, one needs to
keep N2�̃

2
z = O(1) and the free energy density will depend

on the value of N2�̃
2
z , where N2 is the total number of

particles divided by the length of the system in the z direction
[86]. Therefore, we cannot take the desired thermodynamic
limit where the free energy density is well defined and Vcon

independent, even if the mathematical trick of an additional
confinement potential is used. The special case �̃z = 0 for
which the scaling limit is not required will be discussed in the
next section.

In summary, we have seen that the angular velocity is not an
intensive field conjugate to OAM. Therefore, we conclude that,
in general, OAM in a system with a uniform particle density
is not a thermodynamic quantity.

C. System with constant artificial magnetic flux

1. Noninteracting case

In the previous section, we have seen that OAM in a uniform
system is generally nonthermodynamic. However, this does
not necessarily mean that spontaneous OAM at zero external
field �z = 0 is sensitive to nonextensive perturbations. As
mentioned in Sec. I, OAM is equivalent to OM at zero field
as an operator, and the latter is thermodynamic in metals and
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insulators. If we consider a neutral system minimally coupled
with an artificial gauge field A = m� × r ≡ B × r/2, the
Hamiltonian is formally equivalent to the charged particles
under a constant magnetic flux density in the symmetric gauge.
Or, equivalently, we can introduce Vcon = m(�zr⊥)2/2 as a
mathematical trick to make the Hamiltonian under rotation
stable. We note that a gauge-invariant Hamiltonian H now
has the stability H > const × V and translational symmetry
if combined with a suitable gauge transformation, and we can
take the desired limit limV ↑∞ FV (Bz)/V for a fixed intensive
field Bz �= 0 in this case. If the “charged” system under uniform
Bz has a thermodynamic limit, spontaneous OAM in a neutral
system obtained as the limit of Bz ↓ 0 (or Bz ↑ 0) will also
be thermodynamic. Indeed, this is true for nonsuperfluids and
spontaneous OM/OAM obtained so will be a thermodynamic
quantity [52–56]. We will give a brief explanation on the
existence of the thermodynamic limit in Appendix A.

Similarly, one might expect that OAM in a neutral su-
perfluid should be thermodynamic as well. Unfortunately,
this expectation is not correct because for a Hamiltonian
of a uniform superfluid under a constant artificial magnetic
flux density Bz, derivative of the free/ground-state energy
with respect to Bz does not give the desired OM. To see
this, for simplicity, let us consider a noninteracting fermionic
Hamiltonian with a uniform s-wave gap function �0 as a U(1)
symmetry-breaking field H = ∫

d3x ψ†[( p − A)2/2m]ψ +
�0

∫
d3x ψ

†
↑ψ

†
↓ + (H.c.). This Hamiltonian is not gauge in-

variant and does not have translation symmetry, and therefore
existence of a thermodynamic limit in the presence of Bz �= 0
is not guaranteed. Indeed, the induced current is given by
〈 j〉 � −〈(ψ†ψ〉/m)A ∝ B × r , and OAM per volume and
free energy density diverge at V → ∞, which is unphysical
[87]. The reason for the divergence is very simple; phys-
ically, the dangerous behavior of 〈 j〉 comes from the fact
that a uniform real magnetic flux density cannot be realized
in superconductors because of the Meissner effect where
electromagnetic field is determined by the Maxwell equation.
The introduction of the constant artificial B field into the
Hamiltonian corresponds to an implicit assumption that there
is no Meissner or Hess-Fairbank effect. Such an unphysical
assumption results in a huge energy cost, leading to the
superextensive free energy FV .

For a system defined on a cube with the volume V = L3,
the superextensive fV (B) behaves as fV (B) = f̃ (LB) where
f̃ is a scaling function which is nearly independent of V . This
is because the additional energy density due to the B field is
Bz〈Mz〉V /L3 ∼ B2

z

∫
d3x(x2 + y2)/L3 ∼ (BzL)2, where we

have used 〈 j〉V ∼ A = B × r/2. This scaling behavior is also
seen in lattice models. Here, we consider a two-dimensional
square lattice of V = L2 with open boundaries and spinful
fermions at half-filling with a fixed uniform s-wave gap
function as a simple example:

H =
∑

〈i,j〉,σ
−teiAij c

†
iσ cjσ +

∑
i

[�0c
†
i↑c

†
i↓ + (H.c.)]. (13)

The vector potential Aij describes a constant magnetic flux
density Bz in the symmetric gauge. We show the ground-state
energy density εV (Bz) = 〈H 〉V (Bz)/V in Fig. 1. εV (Bz) has a
strong size dependence, and all the data collapse into a single
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FIG. 1. (Left panel) The ground-state energy density at �0 = 0.6t

for different system sizes. The dimensionless magnetic flux density
is Bz = φ/2π where φ is the flux per plaquette of the square lattice.
(Right panel) The ground-state energy density in the scaling plot.

curve in the scaling plot εV (Bz) = ε̃(BzL). For small BzL,
the scaling function behaves as ε̃(BzL) ∼ (BzL)2 as expected
from the above discussion for a continuum system. The scaling
behavior clearly shows the absence of the thermodynamic limit
at a fixed Bz �= 0.

Finally, we note that, in a realistic charged superconductor
with electromagnetic fields described by the Maxwell equa-
tion, the Meissner effect arises from the combination of (i)
a response of electrons to a given vector potential and (ii)
dynamics of electromagnetic fields in presence of a given
electron current. Note that the two contributions (i) and (ii)
to the total edge current are spatially separated with different
length scales, the coherence length for (i) and the penetration
depth for (ii). In this study, the artificial vector field is a
given fixed field and we do not consider its dynamics. On the
other hand, the current density as the response (i) should be
essentially proportional to the given artificial vector potential
in superfluids, which we call “strong diamagnetic response.”
It is noted that the induced current density is not necessarily
localized at a boundary for a general vector field.

