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We numerically examine the manipulation of superconducting vortices interacting with a moving trap
representing a magnetic force tip translating across a superconducting sample containing a periodic array of
pinning sites. As a function of the tip velocity and coupling strength, we find five distinct dynamic phases,
including a decoupled regime where the vortices are dragged a short distance within a pinning site, an intermediate
coupling regime where vortices in neighboring pinning sites exchange places, an intermediate trapping regime
where individual vortices are dragged longer distances and exchange modes of vortices occur in the surrounding
pins, an intermittent multiple trapping regime where the trap switches between capturing one or two vortices,
and a strong coupling regime in which the trap permanently captures and drags two vortices. In some regimes we
observe the counterintuitive behavior that slow moving traps couple less strongly to vortices than faster moving
traps; however, the fastest moving traps are generally decoupled. The different phases can be characterized by
the distances the vortices are displaced and the force fluctuations exerted on the trap. We find different types of
stick-slip motion depending on whether vortices are moving into and out of pinning sites, undergoing exchange, or
performing correlated motion induced by vortices outside of the trap. Our results are general to the manipulation
of other types of particle-based systems interacting with periodic trap arrays, such as colloidal particles or certain
types of frictional systems.
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I. INTRODUCTION

Vortices in type-II superconductors interacting with ordered
or disordered substrates represent an outstanding example of
a condensed matter system with competing interactions, since
the vortex-vortex repulsion favors a hexagonal lattice while
the substrate ordering can favor different lattice symmetries,
leading to commensurate-incommensurate transitions [1–6],
depinning phenomena in the presence of an external drive
[7–11], and order-disorder transitions [12–14]. In addition
to these basic science issues, vortex motion and pinning are
relevant to a variety of applications such as critical current
optimization [12,15], while there are a number of proposals
for using individual vortex manipulation to test aspects of
statistical physics [16,17] or to create new types of vortex
logic devices [18–21]. It has also been proposed that vortices in
particular materials can support Majorana fermions [22–24],
and that individual vortex manipulation and exchange could be
used to create certain types of quantum braiding phenomena
for quantum computing operations [25,26].

A growing number of experiments have demonstrated in-
dividual vortex manipulation using various techniques such as
local magnetic fields [27], magnetic force tips [28–32], optical
methods [33], local mechanical applied stress [34], nanoscale
electrostatic manipulation [35], local applied currents [36], and
tunneling microscope tips [37,38]. Numerous related works
describe the dynamics of individually manipulated or dragged
colloidal particles moving through glassy [39–43] or crys-
talline systems [44,45], where the fluctuations of the probe par-
ticle can be used to induce local melting or to study changes in

the viscosity across an order-disorder transition. Understand-
ing the different kinds of dynamics associated with particle
manipulation on periodic substrates is relevant for vortices in
superconductors [1,46] or Bose-Einstein condensates [47], as
well as for other particle based systems with periodic substrates
such as skyrmions [48], ions on optical traps [49], colloidal
particles [50–52], and nanofriction systems where individual
atoms or molecules can be dragged with a tip [53]. In many
of the previous numerical works on the local manipulation
of dragged particles, the trap used for manipulation is strong
enough to permanently bind a single particle and drag it under
a constant force. A more accurate model of recent experiments
on vortices in a type-II superconductor is a trap of fixed strength
moving at fixed velocity that can couple to or decouple from
an individual vortex. Vortices dragged by such a trap can either
move at the average velocity of the trap or decouple and fall
away from the trap, and the trapping of multiple vortices is also
possible.

Here we consider a trap with a finite confining force or
strength moving across a superconductor containing a periodic
array of pinning sites. As a function of trap strength and
velocity we identify five generic dynamic phases and several
subphases. At low coupling or high trap velocities we find
a decoupled phase (I) where the trap can only shift a vortex
within a pinning site but cannot depin the vortex. For larger
coupling or smaller tip velocities, there is an intermediate
coupling phase (II) where a single vortex can be dragged out
of the pinning site but is trapped by the next pinning site it
encounters in an exchange process. In the intermediate trapping
phase (III), vortices can be dragged over a distance of several
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lattice constants and additional vortex exchange modes arise
in adjacent pinning sites. For stronger coupling, there is an
intermittent multiple trapping phase (IV) in which the trap
alternates between capturing one and two vortices, producing
telegraph noise in the trap force fluctuations. At the strongest
coupling and lowest trap velocities we find a strong coupling
phase (V) where the trap permanently captures two vortices.
These phases are associated with distinct signatures in the
force fluctuations exerted on the moving trap, such as stick-slip
signals produced when vortices exit and enter pinning sites
or exchange positions in the trap. We observe nonmonotonic
behavior in which the trapping effectiveness increases as the
trap velocity decreases, but for the highest trap velocities the
system is always in a decoupled phase. We map the dynamic
phases as a function of coupling strength, trap velocity, and
the angle between the driving direction and the pinning lattice
symmetry direction. We also study the effect on the behavior
of changing the shape of the pinning sites.

Our results should also be relevant to other types of particle
assemblies driven over periodic substrates. One example of
such a system is colloids on periodic substrates [11,50–52],
where a single colloid can be dragged with an optical trap at dif-
ferent angles with respect to the substrate symmetry directions.
Similar dragging techniques could be used for skyrmions [48]
or ions on periodic substrates [49]. We specifically focus
on modeling effectively two-dimensional vortices, which can
represent either bulk samples containing very stiff vortex lines
or thin film samples. For three-dimensional vortices that are
not stiff or for layered superconductors, additional effects that
we do not model can occur, such as bending of the vortex lines
or decoupling of vortex segments between the layers.

II. SIMULATION AND SYSTEM

We consider a two-dimensional system with periodic
boundary conditions in the x and y directions containing
Nv vortices modeled as point particles interacting with a
square periodic pinning array. We work in two dimensions
since this is much more numerically tractable than a fully
three-dimensional simulation, and more importantly, many
of the related systems mentioned above can appropriately
be studied in the two-dimensional limit. The magnetic field
applied perpendicular to the sample plane is set to the matching
field B = Bφ at which the number of vortices equals the
number of pinning sites. We introduce a trap of radius Rtr

that moves across the sample, representing a magnetic force
microscope (MFM) tip as illustrated schematically in Fig. 1(a).
The MFM tip creates a localized potential with a finite trapping
force that can capture one or more vortices, and it travels at a
constant velocity Vtr at an angle θ with respect to the x axis
symmetry direction of the pinning lattice. The dynamics of
vortex i are determined by the overdamped equation of motion

η
dri

dt
= Fvv

i + Fvp

i + Ftr
i . (1)

Here ri is the position of vortex i and we set the damp-
ing coefficient η = 1. All forces are measured in units of
f0 = φ2