2. Interacting case

Now, we turn to interacting systems under a physically
reasonable assumption. In an interacting system, there are two
ways for describing a uniform superfluid: one with explicit
U(1) symmetry breaking and the other with conserved U(1)
symmetry [88,89]. In both descriptions, the strong diamagnetic
response, i.e., Meissner or Hess-Fairbank effect, is a necessary
condition for the superfluidity. Then, the assumption is that
there exists the strong diamagnetic response where the current
density is essentially proportional to a given vector potential,
when (i) a uniform U(1) symmetry-breaking field �0 is
introduced into the Hamiltonian, or (ii) there is a uniform
long-range order of the particle number U(1) symmetry in the
absence of �0. The uniform long-range order is defined as

σC = lim
V ↑∞

√〈
m2

C

〉
V
, (14)

mC = 1

V

∫
V

d3x[ψ↑d(−i∇)ψ↓ + (H.c)], (15)

where mC is the uniform Cooper pair order parameter with a
form factor d = 1 for s wave, d ∼ (px + ipy) with pj = −i∂j

for chiral p wave, and so on. This assumption is widely
accepted and guarantees presence of the Meissner or Hess-
Fairbank effect. The real Meissner effect is realized when
combined with the Maxwell equation, but the present artificial
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vector potential is simply a given field |A| ∝ |r|. It should
be noted that two approaches corresponding to (i) and (ii)
are equivalent for evaluating gauge-invariant quantities per
volume, if there exist the thermodynamic limits for both cases.
Corresponding to the two approaches, we consider interacting
superfluids in two ways in the following.

In the first scheme (i), we describe a superfluid as a
global U(1) symmetry-broken state, where an introduced U(1)
symmetry-breaking field �0 must be turned off after the
thermodynamic limit is taken. In this case, from the above
assumption, there exists a contribution to the current from
the symmetry-breaking field and 〈 j〉 should contain a term
essentially proportional to A. Similarly to the noninteracting
case, this leads to an unphysical divergence of the free energy
density since the symmetry-breaking field should be kept
constant when the thermodynamic limit is taken. Physically,
the Hamiltonian with a constant Bz field would correspond
to a vortex state or a normal (nonsuperfluid) state. Therefore,
if necessary, one might need to introduce new corresponding
symmetry-breaking field which is different from the uniform
field �0.

In the other scheme (ii), we do not introduce a symmetry-
breaking field into the Hamiltonian, and the U(1) symmetry
is strictly kept in both finite and infinite volume systems,
although we assume that the system has the uniform U(1)
long-range order in the absence of B field. In this case, there
exists the thermodynamic limit of the free energy density
under the uniform artificial B field since the Hamiltonian is
translationally invariant if combined with an appropriate gauge
transformation. (see Appendix A for a brief discussion.) This
means that there is no U(1) long-range order since if it were
there, the strong diamagnetic response will lead to a divergent
free energy density. Therefore, we conclude that a constant
B field will suppress the preexisting uniform U(1) long-range
order. The absence of the strong diamagnetic response can
also be understood from the Bloch’s theorem which excludes
a macroscopic current in a ground state/equilibrium for a
U(1) symmetric system [71]. Besides, the suppression of the
uniform long-range order may be consistent with a variant
of the Elitzur’s theorem for a fixed gauge field configura-
tion derived in Tada and Koma [71], according to which
the long-range order σC vanishes for almost all gauge field
configurations. Although we have assumed that σC �= 0 for
the specially chosen gauge A = 0 in the absence of B field,
a gauge field corresponding to the constant B field is no
longer compatible with a uniformly Cooper paired state. This is
physically reasonable since one would expect a vortex state or a
normal (nonsuperfluid) state for Hamiltonian with the uniform
B field. There might arise a new long-range order such as
a vortex state once a uniform B field is introduced into the
Hamiltonian, or any long-range order of U(1) symmetry might
get suppressed.

It is important to realize that the state at Bz = 0 and
that at Bz �= 0 are physically different states in distinct
“phases” because only the former has the uniform U(1)
long-range order. The quantity we are interested in
this study is l0 = lim�0→0 limV →∞〈Lz〉V (Bz = 0)/V =
lim�0→0 limV →∞ ∂fV (Bz = 0,�0)/∂Bz, while the latter
state gives different quantities l± = −∂f∞(Bz → ±0)/∂Bz±
[90,91]. As already mentioned, l0 and l± are expectation values

of Lz at different states. Although l± is a thermodynamic
quantity by definition, l0 is not directly related to f∞ and is
not thermodynamic in this sense. We note that fV (Bz,�0)
for general (Bz,�0) contains a scaling term f̃ (BzL,�0) and
diverges as V → ∞ except for (Bz = 0,�0) or (Bz,�0 = 0).
It is also noted that the discussions based on the two schemes
(i) and (ii) for describing a superfluid are consistent, as
expected.

In summary, we have seen that thermodynamic limits of
the free energy density do not exist in several theoretical
setups which could seemingly realize the desired uniform
superfluid state. As a result, the OAM in a neutral super-
fluid is not a thermodynamic quantity at some value of
external (rotation/artificial flux) fields, although it is usu-
ally extensive and seemingly thermodynamic. Therefore, it
can depend on nonthermodynamic details such as bound-
ary conditions. In the next section, we will demonstrate a
physical picture on how OAM is affected by nonextensive
perturbations.

III. MEAN FIELD DESCRIPTION OF FRAGILE OAM

A. Unpaired fermions and fermionic Landau criterion

In the previous section, we have explained that spontaneous
OAM of a neutral superfluid is not related to thermodynamic
free energy. Then, it is important to develop a physical
understanding on behaviors of OAM in the presence of nonex-
tensive perturbations. In this section, we discuss a mean field
understanding at zero external rotation or B field which has
potential applicability to a large class of neutral superfluids.
This part is based on the recent progress [28–31,48], and
here we establish an intuitively clear picture for the seemingly
nontrivial sensitivity of OAM.