0/(2πμoλ
3) where φ0 = h/2e is the flux quantum

and λ is the London penetration depth. The first term on
the right hand side describes the repulsive vortex-vortex

FIG. 1. (a) Schematic of a superconducting slab containing a
square array of artificial pinning sites (yellow) occupied by vortices
(red arrows). The number of vortices produced by the magnetic field
B applied perpendicular to the sample plane matches the number of
pinning sites. A magnetic force microscope (MFM) tip moves over
the sample surface at velocity vtr and is represented by a finite range
harmonic trap with a trapping force or strength that can be varied
by adjusting the distance between the MFM tip and the sample.
(b) Schematic of a 5λ × 5λ subsection of the system. Open black
circles are pinning sites, filled blue circles are the vortices, and the
large red circle is the trap which is moving at an angle of θ = 30◦

relative to the x axis symmetry direction of the pinning array as
indicated by the red arrow.

interactions, Fvv
i = ∑Nv

j=1 K1(rij )r̂ij , where rij = |ri − rj |,
r̂ij = (ri − rj )/rij , and K1 is the modified Bessel function of
the second kind. The pinning forces arise from a square lattice
of finite range harmonic wells, Fvp

i = −∑Np

k=1(Fp/rp)(ri −
r(p)
k )�(rp − |ri − r(p)

k |), where Fp = 0.3 is the maximum pin-
ning force, rp = 0.3 is the pin radius, r(p)

k is the location of
the kth pinning site, and � is the Heaviside step function. The
force from the moving trap Ftr

i has the same form as the pinning
interaction but with a maximum trapping force of Ftr and a
trapping radius Rtr = 0.5. The trap translates at a constant
velocity of vtr .

We consider a 20 × 20 square pinning array at a field of
B/Bφ = 1.0, where Bφ is the matching field at which there
is one vortex per pinning site. The pinning lattice constant
is a = 1.0 and we measure all distances in terms of λ. We
initialize the system with each pinning site occupied by a
vortex. Figure 1(b) schematically illustrates a 5 × 5 subsection
of the sample showing the motion of the trap, which is dragging
a single vortex. We measure the vortex displacements in and
outside of the trap as well as the time series of the force
fluctuations on the moving trap. During an individual run
we translate the trap a total distance of Dx = 300a in the x

direction, corresponding to a total distance of Dx/ cos(θ ) in the
driving direction. Throughout this work we describe distances
in terms of their projections into the x direction.

We define the time and location at which an individual
vortex i becomes captured by the trap as (t iin, ri

in), and the
corresponding time and location at which vortex i escapes
from the trap as (t iout, ri

out). We can then write the individual
capture length Ci

l = |ri
out − ri

in| cos(θ )/a as a measure of the
distance vortex i travels inside the trap projected into the x

direction and normalized by the pinning lattice constant a.
This measure indicates how far a given vortex is dragged. For
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example, if a trap moving in the x direction captures a vortex
and drags it over a distance |ri

out − ri
in| = 100a, then Ci

l = 100.
If instead the trap only drags the vortex from one pinning site
to the next, Ci

l ≈ 1.0. We define the average capture length as
Cl = N−1

c

∑Nv

i=1 Ci
l , where Nc is the total number of vortices

captured by the trap during the measurement interval.
The initial conditions we consider, with the vortices initially

trapped in the pinning sites, corresponds to a field cooled
sample. If the field were applied to a sample that is already
superconducting, vortices would enter from the edges and the
vortex configuration would be more disordered. We choose
a square pinning array since such arrays have already been
experimentally realized. The symmetry of the square array
makes it easier to understand the results for driving at different
angles with respect to the principal symmetry directions of the
array. Our results should be robust for triangular pinning arrays;
however, the detailed dependence on the angle of driving would
be different.

III. RESULTS

We first consider a system with a trap of strength Ftr = 1.0
moving at an angle of θ = 30◦ with respect to the x axis of
the pinning array. In Fig. 2(a) we show the vortex and pinning
site locations along with the trajectories of the vortices and
the trap over a fixed period of time in the decoupled phase I
at a trap velocity of vtr = 0.5. Vortices in the pinning sites
wiggle a small amount as the trap passes over them but they do
not depin. For 0.19 < vtr < 0.375, we find an intermediate
coupling phase II in which the trap captures a vortex and
drags it a projected distance of approximately 2a to the next
pinning site along the trap trajectory, where the trapped vortex
exchanges places with the pinned vortex. In Fig. 2(b), the
vortex trajectories in phase II at vtr = 0.2 extend from pin
to pin following the motion of the trap. For vtr < 0.19 we find
an intermediate trapping phase III where individual vortices
remain inside the trap for distances greater than 2a but are
not permanently trapped. Simultaneously, vortex exchange
motions emerge in the surrounding pinning sites, as illustrated
in Fig. 2(c) for vtr = 0.02.

The effect of the trap on individual vortices is illustrated
in Fig. 3(a), where we plot the capture length Cl versus the
trap velocity vtr for a trap with Ftr = 1.0 and θ = 30◦. We
observe a clear drop in Cl for vtr > 0.375 when the system
enters the decoupled phase I in which the trap moves too rapidly
to capture any of the pinned vortices. In phase I, Cl � 1.0 but it
remains nonzero since the trap drags individual vortices a small
distance within the pinning site. We find that there is an optimal
trapping velocity vtr = 0.012 corresponding to the peak in Cl

where the vortex can on average be trapped for distances as
large as 18a before exchanging places with a pinned vortex.
For vtr < 0.012, Cl drops dramatically when the trap velocity
becomes so slow that vortices have enough time to escape from
the trap or exchange with neighboring pinned vortices. The
escape of the vortices is purely a dynamical effect since we are
working in the regime of no thermal fluctuations. In contrast,
for vtr > 0.012, the trapped vortex can remain trapped since
it does not have enough time to exchange with another vortex.
As vtr increases above 0.012, Cl drops as the trapped vortex
experiences larger displacements until the system reaches the

x

y

x

y

x

y

(a) (b)

(c)

FIG. 2. Vortex positions (filled circles), pinning site locations
(open circles), tip trajectory (magenta line), and vortex trajectories
(green lines) in an 8λ × 8λ portion of a system with Ftr = 1.0 and
Fp = 0.3 where the trap moves at an angle of θ = 30◦ with respect to
the x axis of the pinning array. Red filled circles indicate vortices that
were displaced a distance of at least a pin radius due to the motion of
the trap. (a) The decoupled phase I at vtr = 0.5, marked A in Fig. 3(a),
where all the vortices remain pinned. (b) The intermediate coupling
phase II at vtr = 0.2, marked B in Fig. 3(a), where individual vortices
travel a distance 2a with the trap before escaping and being replaced
by a new trapped vortex. (c) The intermediate trapping phase III at
vtr = 0.02, marked C in Fig. 3(a), where in addition to translations of
the trapped vortex, vortices near but outside the trap move in exchange
rings through neighboring pinning sites.

II-III transition where the trapped vortex always exchanges
with a pinned vortex.

To measure the global effect of the trap, in Fig. 3(b)
we plot the scaled net total projected displacement d of all
the vortices d = a−1 ∑Nv

i=0 |[ri(t0 + τ ) − ri(t0)] · x̂| versus vtr ,
where τ = D/[vtr cos(θ )] is the time required for the trap
to translate a projected distance of D = 300a. We start the
measurement at time t0 �= 0 since we wait for a period of time
before beginning the measurement in order to avoid transient
effects. Above the I-II transition at vtr = 0.375, d drops to zero.
In the intermediate coupling phase II, the trap is never empty,
and there is a plateau with d = 300 throughout the phase II
region of 0.19 < vtr < 0.375. No individual vortex travels this
distance with the trap; instead, as shown in Fig. 3(a), vortices
translate an average distance of Cl = 2a before encountering
a pinning site and exchanging with the pinned vortex. The sur-
rounding vortices remain pinned and do not contribute to d. In
the intermediate trapping phase III for vtr < 0.19, d increases
with decreasing vtr as vortices surrounding the trap begin to
depin from the pinning sites and undergo rotational exchange
motions of the type illustrated in Fig. 2(c) at vtr = 0.02.
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FIG. 3. (a) Capture length Cl , the average distance a vortex is
dragged by the trap, vs trap velocity vtr in the system from Fig. 2 with
Ftr = 1.0 and θ = 30◦. The points marked A, B, and C correspond
to vtr values at which the images in Fig. 2 were obtained. (b) The
total displacements d of all the vortices over a time interval during
which the trap translates by Dx = 300a vs vtr . Above vtr = 0.375,
we find the decoupled phase I in which the trap does not drag any
vortices. In the intermediate coupling phase II for 0.19 < vtr < 0.375,
an individual vortex can be dragged by the trap a distance of 2a before
exchanging places with a pinned vortex. For vtr < 0.19, the system is
in the intermediate trapping phase III where vortices can be dragged a
distance of several lattice constants and additional vortices exchange
positions among the sites close to the trap. For vtr < 0.012, vortices
are able to escape more easily from the slow trap so Cl drops while d

remains large.

We find transitions among the different phases as a function
of trap strength Ftr as well as trap velocity. Figures 4(a)
and 4(b) show Cl and d versus vtr for driving at θ = 30◦ in the
same system from Fig. 3 with a smaller Ftr = 0.5. Both Cl and
d are less than one, and the system remains in the decoupled
phase I for all values of vtr . In Figs. 4(c) and 4(d), we find that
additional phases appear when the trap strength is increased to
Ftr = 1.8. These include phase IV, where the trap alternates
between capturing one and two vortices, and phase V, where
the trap always captures two vortices. Here phase II appears
for vtr > 0.3, while for vtr < 0.03 the system is in phase V
and the trap always contains two vortices. There is a reentrant
window of phase III just above phase V.

In Fig. 5(a) we illustrate the vortex trajectories in phase V
at vtr = 0.02, where a multivortex exchange process occurs
in the vortices adjacent to the trap. The two trapped vortices
produce a repulsion that is strong enough to depin the vortex
in the pin traversed by the trap along with those in a pair
of neighboring pins on either side of the trap. The three
depinned vortices form a cascading loop of reoccupancy, and
one of them moves to occupy the pinning site behind the
trap that was previously vacated. For 0.03 < vtr < 0.1 and
0.018 < vtr < 0.3 we find the intermediate trapping phase III,
while for 0.1 < vtr < 0.018, an intermittent multiple trapping
phase IV occurs in which the trap alternates between capturing
one or two vortices. Figures 5(b) and 5(c) illustrate typical
phase IV and phase III trajectories, respectively. Phase IV
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FIG. 4. (a) Cl vs vtr and (b) d vs vtr for the θ = 30◦ system with
a decreased trap strength of Ftr = 0.5. The motion is always in the
decoupled phase I. (c) Cl vs vtr and (d) d vs vtr in the same system for a
strong trap with Ftr = 1.8, where dashed lines indicate the boundaries
of phases II, III, IV, and V. In the intermittent multiple trapping phase
IV, the trap intermittently captures two vortices, and in the strongly
coupled phase V, the trap always captures two vortices. A reentrant
window of phase III appears just above phase V.

contains several subregimes. When vtr is close to 0.1, the
trap permanently captures one vortex and exchanges a second
vortex with each pinning site it passes, while at larger vtr ,
both trapped vortices exchange places with vortices in the
pinning sites as the trap moves. We note that simulations using a
Landau-Ginzburg approach have shown that sufficiently strong
pinning sites can simultaneously capture two vortices [54]. In
our case the multiply occupied pinning site takes the form of a
moving trap, but multivortex trapping by pinning sites has been
demonstrated as feasible in more realistic models that operate
beyond the London limit [54].

In Fig. 6(a) we plot a heat map of the total displacements d

as a function of trap strength Ftr versus trap velocity vtr for a
driving angle of θ = 30◦ in which we highlight the locations
of phases I through V. For Ftr < 0.75, the system is in the
decoupled phase I. The effect of changing the angle of drive
on d appears in the Ftr versus vtr heat maps in Figs. 6(b), 6(c)
and 6(d) for θ = 0◦, 15◦, and 45◦, which trace the evolution
of the five different phases. In each case, the transition lines
generally shift to higher values of Ftr with increasing vtr . For
θ = 0◦ in Fig. 6(b), the trap does not start dragging vortices out
of the pinning sites until Ftr > 1.25, and we observe a variety
of additional subphases that are not present at larger θ . The
subphases are variations of phases V and IV in which either two
vortices are captured by the trap or two vortices are exchanged
in a variety of distinct orbits which produce various jumps
and dips in d and Cl , as seen near Ftr = 0.18 and vtr < 0.1.
Previous work for vortices driven over square periodic pinning
arrays at θ = 0◦ showed a series of distinct dynamical phases
associated with positive or negative jumps in the velocity-force
curves [8,9,55,56], and the dynamics we observe in Fig. 6(b)
is consistent with this type of behavior. In the θ = 15◦ phase
diagram of Fig. 6(c), there is less jumping between phases V
and IV for Ftr > 1.6, and there is an extended region of phase II
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FIG. 5. Vortex positions (filled circles), pinning site locations
(open circles), tip trajectory (magenta line), and vortex trajectories
(green lines) in an 8λ × 8λ portion of the Ftr = 1.8 system in
Figs. 4(c) and 4(d). Red filled circles indicate vortices that were
displaced a distance of at least a pin radius due to the motion of
the trap. (a) At vtr = 0.02 in phase V, the trap always contains two
vortices and correlated ringlike exchanges of vortices occur in the
surrounding regions. As the trap moves, the two trapped vortices
dislodge three pinned vortices, and one of these vortices jumps into
the empty pinning site immediately behind the moving trap. (b) At
vtr = 0.12 in phase IV, the trap alternates between capturing one and
two vortices. (c) Disordered flow in phase III at vtr = 0.25, with a
much weaker perturbation of the surrounding pinned vortices. (d) At
vtr = 0.5 in phase II, a vortex only travels a short distance with the
trap before exchanging with a pinned vortex.

flow. At θ = 45◦ in Fig. 6(d), the region containing phase V
is smaller but we find the same general phase behavior as
described above for other values of θ .