In order to demonstrate the essential physics, we consider
a two-dimensional (d + id)-wave superfluid confined by a
rotationally symmetric potential Vcon as a simple example.
We mainly focus on the weak coupling BCS states where
edge states are topological and gapless. The argument can
also apply to rotationally asymmetric systems and in principle
to the strong coupling BEC states with some modifications,
when OAM is determined by an edge-mass current. The mean
field Hamiltonian with the rotationally symmetric confinement
potential reads as

H =
∫

d2x ψ†
σ

(
p2

2m
− μ + Vcon

)
ψσ

+ �0k
−2
F

∫
d2x ψ

†
↑(px + ipy)2ψ

†
↓ + (H.c.), (16)

where pj = −i∇j . kF is the Fermi momentum in the normal
state, and �0 is the symmetry-breaking field. In this section,
the confinement potential is zero in the bulk of the system,
Vcon(r � R) = 0, and infinitely large outside of the system
Vcon(r � R) = ∞, where R is the system radius. We expand
the field operator as ψσ (r,θ ) = ∑

ml cmlσ φml(r,θ ) by using
the single-particle eigenfunctions of [ p2/2m − μ + Vcon].
The Hamiltonian is rewritten into a Bogoliubov–de Gennes
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form

H =
∑
m,l

[
c
†
m,l+2,↑
cm,−l,↓

]T (
Ĥ

(l)
BdG

)
mm′

[
cm′,l+2,↑
c
†
m′,−l,↓

]
. (17)

We first consider a smooth confinement potential Vcon(r) which
increases smoothly around r ∼ R with a length scale ξcon

which satisfies ξ� = vF /�0 � ξcon � R. The total OAM at
T = 0 is easily calculated as [29,92]

〈Lz〉V = 2 × 〈N〉V
2

− 1

2

∑
l

(l + 1)ηl, (18)

ηl =
∑

n

sgnεn(l), (19)

where ηl is the spectral asymmetry of the BdG Hamiltonian
H

(l)
BdG for which eigenvalues are {εn(l)}. Within the semiclassi-

cal approximation which is legitimate for �0 � εF , OAM at
zero temperature is reduced to

〈Lz〉V � 2 × 〈N〉V
2

− 1

2

∑
j=1,2

(RkFj )2. (20)

Here, we have introduced Fermi wave numbers of the two
one-dimensional edge modes kF1 = −kF2(kF1 � kF2), which
are defined as RkFj = lj with the vanishing eigenvalues of the
edge modes εn(lj ) � 0. Since ξ� = vF /�0 � ξcon, within the
semiclassical approximation, the confinement potential can be
treated as a constant energy shift εF → ε′

F = εF − Vcon(r =
R) for the edge modes localized in the relatively low-particle-
density region |r − R| � ξcon. Then, the edge-mode Fermi
wave number is given by kF1,2 = ±k′

F /
√

2 [29]. When the
potential is so smooth with large ξcon that the particle density
is vanishing around r � R for which k′

F � 0, Eq. (20) gives
the “full” value 〈Lz〉V = 〈N〉V .

Now, we deform the confinement potential by decreasing
ξcon so that ξcon � ξ� � R is now satisfied. Note that this is a
microscopic deformation of Vcon in a length scale much smaller
than R, and Vcon remains unchanged in the length scale O(R).
The modified potential gives a sharp confinement Vcon(r <

R) = 0 and Vcon(r � R) = ∞, in the limit of ξcon → 0, and
the edge-mode Fermi wave numbers are kF1,2 = ±kF /

√
2,

resulting in 〈Lz〉V = 0 within the semiclassical approximation.
We show numerical calculations of the OAM for the sharp
confinement in Appendix B.

Although this Vcon dependence of OAM seems curious
at first sight, the physical reason is simple as discussed
below. When we modify Vcon which is parametrized by
0 � λ � 1 (λ = 0 for the smooth potential and λ = 1 for
the sharp potential), some eigenvalues of the edge modes
change their signs because kF1,2(λ = 0) = 0 and kF1,2(λ =
1) = ±kF /

√
2, as seen in Fig. 2. The ground-state wave

function satisfies b
†
nl |GS(λ = 0)〉 = 0 when εn(l; λ) < 0, while

bnl |GS(λ = 1)〉 = 0 when εn(l; λ) > 0, where bnl is the λ-
dependent annihilation operator of the eigenmode of ĤBdG

with εn(l; λ). Let us focus on an eigenvalue εn(l) of the first
edge mode (j = 1) which is originally positive for the smooth
potential and becomes negative for the sharp potential at a
critical λ = λc

nl . Because the ground state is characterized by
bnl |GS〉 = 0 or b

†
nl|GS〉 = 0 depending on the sign of εn(l),

FIG. 2. Schematic picture of the spectrum of a chiral d-wave
superfluid for the smooth confinement potential (left) and sharp
confinement potential (right). λ characterizes the potential shape.
Some eigenvalues change the sign as indicated by the green arrow.

there will be level crossing between the ground state and
an excited state at λ = λc

nl . If we denote the corresponding
eigenstates as |0〉 = |GS〉 and |1〉, these two states are
related as |1〉 ∼ b

†
nl|0〉. Although the fermions are fully

paired up at λ < λc
nl , the Cooper pair is partially broken by the

application of b
†
nl operator for λ > λc

nl . Once a Cooper pair of
the chiral d-wave state which is expressed as c

†
l+2,↑c

†
−l,↓|0〉 (|0〉

is the vacuum of c fermions) and carries OAM = 2 is broken,
one fermion will be removed from |GS〉 and an unpaired single
fermion mode will remain filled. By a careful analysis, it
turns out that c

†
l+2,↑ fermion will remain while c

†
−l,↓ fermion

is removed from the ground state where l < −1 in the first
branch (j = 1) of the edge modes, which reduces OAM as
(l + 2) + (−l) = 2 → (l + 2) � 0 [29].