In Fig. 7(a) we plot d versus vtr for the θ = 0◦ sample
at Ftr = 1.8, where we find numerous jumps at small vtr .
In contrast, the plot of d versus vtr in Fig. 7(b) at Ftr = 1.8
and θ = 45◦ has a smoother behavior at small vtr and a step
marking the II-III transition at vtr = 0.25.

The transition between a trap that can drag a vortex and
a trap that cannot drag a vortex is similar to the transition
from weak to strong pinning near a Labusch point [57]. In our
system, in the absence of pinning a single trap can always drag
a vortex, and if the vortices are strongly coupled with each
other, the single trap would drag the entire vortex assembly
which would act like an elastic solid. When pinning is present
that is strong enough to hold back the vortex motion, there is a
transition point at which the vortex assembly decouples from
the moving trap. There have been several observations of vortex
decoupling transitions produced when a dragged portion of the
vortex assembly decouples from the remainder of the assembly,
including the driving of vortices coupled to magnetic degrees of

freedom in magnetic superconductors [58], the dissociation of
composite vortices in multicomponent superconductors [59],
decoupling of vortices in layered systems [60], and driven
transitions of vortices to a phase slip regime [61].

In Fig. 8(a) we show the vortex and trap trajectories in
phase II for a sample with Ftr = 1.8 and θ = 0◦ at vtr = 0.35.
Individual vortices are trapped over a distance of one lattice
constant, moving along a one-dimensional path defined by
the trap trajectory and inducing few to no perturbations in
the surrounding vortices before exchanging positions with the
next pinned vortex along the path of the trap. At vtr = 0.1
in Fig. 8(b), the perturbations to the surrounding vortices are
stronger, while at vtr = 0.02 in Fig. 8(c), there is continuous
plastic mixing of the vortices in the two rows of pins on either
side of the trap trajectory. For driving along θ = 45◦, Fig. 8(d)
shows that in phase II at Ftr = 1.8 and vtr = 0.35, motion
occurs along the diagonal with some distortions of the vortices
in the adjacent pinning sites.

IV. EFFECT OF PINNING POTENTIAL SHAPE

In Sec. III we employed parabolic pinning sites with an
attractive force that is cut off beyond the pinning radius. Since
there are many different ways to create pinning sites, an impor-
tant question is how the results change for different forms of
the pinning potential. The most generic variation of the pinning
is to introduce a smooth cutoff of the pinning force. To address
this, we change the form of the pinning potential to a Gaussian
shape, U (r) = Up exp(−κR2). We set Up = 0.045 and κ = 50

to obtain Fvp

i = −∑Np

k=1 2κUp exp[−κ(ri − r(p)
k )2](ri − r(p)

k ).
In Fig. 9(a) we plot the shapes of the Gaussian and parabolic
pinning potentials, and in Fig. 9(b) we show the resulting
pinning forces. We choose the parameters of the Gaussian
potential such that both types of potential produce the same
maximum pinning force. We map the dynamic phase diagram
as a function of Ftr vs vtr for the Gaussian pinning potential
in Fig. 10 with driving at θ = 30◦, where the same dynamic
phases found in Fig. 6(a) for parabolic pinning appear. The
I-II transition has the same general features for both types of
pinning, occurring at similar values of Ftr in each case and
shifting to higher values of Ftr as vtr increases. The window
of phase V at small vtr and large Ftr is larger for Gaussian
pinning than for parabolic pinning, while phase IV covers a
smaller area for the Gaussian pinning. The results in Fig. 10
indicate that phases I through V robustly appear for different
pinning potentials. We note that while all the phases reported
for the parabolic pinning also arise with the Gaussian pinning,
there are some differences in the phase diagram. In particular,
phases IV and V are expanded for the Gaussian pinning, while
phases I and II are very similar for each type of pinning.

V. FORCE FLUCTUATIONS

We next examine the time series of the x direction forces fx

experienced by the trap as it moves in the different phases. In
Fig. 11(a) we plot a representative time series of fx for the θ =
30◦ system from Fig. 2(a) and Fig. 3(a) in the decoupled phase
I at Ftr = 1.0 and vtr = 0.5. We find a pronounced stick-slip
character in fx with a strong asymmetry of sudden increases
and gradual decreases. The slow drops in fx occur when the
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FIG. 6. Heat map of the total displacements d as a function of Ftr vs vtr for driving at (a) θ = 30◦, (b) θ = 0◦, (c) θ = 15◦, and (d) θ = 45◦.
Dashed lines are guides to the eye indicating the locations of the different phases: I (decoupled), II (intermediate coupling), III (intermediate
trapping), IV (intermittent multiple trapping), and V (strongly coupled).

moving trap is dragging a vortex inside a pinning site and the
force from the pinning site is resisting the pull of the trap, while
the rapid increases correspond to intervals when the vortex
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FIG. 7. d vs vtr at Ftr = 1.8. Dashed lines indicate intervals
corresponding to the distance 300a traveled by the trap during the
simulation. (a) At θ = 0◦, there is no II-I transition, but the jumps in
d for vtr < 0.075 indicate the location of the V-IV transition, while
the drop in d near vtr = 0.1125 corresponds to the IV-III transition.
(b) At θ = 45◦, a clear drop in d occurs at the IV-III transition near
vtr = 0.25. Another drop in d appears at small vtr where the system
is in region IV but jumps to region V as the trap velocity increases.

decouples from the trap and drops back into the pinning site.
Figure 11(b) shows that the probability distribution function
P (fx) has a spike at fx = 0 produced by the time periods
during which there is no vortex inside the trap. There is a
local maximum in P (fx) near fx ≈ −0.6, the value of the
x component of the average decoupling force Fdc at which
the vortex escapes from the trap and is pushed back into the
pinning site by the restoring force from the surrounding pinned
vortices.

In Figs. 12(a) and 12(b) we plot fx(t) and P (fx) in phase II
at vtr = 0.2 for a sample with θ = 30◦ and Ftr = 1.0. There
is no longer a peak in P (fx) at fx = 0 since the trap al-
ways contains one vortex. We find a periodic signal in fx(t)
containing both stick-slip features and additional smoother
oscillations between pairs of force spikes. The force spike
pairs arise when the trap captures a new vortex or drops
a trapped vortex. Since a trap with Ftr = 1.0 is not strong
enough to confine two vortices, every time the trap captures a
vortex it sheds the previously captured vortex. The process of
bringing a trapped vortex close to a pinned vortex, followed
by capture of the pinned vortex, produces a peak in P (fx)
at fx = −0.2. The smooth oscillations occurring on a longer
time scale correspond to the transport of a vortex between
pinning sites by the trap, since at θ = 30◦ the trap passes
over a pinning site in every other column of the pinning
array. When the trap passes between two pinned vortices
at a distance a/2, the trapped vortex must cross an energy
barrier generated by the repulsive vortex-vortex forces, giving
a second peak in P (fx) at fx = −0.4. In Figs. 12(c) and 12(d)
we show fx(t) and P (fx) for vtr = 0.05 in phase III for the

214521-6



MANIPULATION OF INDIVIDUAL SUPERCONDUCTING … PHYSICAL REVIEW B 97, 214521 (2018)
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y

x(b)

y
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y

x(d)

y

FIG. 8. Vortex positions (filled circles), pinning site locations
(open circles), tip trajectory (magenta line), and vortex trajectories
(green lines) in an 8λ × 8λ portion of a sample with Ftr = 1.8
and (a)–(c) θ = 0◦. (a) Phase II at vtr = 0.35, where there is little
distortion of the background. (b) Phase III at vtr = 0.1, where the
amount of distortion of the surrounding vortices has increased.
(c) Phase IV at vtr = 0.02, where the multiple dragged vortices induce
plastic motion in the surrounding vortices. (d) The phase II motion at
vtr = 0.35 in a sample with θ = 45◦.

θ = 30◦ and Ftr = 1.0 system from Figs. 12(a) and 12(b). At
this low trap velocity, the trapped vortex produces a larger
perturbation of the surrounding vortices as it moves, resulting
in the appearance of additional peaks in P (fx). The highest
peak in P (fx) at fx = −0.2 results when the strongly trapped
vortex passes through a pinning site and pushes the pinned
vortex out of its way without escaping from the trap.

In phase IV, illustrated for a sample with θ = 30◦ and Ftr =
1.8 at vtr = 0.12 in Fig. 13(a), fx(t) shows a strong telegraph
noise signal in which two states arise when the trap alternates
between dragging one or two vortices. In phase V at vtr = 0.02,

FIG. 9. (a) The shape U (r) of the pinning potential for parabolic
(blue) and Gaussian (red) pinning sites. (b) The corresponding pinning
force Fp(r) showing a sharp cutoff for the parabolic pins and a smooth
cutoff for the Gaussian pins.

FIG. 10. Heat map of the total displacements d as a function
of Ftr vs vtr for the system in Fig. 6(a) with driving at θ = 30◦

where the parabolic pinning has been replaced by Gaussian pinning.
Dashed lines are guides to the eye indicating the locations of
the different phases: I (decoupled), II (intermediate coupling), III
(intermediate trapping), IV (intermittent multiple trapping), and V
(strongly coupled). Compared to Fig. 6(a), some small changes in
the locations of phases I to V appear, but both the smooth and the
parabolic pinning sites exhibit the same dynamic phases.

Fig. 13(b) indicates that the telegraph noise in fx(t) is lost since
there are always two vortices in the trap, and the forces exerted
on the trap are always in the negative x direction. Figure 13(c)
shows a transient situation at vtr = 0.048, where the trap is
initially dragging one vortex but then captures a second vortex,
as indicated by the drop in fx to a more negative value.

In general, we find that when the trap is dragged along
certain symmetry angles of the pinning array, such as θ = 0◦
and θ = 45◦, the force fluctuations contain a stronger periodic

2000 2200 2400 2600 2800 3000
time

-1

-0.5

0

0.5

1

fx

-1 -0.5 0 0.5 1
fx

0

0.01

0.02

0.03

0.04

P(fx)

(a)

(b)

FIG. 11. (a) A representative plot of the time series of the x

direction forces fx experienced by the moving trap in phase I at
θ = 30◦, Ftr = 1.0, and vtr = 0.5. (b) The corresponding distribution
function P (fx). The time intervals when the trap does not contain a
vortex produce the peak at fx = 0.
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FIG. 12. (a) A representative segment of fx(t) in phase II at vtr =
0.2 for a sample with θ = 30◦ and Ftr = 1.0. (b) The corresponding
P (fx). There is no peak at fx = 0 since the trap always contains
a vortex. (c) fx(t) in the same sample in phase III at vtr = 0.05.
(d) The corresponding P (fx) contains additional peaks produced by
additional modes of motion.

component, while for driving at incommensurate angles, the
force fluctuations are more disordered. Previous work with par-
ticles driven over square pinning arrays showed that directional
locking should occur at angles of θ = tan−1(n/m), where n and
m are integers [62–66], so for driving at these locking angles,
we expect the force fluctuations to be more periodic. In Fig. 14
we show fx(t) and P (fx) in phase I for a sample with θ = 0◦
at Ftr = 1.0 and vtr = 0.3. There is a strong periodic signal
and fx(t) is much more ordered than the stick-slip time series

-2
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0
fx

-2

-1

0
fx

0 5000 10000 15000 20000
time

-2

-1

0

fx

(a)

(b)

(c)

FIG. 13. (a) fx(t) for a sample with θ = 30◦ and Ftr = 1.8
at vtr = 0.12 in phase IV. The time series has a telegraph noise
characteristic in which the two values are produced when the trap
alternates between dragging one (higher fx) or two (lower fx)
vortices. (b) In phase V at vtr = 0.02, the trap always captures two
vortices and the telegraph noise is lost. (c) In phase IV at vtr =
0.048, there is a transient signature when the trap initially drags one
vortex but then captures a second vortex, producing a clearly visible
jump in fx .

0 1000 2000 3000 4000 5000
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FIG. 14. (a) fx(t) in phase I for a sample with θ = 0◦, Ftr =
1.0, and vtr = 0.3. (b) The corresponding P (fx) indicates that the
fluctuations are periodic.

shown in Fig. 11(a) for a θ = 30◦ system in phase I at Ftr = 1.0
and vtr = 0.5.