If we consider other eigenvalues, there will be a sequence
of spectral flows of {εn(l)} and corresponding successive
level crossings between the eigenstates as shown in Fig. 3.
Consequently, by increasing λ, the original ground-state
wave function |GS(λ = 0)〉 = N ⊗l |GS(λ = 0),l〉 = N ⊗l

exp[
∑

jj ′ c̃
†
j,l+2,↑F

(l)
jj ′ c̃

†
j ′,−l,↓]|0〉 (N is a normalization con-

stant) for the smooth potential at λ = 0 is replaced with the new
ground-state wave function for the sharp potential at λ = 1:

|GS(λ = 1),l〉 =

⎛
⎜⎝

n
(l)
↑∏

j=1

c̃
†
j,l+2,↑

⎞
⎟⎠

⎛
⎜⎝

n
(l)
↓∏

j=1

c̃
†
j,−l,↓

⎞
⎟⎠

× exp

⎛
⎜⎝ ∑

j>n
(l)
↑

∑
j ′>n

(l)
↓

c̃
†
j,l+2,↑F

(l)
jj ′ c̃

†
j ′,−l,↓

⎞
⎟⎠|0〉.

(21)

FIG. 3. Schematic picture of successive level crossings between
the eigenstates.
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The parameters n
(l)
↑,↓(λ),F (l)

jj ′(λ) and the explicit form of the c̃

operators can be calculated from diagonalization of ĤBdG(λ)
[29,92]. For λ = 1, we have (n(l)

↑ ,n
(l)
↓ ) = (1,0) for l1 < l <

−1, (n(l)
↑ ,n

(l)
↓ ) = (0,1) for −1 < l < l2, and (n(l)

↑ ,n
(l)
↓ ) = (0,0)

otherwise, where lj = kFjR. Note that although the number
of unpaired fermions induced by the change in Vcon, i.e.,
the total number of {n(l)

↑,↓}l in Eq. (21), is only O(R) and
their contributions to the ground-state energy are negligibly
small, they have large impacts on the edge-mass current and
consequently on OAM.

We believe that the depairing effect of the Cooper pairs
and resulting reductions of edge-mass currents are a universal
mechanism in fermionic neutral superfluids, although we have
used the very simple model as an example for an illustrative
demonstration. For example, a chiral p-wave system can
show spectral flow depending on system shapes, and the
pair-breaking effect works in lattice models as well where
continuous rotational symmetry is absent [28,45,48].

The above mechanism is analogous to the well-known
Landau criterion for bosonic superfluids where the preformed
superfluid is broken once a bosonic excitation energy ε(λ)
becomes negative as some parameter is varied, leading to a
new condensation of this boson mode. Similarly, in the present
fermion case, the Cooper pair is broken once its excitation
energy becomes negative, and the resulting ground state is
a state with broken Cooper pairs, i.e., unpaired fermions.
The essential difference is that Cooper pairs are broken only
for the modes with sign-changing eigenvalues in the fermion
case. We call this partial breaking of fermion superfluidity
as “fermionic Landau criterion.” The similarity between the
fermionic Landau criterion and bosonic Landau criterion will
be discussed in detail in the next section. It should be noted
that the fermionic Landau criterion is based on a given mean
field Hamiltonian where the gap function is simply given and
therefore it does not necessarily hold in general interacting
models. In a realistic interacting model, it may be possible
that the system goes into a completely different phase as
the parameter λ is varied, if the energy cost due to unpaired
fermions is O(V ).

B. Superfluid under uniform linear flow

In this section, we study a toy model for a superfluid under a
uniform linear flow [93,94] to clarify the analogy between the
fermionic Landau criterion and well-known bosonic Landau
criterion. This analogy is helpful to understand the physics in
a comprehensive way.

We consider a noninteracting s-wave superfluid with a
modulating gap function �0 exp(iqr) under periodic boundary
conditions

HFF =
∑
kσ

εkc
†
kσ ckσ +

∑
k

�0c
†
k+q↑c

†
−k↓ + (H.c.)

=
∑

k

[
c
†
k+q↑
c−k↓

]T [
εk+q �0

�0 −ε−k

][
ck+q↑
c
†
−k↓

]
, (22)

where εk = k2/2m − μ. The Hamiltonian has a conserved
quantity

P = P − qN/2, (23)
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FIG. 4. Dispersions in the BCS states in one dimension at μ =
εF , �0 = 0.2εF for (a) vs = 0, (b) vs = vL, and (c) vs = 3vL, where
vs = |q|/2m0 and vL = �0/kF . (d) Dispersion in the BEC state at
μ = −0.3εF , �0 = 0.2εF ,vs = vL. Red curve is Ek1 and blue curve
is Ek2.

where N = ∑
kσ c

†
kσ ckσ and P is the total linear momentum

P = ∑
kσ kc

†
kσ ckσ . This momentum P characterizes the de-

viation from the naively expected value 〈P〉V = q〈N〉V /2.
Eigenvalues of the BdG Hamiltonian Hk are

Ek1,2 = 1
2

[
εk+q − ε−k ±

√
(εk+q + ε−k)2 + 4�2

0

]
. (24)