VI. DISCUSSION

Within the particle description we use, the number of
vortices and their shape is held fixed; however, it is possible that
a sufficiently strong trapping force could induce vortex shape
distortions that could change the dynamics. Recent imaging
experiments have shown how vortex dynamics can change
when vortex distortion is taken into account beyond the London
limit [67]. A similar breakdown of the particle model could
also arise for other systems such as skyrmions dragged over
different types of pinning substrates [68]. Additionally, if the
trap is strong enough, then in the multiple vortex trapping
phases IV and V, the trapped vortices may merge and form
multiquantum states. Our results apply to the limit in which
the trap is weak enough that such distortions do not occur.
In experiments, it is likely that the tip speed will be in the
limit of low vtr ; however, the phase diagrams of Fig. 6 indicate
that most of the phases can be accessed even at the lowest
trap velocities by varying the trap strength. We consider a
two-dimensional system, but some three-dimensional systems
such as layered samples could produce different results due to
additional three-dimensional effects such as the dissociation
of vortices or line breaking effects.

Instead of employing a moving trap, it would also be
possible to use a stationary trap of fixed strength and apply
a current so that all of the vortices flow past the trap in order to
exert forces on it. When the vortices are moving fast enough
that the trap cannot capture a vortex, the system enters a
decoupled state. We note that there are differences between
the stationary and moving trap realizations. With the moving
trap, the drive is local and applied only to the trap, whereas for
the stationary trap, the current is applied to all of the vortices. A
uniform current produces a constant force on the trapped vortex
in the stationary trap rather than a constant relative velocity
difference as in the case of the moving trap. One advantage of
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the stationary trap geometry is that it is not necessary to include
a background pinning potential. Instead of using an applied
current to drive vortices past the stationary trap, it is also
possible to translate the vortices with dynamic pinning sites by
means of sequential flashing of the pinning potential [69,70].

In this work we focus on a specific trap radius and
vortex-vortex interaction strength, but we expect that the same
dynamic phases should appear for a range of other parameters,
such as at higher fields or different trap sizes, although the
locations of the phase boundaries will likely shift to different
trap strengths and velocities. Our results should also be robust
for triangular rather than square pinning arrays; however, the
high symmetry driving angles would be θ = 30◦ and θ = 60◦
for the triangular arrays instead of θ = 45◦ for the square
arrays. There is a slight energy difference between a square
vortex lattice and a triangular vortex lattice, which may cause
the phase transition boundaries to shift if a different pinning
lattice symmetry is used. It could be also be interesting to
consider the effects of dragging vortices with a trap over
random, quasiperiodic, or anisotropic pinning arrays, but this
is beyond the scope of the present work.

Our results should be general to other systems of particles
interacting with periodic trap arrays, such as colloidal particles
in optical or gravitational lattices, where the interactions
between colloids can be of magnetic form with a 1/r3 behavior
or of screened Coulomb or Yukawa form.

VII. SUMMARY

We have numerically examined vortex manipulation in
superconductors with a periodic array of pinning sites by a
local moving trap. We find five distinct phases depending
on the trap strength and velocity. In phase I, which appears
for low trap strength or large trap velocity, the vortices are
decoupled from the trap, which can move a vortex within a
pinning site but cannot depin it. The distribution of forces

experienced by the trap has a peak at zero force corre-
sponding to time intervals during which the trap is moving
between adjacent pinning sites and contains no vortex. In
the intermediate coupling phase II, the trap drags a vortex
out of a pinning site and then exchanges that vortex with
another vortex upon reaching the next occupied pinning site,
so that the trap is always occupied by a vortex. In phase III,
where intermediate trapping occurs, the trap can drag a single
vortex over long distances, but still occasionally exchanges
this vortex with another pinned vortex. Within phase III
we find a counterintuitive effect in which the trap couples
more strongly to a single vortex at higher velocities than at
lower velocities, since at lower velocities there is enough time
for a pinned vortex to complete an exchange with the trapped
vortex. Phases II and III both exhibit stick-slip fluctuations of
the force experienced by the trap that correlate with vortex
exchange events and with the entry and exit of vortices from
the trap. Phase IV is an intermittent multiple trapping regime
in which the trap alternates between capturing one or two
vortices, producing a telegraph noise signature in the trap
force fluctuation signal. In phase V, where the trap is strongly
coupled and always captures two vortices, the telegraph noise
signal is lost. We map the evolutions of these phases for varied
trap coupling strength, trap velocity, and the angle of trap
motion with respect to the x symmetry axis of the pinning
array. For a given trap coupling force, transitions among the
phases occur as a function of increasing trap velocity. Our
results should be general to other types of particle systems with
a periodic substrate subjected to a moving local trap, such as
colloidal particles, skyrmions, or ions on optical traps.

ACKNOWLEDGMENTS

This work was carried out under the auspices of the NNSA
of the US DOE at LANL under Contract No. DE-AC52-
06NA25396.

[1] M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov,
and Y. Bruynseraede, Composite Flux-Line Lattices Stabilized
in Superconducting Films by a Regular Array of Artificial
Defects, Phys. Rev. Lett. 74, 3269 (1995).

[2] C. Reichhardt, C. J. Olson, and F. Nori, Commensurate and
incommensurate vortex states in superconductors with periodic
pinning arrays, Phys. Rev. B 57, 7937 (1998).

[3] G. R. Berdiyorov, M. V. Milosevic, and F. M. Peeters, Novel
Commensurability Effects in Superconducting Films with Anti-
dot Arrays, Phys. Rev. Lett. 96, 207001 (2006).

[4] M. Vélez, J. I. Martín, J. E. Villegas, A. Hoffmann, E. M.
González, J. L. Vicent, and I. K. Schuller, Superconducting
vortex pinning with artificial magnetic nanostructures, J. Magn.
Magn. Mater. 320, 2547 (2008).

[5] I. A. Sadovskyy, Y. L. Wang, Z.-L. Xiao, W.-K. Kwok, and A.
Glatz, Effect of hexagonal patterned arrays and defect geometry
on the critical current of superconducting films, Phys. Rev. B 95,
075303 (2017).

[6] B. Gränz, S. E. Korshunov, V. B. Geshkenbein, and G. Blatter,
Competing structures in two dimensions: Square-to-hexagonal
transition, Phys. Rev. B 94, 054110 (2016).

[7] D. S. Fisher, Collective transport in random media:
From superconductors to earthquakes, Phys. Rep. 301, 113
(1998).

[8] J. Gutierrez, A. V. Silhanek, J. Van de Vondel, W. Gillijns, and
V. V. Moshchalkov, Transition from turbulent to nearly laminar
vortex flow in superconductors with periodic pinning, Phys. Rev.
B 80, 140514(R) (2009).