Eki vanishes when |εk+q − ε−k| =
√

(εk+q + ε−k)2 + 4�2
0 or

equivalently εk+qε−k + 4�2
0 = 0 which can be satisfied only

in the BCS regime μ > 0. The momentum space is divided
into three regions depending on signs of the eigenvalues K1 =
{k|Ek1 < 0,Ek2 < 0}, K2 = {k|Ek1 > 0,Ek2 > 0}, and K3 =
{k|Ek1 > 0,Ek2 < 0} as shown in Fig. 4. Note that the volumes
of K1,2 are the same by the particle-hole symmetry. Then,
the ground-state wave function determined by the conditions
bki |GS〉 = 0(Eki > 0) and b

†
ki |GS〉 = 0(Eki < 0), and is given

by

|GS〉 = N
( ∏

k∈K1

c
†
k+q↑

)( ∏
k∈K2

c
†
−k↓

)

×
∏
k∈K3

exp(−vk/ukc
†
k+q↑c

†
−k↓)|0〉, (25)

where (uk,vk)T are eigenvectors of the Bogoliubov–de Gennes
equation and N is a normalization constant. One can find an
essential similarity between Eqs. (25) and (21). Note that, for
example when qx > 0, kx + qx < 0 for k ∈ K1 is satisfied,
and breaking of a Cooper pair c

†
k+q↑c

†
−k↓|0〉 → c

†
k+q↑|0〉 will
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reduce the linear momentum as (kx + qx) + (−kx) = qx >

0 → (kx + qx) < 0 as in the OAM of neutral superfluids
discussed in the previous section. Similar reduction of the
linear momentum takes place for k ∈ K2.

The reduction of the linear momentum can be clearly
discussed based on the unpaired fermions and fermionic
Landau criterion. The expectation value of the momentum
deviation is 〈GS|P|GS〉 = −1/2

∑
k(k + q/2)

∑
i sgnEki or,

equivalently,

〈P〉V = q
〈N〉V

2
− 1

2

∑
k

(k + q/2)ηk, (26)

ηk =
∑
i=1,2

sgnEki. (27)

If the supercurrent velocity vs = |q|/2m0 is smaller than the
Landau critical velocity vL = �0/kF , K1,2 are empty and
functional structure of |GS〉 is essentially same as that of the
conventional full-gap BCS state and 〈P〉V = 0, i.e., 〈P〉V =
q〈N〉V /2. On the other hand, when the supercurrent velocity is
sufficiently fast, vs � vL, the two regions K1,2 are nonempty,
leading to |〈P〉V | < |q|〈N〉V /2 in the BCS regime where
μ > 0. The ground state now contains a nonzero fraction of
normal-state fermions, i.e., unpaired fermions, and the system
has both a Fermi surface and Cooper pairs. This means that the
fast flow causes depairing of the Cooper pairs for the fermions
with |εk+q − ε−k| � 2�0. Therefore, the present toy model is
quite analogous to the original setup of the bosonic Landau
criterion. It is noted that, in contrast to the BCS regime with
μ > 0, K1,2 are always empty and 〈P〉V = q〈N〉V /2 in the
BEC regime where μ < 0 as shown in Fig. 4(d).

As was mentioned in the previous section, the Landau cri-
terion does not necessarily hold in general interacting models.
In an interacting model of the Fulde-Ferrell superfluid, a large
q > vL will eventually destroy the whole superfluidity and the
system will become a normal state (nonsuperfluid) [93,94].
To evaluate the stability of the preassumed gap function, we
need to calculate the ground-state energy or free energy of
the interacting model. This is also true for other nontrivial
states with unpaired fermions, such as the breached pair state
where gapless modes with a Fermi surface coexist with paired
fermions [95,96].

IV. iDMRG CALCULATION OF MASS CURRENT

In the previous section, we have established the physical
picture of the fragile spontaneous OAM in neutral fermionic
superfluids based on the mean field approximation. A natural
question is that whether or not the physics within the mean
field description can be justified when we fully include inter-
actions. In this section, we try to go beyond the mean field
approximation by treating many-body interactions properly.

Here, we consider a model of the chiral p-wave super-
fluid with domains of opposite superfluid chiralities for an
illustrative purpose. Within the mean field approximation, it
is known that domain-wall current is reversed depending on
details of the domain boundary in such a system [47,48]; the
domain-wall-mass current flows in a certain direction for the
(px + ipy)/(px − ipy) domain junction, while it is in an oppo-
site direction for the (px + ipy)/(−px + ipy) domain junction,

FIG. 5. Infinite length cylinder with the circumference Ly . Each
domain size is Lx × Ly .

which can be understood in terms of the unpaired fermions
and fermionic Landau criterion [48]. This is a drastic change
in the domain-wall-mass current, and it would be relatively
easy to discuss whether this holds true beyond the mean field
approximation. It is noted that the domain-wall-mass current
and edge-mass current have essentially the same origin in
common, and both of their dependencies on boundaries can
be understood based on the unpaired fermions and fermionic
Landau criterion in the same way [29,48]. Therefore, we expect
that studying the former is relevant to the latter.

Our Hamiltonian is a spinless fermion model with nearest-
neighbor attractive interaction on a two-dimensional square
lattice,

H =
∑
i,j

−tij c
†
i cj + V0

∑
〈i,j〉

ninj + HSB, (28)

HSB =
∑
〈i,j〉

[
�0

ij c
†
i c

†
j + (H.c.)

]
, (29)

where tij = t (i �= j ) is the nearest-neighbor hopping and
tii = μ is the chemical potential. We have introduced a small
symmetry-breaking field of U(1) symmetry �0

ij which de-
scribes a domain structure. Although the symmetry-breaking
field must be �0 → 0 after the thermodynamic limit is taken,
we keep a small value of �0

ij and discuss effects of the
interaction V0 in a finite-size system. This calculation allows
us to examine whether or not the mean field understanding
is essentially correct. We apply infinite density matrix renor-
malization group (iDMRG) and use the open source code
TENPY [61–66]. The system size is ∞ × Ly with periodic
boundary condition for the y direction. To realize the domain
structure shown in Fig. 5, the symmetry-breaking field is taken
to be �0

ij = eiθi �0(δi,j+x̂ ± iδi,j+ŷ) for a site i = (x,y) when
nLx � x < (n + 1)Lx and (n + 1)Lx � x < (n + 2)Lx , re-
spectively, where Lx is the domain size and n is an integer.