[9] S. Avci, Z. L. Xiao, J. Hua, A. Imre, R. Divan, J. Pearson, U.
Welp, W. K. Kwok, and G. W. Crabtree, Matching effect and
dynamic phases of vortex matter in Bi2Sr2CaCu2O8 nanoribbon
with a periodic array of holes, Appl. Phys. Lett. 97, 042511
(2010).

[10] N. Poccia, T. I. Baturina, F. Coneri, C. G. Molenaar, X. R.
Wang, G. Bianconi, A. Brinkman, H. Hilgenkamp, A. A.
Golubov, and V. M. Vinokur, Critical behavior at a dy-
namic vortex insulator-to-metal transition, Science 349, 1202
(2015).

[11] C. Reichhardt and C. J. Olson Reichhardt, Depinning and
nonequilibrium dynamic phases of particle assemblies driven
over random and ordered substrates: A review, Rep. Prog. Phys.
80, 026501 (2017).

214521-9

https://doi.org/10.1103/PhysRevLett.74.3269
https://doi.org/10.1103/PhysRevLett.74.3269
https://doi.org/10.1103/PhysRevLett.74.3269
https://doi.org/10.1103/PhysRevLett.74.3269
https://doi.org/10.1103/PhysRevB.57.7937
https://doi.org/10.1103/PhysRevB.57.7937
https://doi.org/10.1103/PhysRevB.57.7937
https://doi.org/10.1103/PhysRevB.57.7937
https://doi.org/10.1103/PhysRevLett.96.207001
https://doi.org/10.1103/PhysRevLett.96.207001
https://doi.org/10.1103/PhysRevLett.96.207001
https://doi.org/10.1103/PhysRevLett.96.207001
https://doi.org/10.1016/j.jmmm.2008.06.013
https://doi.org/10.1016/j.jmmm.2008.06.013
https://doi.org/10.1016/j.jmmm.2008.06.013
https://doi.org/10.1016/j.jmmm.2008.06.013
https://doi.org/10.1103/PhysRevB.95.075303
https://doi.org/10.1103/PhysRevB.95.075303
https://doi.org/10.1103/PhysRevB.95.075303
https://doi.org/10.1103/PhysRevB.95.075303
https://doi.org/10.1103/PhysRevB.94.054110
https://doi.org/10.1103/PhysRevB.94.054110
https://doi.org/10.1103/PhysRevB.94.054110
https://doi.org/10.1103/PhysRevB.94.054110
https://doi.org/10.1016/S0370-1573(98)00008-8
https://doi.org/10.1016/S0370-1573(98)00008-8
https://doi.org/10.1016/S0370-1573(98)00008-8
https://doi.org/10.1016/S0370-1573(98)00008-8
https://doi.org/10.1103/PhysRevB.80.140514
https://doi.org/10.1103/PhysRevB.80.140514
https://doi.org/10.1103/PhysRevB.80.140514
https://doi.org/10.1103/PhysRevB.80.140514
https://doi.org/10.1063/1.3473783
https://doi.org/10.1063/1.3473783
https://doi.org/10.1063/1.3473783
https://doi.org/10.1063/1.3473783
https://doi.org/10.1126/science.1260507
https://doi.org/10.1126/science.1260507
https://doi.org/10.1126/science.1260507
https://doi.org/10.1126/science.1260507
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1088/1361-6633/80/2/026501


XIAOYU MA, C. J. O. REICHHARDT, AND C. REICHHARDT PHYSICAL REVIEW B 97, 214521 (2018)

[12] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Vortices in high-temperature superconduc-
tors, Rev. Mod. Phys. 66, 1125 (1994).

[13] T. Giamarchi and P. Le Doussal, Phase diagrams of flux lattices
with disorder, Phys. Rev. B 55, 6577 (1997).

[14] I. Guillamón, R. Córdoba, J. Sesé, J. M. De Teresa, M. R.
Ibarra, S. Viera, and H. Suderow, Enhancement of long-range
correlations in a 2D vortex lattice by an incommensurate 1D
disorder potential, Nat. Phys. 10, 851 (2014).

[15] W. K. Kwok, U. Welp, A. Glatz, A. E. Koshelev, K. J.
Kihlstrom, and G. W. Crabtree, Vortices in high-performance
high-temperature superconductors, Rep. Prog. Phys. 79, 116501
(2016).

[16] C. J. Olson Reichhardt and M. B. Hastings, Do Vortices Entan-
gle? Phys. Rev. Lett. 92, 157002 (2004).

[17] Y. Kafri, D. Nelson, and A. Polkovnikov, Unzipping vortices in
type-II superconductors, Phys. Rev. B 76, 144501 (2007).

[18] M. B. Hastings, C. J. O. Reichhardt, and C. Reichhardt, Ratchet
Cellular Automata, Phys. Rev. Lett. 90, 247004 (2003).

[19] M. V. Milosevic, G. R. Berdiyorov, and F. M. Peeters, Fluxonic
cellular automata, Appl. Phys. Lett. 91, 212501 (2007).

[20] M. V. Milosevic, A. Kanda, S. Hatsumi, F. M. Peeters, and Y.
Ootuka, Local Current Injection Into Mesoscopic Superconduc-
tors for the Manipulation of Quantum States, Phys. Rev. Lett.
103, 217003 (2009).

[21] T. Golod, A. Iovan, and V. M. Krasnov, Single Abrikosov
vortices as quantized information bits, Nat. Commun. 6, 8628
(2015).

[22] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices
in p-wave Superconductors, Phys. Rev. Lett. 86, 268 (2001).

[23] H.-H. Sun, K.-W. Zhang, L.-H. Hu, C. Li, G.-Y. Wang, H.-Y. Ma,
Z.-A. Xu, C.-L. Gao, D.-D. Guan, Y.-Y. Li, C. Liu, D. Qian, Y.
Zhou, L. Fu, S.-C. Li, F.-C. Zhang, and J.-F. Jia, Majorana Zero
Mode Detected with Spin Selective Andreev Reflection in the
Vortex of a Topological Superconductor, Phys. Rev. Lett. 116,
257003 (2016).

[24] H.-H. Sun and J.-F. Jia, Detection of Majorana zero mode in the
vortex, npj Quantum Materials 2, 34 (2017).

[25] Q.-F. Liang, Z. Wang, and X. Hu, Manipulation of Majo-
rana fermions by point-like gate voltage in the vortex state
of a topological superconductor, Europhys. Lett. 99, 50004
(2012).

[26] H.-D. Wu and T. Zhou, Vortex pinning by the point potential in
topological superconductors: A scheme for braiding Majorana
bound states, Phys. Rev. B 96, 184508 (2017).