The phase θi characterizes the structure of a domain wall;
(I) θi = 0 for which �i,j+ŷ changes the sign at the boundary
and (II) θi = δx,nLx

π for which �i,j+x̂ changes the sign. The
chirality of a domain is independent of θi . It is known that
the domain wall corresponding to (I) is more stable than that
of (II) within mean field calculations [48,97]. The important
point is that the directions of the domain-wall currents for the
two domain walls are opposite, which is rather counterintuitive
since a domain-wall current in a chiral p-wave state is usually
determined by the chirality of the gap function. This nontrivial
behavior can be understood based on the unpaired fermions
and fermionic Landau criterion [48]. Here, we discuss validity
of the physical understanding based on the mean field approx-
imations with use of iDMRG which are essentially free from
approximations [61–66].
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FIG. 6. Mass current density along the y direction for θ = 0 (left)
and θ = π (right). The parameters are V0 = −0.1t, μ = −t . The
chirality of �0 is positive for 0 � x < Lx = 8, while it is negative
for Lx � x < 2Lx = 16.

Now, we numerically evaluate the mass current density for
each domain wall θ = 0 or π . We have done similar calcu-
lations for several values of the symmetry-breaking field �0

and different system sizes Lx,Ly , and they show qualitatively
similar results. In the following, we focus on the smallest
symmetry-breaking field �0 = 0.01t used in the calculations,
and fix the system size as Lx = Ly = 8. The bond dimension
χ controls accuracy of the iDMRG calculations, and we used
only three values χ = 200, 400, 600. Although these are not
sufficient to obtain fully convergent results, they give qualita-
tively same results. Therefore, we fix χ = 400 in the following
to discuss the validity of the mean field approximations, for
which the truncation norm error is O(10−4). The relatively
small truncation error for the parameters used is due to the
symmetry-breaking field �0 which makes the bulk of the
system gapped.

We show in Fig. 6 the calculated mass current densities at a
small interaction V0 = −0.1t, μ = −t for which the average
particle filling is n � 0.32. Unfortunately, the current profile
does not show sharp localization at a domain boundary since
the system size Lx = Ly = 8 is not large enough compared
with the coherence length for the parameters used. Instead, the
current profile shows a broad structure where |jy | is largest
at the domain boundary, while it is smallest in the middle
of a domain. Nevertheless, the current directions for θ = 0
and π are opposite, which is consistent with the mean field
calculations [47,48]. The ground-state energy difference be-
tween the two states is small [E(θ = 0) − E(θ = π )]/[E(θ =
0) + E(θ = π )] = O(10−3). Now, we increase the interaction
and find that the current reversal is stable even for a relatively
large interaction V0 = −t, μ = −2.2t for which n � 0.28, as
shown in Fig. 7. The mass current is enhanced by the interaction
V0 and the maximum density becomes nearly double compared
with those for V0 = −0.1t if jy is normalized by the filling n.
This means that jy is dominated by the interaction V0 = −t

and the current reversal gets stabilized. The origin of the en-
hancement of jy would be the decreased superfluid coherence
length ξ� � t/� by the interaction V0 where � is the gap
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FIG. 7. Mass current density along the y direction for θ = 0 (left)
and θ = π (right). The parameters are V0 = −t, μ = −2.2t . The
chirality of �0 is positive for 0 � x < Lx = 8, while it is negative
for Lx � x < 2Lx = 16.

amplitude because a small ξ� gives jy which is well localized
around a boundary and does not influence jy at the opposite
boundary. If we increase |V0| further, the simulations become
unstable and the fermions get dimerized. These numerical
results suggest that the current reversal found in the mean
field calculations holds true even in the iDMRG calculations
which are essentially free from approximations. Therefore, we
conclude that the physical understanding based on the mean
field approximation is essentially correct, and the physics is
determined by the unpaired fermions and fermionic Landau
criterion. Finally, although our iDMRG results support the
correctness of the mean field understanding, they are reliable
at a rather qualitative level and further numerical calculations
would be required to develop a quantitative understanding.

V. SUMMARY AND DISCUSSION

In this study, we have discussed the OAM and correspond-
ing edge-mass or domain-wall-mass current in neutral fermion
superfluids with broken time-reversal symmetry. It was ex-
plained that OAM in a neutral superfluid cannot be obtained by
derivative of the thermodynamic free energy with respect to its
intensive conjugate external field in sharp contrast to nonsuper-
fluid systems. This means that OAM in a neutral superfluid
is not a thermodynamic quantity and can be influenced by
nonthermodynamic details. We established a simple physical
picture of how OAM is changed by such perturbations based
on the mean field approximation, by introducing the concepts
of the unpaired fermions and fermionic Landau criterion. We
also discussed the validity of the mean field description by a
nonperturbative numerical calculation using iDMRG. It is con-
cluded that the mean field calculations of OAM and edge-mass
current for chiral superfluids are essentially correct, and OAM
does depend on nonthermodynamic details such as boundary
conditions which are usually not controllable in experiments.
The sensitivity of OAM can be considered as an anomalously
colossal response of OAM to boundaries. If one could control
the boundary conditions of a neutral superfluid, a dramatic
response of OAM by small perturbations might be obtained.

In the original problem of the “intrinsic angular momentum
paradox” in 3He-A phase in three dimensions, the rotation
axis of Cooper pairs will locally deviate near the wall of a
container from that in the bulk [1–6]. Because this effect may
depend on the container used, some people have anticipated
that this problem would depend on theoretical models used and
experimental details. However, such a subtle problem is absent
in simpler systems such as the thin-film limit of a chiral p-wave
state and two- and three-dimensional chiral d-wave state, and
one may expect an “intrinsic” value of the spontaneous OAM.
What we have discussed in this study is that, even in such a
relatively simple system, there is no “intrinsic” value of OAM
in a uniform neutral superfluid, simply because it is not a
thermodynamic quantity.

The OAM and edge-mass current of a neutral superfluid
will be determined for each given surface condition and
sample shape. There exist various possible perturbations such
as surface adsorption, surface reconstruction, and surface
disorder, and surface conditions should be carefully treated
in experiments, although it is a very difficult issue. Sample
shapes and relative relations between the surface direction
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and underlying lattice geometry should also be controlled in
solid-state superconductors, to observe edge charge currents.

Finally, we touch on charged chiral superconductors such
as the candidate p-wave superconductor Sr2RuO4. It is consid-
ered that the edge current depends on boundaries in this system
[32,60]. In such a system, in addition to a spontaneous edge
current, there arises a Meissner screening current. The former
is localized at a surface in the length scale of coherence length,
while the latter is in the length scale of penetration depth,
and they are spatially separated. These two contributions will
cancel each other in a longer length scale, and the total net edge
current J edge and corresponding spontaneous OM vanishes in
absence of an external field [48]. Since the spontaneous edge
current which we have discussed in this study depends on
boundaries and shapes of the system, the corresponding screen-
ing current also depends on them. Therefore, the induced local
magnetic flux density which is to be measured in experiments
would also be sensitive to boundaries and shapes.
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APPENDIX A: THERMODYNAMIC LIMIT
UNDER UNIFORM FLUX DENSITY

We explain that the thermodynamic limit exists for a U(1)
symmetric system with a given uniform magnetic flux density.
The existence proof is the same as in the previous studies,
once one notices that the Hamiltonian is stable and transla-
tionally symmetric with an appropriate gauge transformation
[55]. Nevertheless, as a reference, here we will give a brief
discussion on both lattice models and continuum models
with stable, short-range interactions. It should be noted that
existence of a thermodynamic limit for a system with long-
range interactions is highly nontrivial and, for example, one
would find the familiar shape-/boundary-condition-dependent
free energy density of a magnet with dipole interactions in the
presence of an external field [51,98]. Long-range interactions
or dynamics of electromagnetic field are beyond the scope
of this study. We also discuss Bloch’s theorem on absence
of a macroscopic current at equilibrium as a corollary of the
existence of the thermodynamic limit.

1. Lattice model

We consider a simple model defined on a lattice � ⊂ Zd

where d = 3 is the system dimension

H� =
∑
i,j

−tij c
†
i cj + V

∑
〈i,j〉

ninj

≡
∑
X⊂�

hX, (A1)

where X = {i},〈i,j 〉 represents sites or nearest-neighbor pairs
of sites. The hopping term contains a given vector potential Aij

which realizes a uniform magnetic flux density along the z axis,
and its amplitude |tij | is constant. We have also included the
chemical potential tii = μ. It is important to see that the Hamil-
tonian is symmetric under the magnetic translation. We denote
the nμ-sites magnetic translation operator along μ direction as
Tμ(nμ). Then, for a translation T (n) = Tx(nx)Ty(ny)Tz(nz),

H�+n = T (n)H�T (n)−1, (A2)

where � + n is the translate of � by the vector n. This
relation is independent of the order of Tx,Ty,Tz in T since
they are a projective representation of translation. Therefore,
the free energy density f� = F�/|�| is also translationally
symmetric

f�+n = f�. (A3)

For simplicity, we consider a cube �a = {x ∈ Zd |0 � xμ <

a} and a larger cube � = {x ∈ Zd |0 � xμ < la} where l,a

are positive integers. We define �a+n = {x ∈ Zd |nμa � xμ <

(nμ + 1)a} and denote them as {�j }ldj=1 so that � = ∪ld

j=1�j .
We compare the free energy densities f� and f�a

. For �j =
∪j

i=1�i , one can show∣∣∣∣∣∣F� −
ld∑

j=1

F�j

∣∣∣∣∣∣ � ||h||
ld∑

j=2

N (�j−1,�j ), (A4)

where N (�j−1,�j ) is the number of sites for which h〈k,l〉 �=
0 with k ∈ �j−1 and l ∈ �j . We have introduced ||h|| =∑

X�0 ||hX||/|X| which is well defined because hX is magnetic
translationally symmetric. It is important to see that the
seemingly dangerous terms in hX close to the boundary of
�j are harmless in the presence of the vector potential. Since
N (�j−1,�j ) = O(a2) for large a, we have

|f� − f�a
| = O(1/a), (A5)

which means the existence of the thermodynamic limit f∞ =
lim�→Zd f�. One can also show the existence of the thermo-
dynamic limit for a more general sequence of lattices, and
the resulting f∞ is independent of the system shape for such
lattices.

2. Continuum model

We next touch on continuum models. Although discussions
on continuum models are generally complicated, the proof
for Hamiltonian with usual translation symmetry can also be
applied to that with magnetic translational symmetry [55].

We consider a Hamiltonian of N fermions,

H�,N = T�,N + U�,N, (A6)

T�,N =
N∑

j=1

1

2m
(−i∇j − A(rj ))2, (A7)

U�,N =
∑
i<j

U (|xi − xj |), (A8)

where the vector potential gives a constant magnetic flux
density. The interaction is stable (U�,N > −bN with b � 0)
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and short range with the range r0 or strongly tempered, U (r >

r0) � 0. � ⊂ Rd is a bounded region, and we consider wave
functions which smoothly tend to zero at the boundary ∂� and
vanish outside of �. Mathematically, H�,N should be regarded
as a self-adjoint Friedrichs extension.

The spectrum of H�,N consists of discrete eigenvalues with
finite multiplicity, and we denote them in increasing order as
E1 � E2 � · · · . Then, the minimax principle reads as

Em = inf
M:dimM=m

sup
φ:φ∈M,||φ||=1

〈φ|H |φ〉. (A9)

Now, we discuss entropy S�(N,E) = log W�(N,E), where
W�(N,E) is the number of eigenvalues of H�,N below E.
Note that S� is translationally invariant since the Hamiltonian
has magnetic translational symmetry. We consider two regions
�i (i = 1,2) which are separated by the distance r � r0, and
Ni particles are confined in each region, respectively. The states
with energy of H�i,Ni

below Ei are described by wave func-
tions ϕi ∈ Mi which satisfy the hard-wall boundary condition
ϕi(x ∈ ∂�

Ni

i ) = 0, for which dimMi = ��i
(Ni,Ei). From the

minimax principle, we have

sup
ϕi∈Mi ,||ϕi ||=1

〈ϕi |H�i,Ni
|ϕi〉 � Ei. (A10)

Now, we construct a subspace M1+2 of the total Hilbert
space for particles in �1 ∪ �2; M1+2 is generated by an-
tisymmetrized ϕ1 ⊗ ϕ2 and its dimension is dimM1+2 =
��1 (N1,E1) · ��2 (N2,E2). Note that ϕ ∈ M1+2 vanishes on
(∂�1) ∪ �2 or �1 ∪ (∂�2), and seemingly dangerous con-
tributions to ��1∪�2 (N1 + N2,E) from those boundaries are
harmless in the presence of the vector potential |A| ∝ |r|, as in
lattice models. Since supϕ∈M1+2,||ϕ||=1〈ϕ|H�1∪�2,N1+N2 |ϕ〉 �
E1 + E2, we obtain

S�1∪�2 (N1 + N2,E1 + E2) � S�1 (N1,E1) + S�2 (N2,E2).

(A11)

Furthermore, S� is an increasing function of �, i.e., S� �
S�′ if � ⊂ �′. Therefore, for a sequence of regions �j =
{x ∈ Rd |0 � x � Lj = 2Lj−1 + r0} such that �j contains
2d translates of �j−1 with mutual distance r0, s�j

=
S�j

(Nj,Ej )/|�j | with Nj = 2dNj−1,Ej = 2dEj−1 a nonde-
creasing sequence. Besides, entropy of the interacting model
is bounded above by that of the corresponding noninteracting
model

S�(N,E) � S
(0)
� (N,E + bN ) (A12)

since Em � E(0)
m − bN holds, where E(0)

m is the mth eigenvalue
of T�,N . Therefore, there exists the thermodynamic limit of the
entropy density s∞ = lim�→Rd s�. Because of the equivalence
between different ensembles, thermodynamic limit of the free
energy density also exists.

3. Bloch’s theorem

We briefly discuss Bloch’s theorem as a corollary of the
existence of the thermodynamic limit of a U(1) symmetric
system. The theorem claims that a macroscopic current is
not allowed at equilibrium [71]. For simplicity, we consider
a Hamiltonian H of fermions with short-range interactions
defined on a two-dimensional cylinder � = SR × I where SR

is a one-dimensional ring with radius R and I is an interval,
under an external field Bz perpendicular to SR . There might
possibly arise a uniform current density 〈 j (r ∈ �)〉 = O(1)
around the cylinder. However, such a current density is not
allowed since if it exists, the free energy will be superextensive
|F�(Bz �= 0)| = O(R2 × |I |) � O(|�|) due to the coupling
between Bz and OM. Therefore, there is no net current in �,
which is a variant of Bloch’s theorem.

The above argument has a trivial but important physical im-
plication. Now, we consider a three-dimensional ferromagnet
which is fully wrapped with a thin film under the assumption
that long-range magnetic interactions are negligible. The total
system is a combination of the decoupled ferromagnet and
thin film, and the latter is described as a two-dimensional
system such as the cylinder in the above discussion. Then,
from the similar argument, we conclude that it is impossible
to change the value of OM of the ferromagnet by wrapping
it with a thin film, which sounds rather trivial. We can screen
OM only when we use a superconducting thin film, where the
Maxwell equation or long-range magnetic interactions should
be taken into account. One can compare this with the electric
polarization for which a constant electric field is not a conjugate
intensive field [78,79]. Corresponding to the above argument,
one can wrap a three-dimensional ferroelectric material by a
two-dimensional metallic film, which can be regarded as a
surface perturbation to the former. Obviously, the polarization
of the total system, i.e., the perturbed ferroelectric material,
changes due to a screening effect by the thin metal. In sharp
contrast to OAM/OM, the charge polarization can be easily
affected by surface perturbations even in a theoretical model
with short-range interactions.

APPENDIX B: NUMERICAL CALCULATION OF OAM

We briefly discuss numerical calculations of the OAM for
the Hamiltonians (16) with the sharp confinement potential
V (r < R) = 0, V (r > R) = ∞. The calculation results are
shown in Fig. 8. The OAM per fermion is nearly zero for
small �0/εF , although it is slightly oscillating around zero
because of finite-size effects. The vanishing OAM is consistent
with the semiclassical discussions given in the main text. As
�0 increases, the OAM changes discretely since the spectral
asymmetry ηl is an integer and the total number of fermions
〈N〉V is kept constant for each system size kF R with the
same average density [see Eq. (19)]. For large �0, the system
enters the strong coupling BEC regime and the OAM takes the
saturated value 〈Lz〉V /〈N〉V = 1 [29].
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FIG. 8. OAM for the Hamiltonian (16). �0 dependence for
different system sizes (left panel) and global �0 dependence for the
fixed system size kF R = 80 (right panel).
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