[27] B. W. Gardner, J. C. Wynn, D. A. Bonn, R. Liang, W. N. Hardy,
J. R. Kirtley, V. G. Kogan, and K. A. Moler, Manipulation of
single vortices in YBa2Cu3O6.354 with a locally applied magnetic
field, Appl. Phys. Lett. 80, 1010 (2002).

[28] E. W. J. Straver, J. E. Hoffman, O. M. Auslaender, D. Rugar,
and K. A. Moler, Controlled manipulation of individual vortices
in a superconductor, Appl. Phys. Lett. 93, 172514 (2008).

[29] C. Reichhardt, High-temperature superconductors: Vortices
wiggled and dragged, Nat. Phys. 5, 15 (2009).

[30] O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C.
Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K.
A. Moler, Mechanics of individual isolated vortices in a cuprate
superconductor, Nat. Phys. 5, 35 (2009).

[31] L. Luan, O. M. Auslaender, D. A. Bonn, R. Liang, W. N.
Hardy, and K. A. Moler, Magnetic force microscopy study

of interlayer kinks in individual vortices in the underdoped
cuprate superconductor YBa2Cu3O6+x , Phys. Rev. B 79, 214530
(2009).

[32] N. Shapira, Y. Lamhot, O. Shpielberg, Y. Kafri, B. J. Ramshaw,
D. A. Bonn, R. Liang, W. N. Hardy, and O. M. Auslaender,
Disorder-induced power-law response of a superconducting
vortex on a plane, Phys. Rev. B 92, 100501(R) (2015).

[33] I. S. Veshchunov, W. Magrini, S. V. Mironov, A. G. Godin,
J.-B. Trebbia, A. I. Buzdin, Ph. Tamarat, and B. Lounis, Optical
manipulation of single flux quanta, Nat. Commun. 7, 12801
(2016).

[34] A. Kremen, S. Wissberg, N. Haham, E. Persky, Y. Frenkel, and
B. Kalisky, Mechanical control of individual superconducting
vortices, Nano Lett. 16, 1626 (2016).

[35] A. Crassous, R. Bernard, S. Fusil, K. Bouzehouane, D.
Le Bourdais, S. Enouz-Vedrenne, J. Briatico, M. Bibes, A.
Barthélémy, and J. E. Villegas, Nanoscale Electrostatic Manipu-
lation of Magnetic Flux Quanta in Ferroelectric/Superconductor
BiFeO3/YBa2Cu3O7 Heterostructures, Phys. Rev. Lett. 107,
247002 (2011).

[36] L. Embon, Y. Anahory, A. Suhov, D. Halbertal, J. Cuppens,
A. Yakovenko, A. Uri, Y. Myasoedov, M. L. Rappaport, M. E.
Huber, A. Gurevich, and E. Zeldov, Probing dynamics and
pinning of single vortices in superconductors at nanometer
scales, Sci. Rep. 5, 7598 (2015).

[37] J.-Y. Ge, V. N. Gladilin, J. Tempere, C. Xue, J. T. Devreese,
J. Van de Vondel, Y. Zhou, and V. V. Moshchalkov, Nanoscale
assembly of superconducting vortices with scanning tunneling
microscope tip, Nat. Commun. 7, 13880 (2016).

[38] J.-Y. Ge, V. N. Gladilin, J. Tempere, J. Devreese, and
V. V. Moshchalkov, Controlled generation of quantized vortex-
antivortex pairs in a superconducting condensate, Nano Lett. 17,
5003 (2017).

[39] M. B. Hastings, C. J. O. Reichhardt, and C. Reichhardt, Depin-
ning by Fracture in a Glassy Background, Phys. Rev. Lett. 90,
098302 (2003).

[40] P. Habdas, D. Schaar, A. C. Levitt, and E. R. Weeks, Forced
motion of a probe particle near the colloidal glass transition,
Europhys. Lett. 67, 477 (2004).

[41] C. J. O. Reichhardt and C. Reichhardt, Viscous decoupling
transitions for individually dragged particles in systems with
quenched disorder, Phys. Rev. E 78, 011402 (2008).

[42] D. Winter, J. Horbach, P. Virnau, and K. Binder, Active
Nonlinear Microrheology in a Glass-Forming Yukawa Fluid,
Phys. Rev. Lett. 108, 028303 (2012).

[43] Th. Voigtmann and M. Fuchs, Force-driven micro-rheology,
Eur. Phys. J. Spec. Top. 222, 2819 (2013).

[44] C. Reichhardt and C. J. O. Reichhardt, Local Melting and Drag
for a Particle Driven Through a Colloidal Crystal, Phys. Rev.
Lett. 92, 108301 (2004).

[45] R. P. A. Dullens and C. Bechinger, Shear Thinning and Local
Melting of Colloidal Crystals, Phys. Rev. Lett. 107, 138301
(2011).

[46] K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura,
and V. V. Moshchalkov, Direct observation of vortex dynamics
in superconducting films with regular arrays of defects, Science
274, 1167 (1996).

[47] S. Tung, V. Schweikhard, and E. A. Cornell, Observation of
Vortex Pinning in Bose-Einstein Condensates, Phys. Rev. Lett.
97, 240402 (2006).

214521-10

https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/PhysRevB.55.6577
https://doi.org/10.1103/PhysRevB.55.6577
https://doi.org/10.1103/PhysRevB.55.6577
https://doi.org/10.1103/PhysRevB.55.6577
https://doi.org/10.1038/nphys3132
https://doi.org/10.1038/nphys3132
https://doi.org/10.1038/nphys3132
https://doi.org/10.1038/nphys3132
https://doi.org/10.1088/0034-4885/79/11/116501
https://doi.org/10.1088/0034-4885/79/11/116501
https://doi.org/10.1088/0034-4885/79/11/116501
https://doi.org/10.1088/0034-4885/79/11/116501
https://doi.org/10.1103/PhysRevLett.92.157002
https://doi.org/10.1103/PhysRevLett.92.157002
https://doi.org/10.1103/PhysRevLett.92.157002
https://doi.org/10.1103/PhysRevLett.92.157002
https://doi.org/10.1103/PhysRevB.76.144501
https://doi.org/10.1103/PhysRevB.76.144501
https://doi.org/10.1103/PhysRevB.76.144501
https://doi.org/10.1103/PhysRevB.76.144501
https://doi.org/10.1103/PhysRevLett.90.247004
https://doi.org/10.1103/PhysRevLett.90.247004
https://doi.org/10.1103/PhysRevLett.90.247004
https://doi.org/10.1103/PhysRevLett.90.247004
https://doi.org/10.1063/1.2813047
https://doi.org/10.1063/1.2813047
https://doi.org/10.1063/1.2813047
https://doi.org/10.1063/1.2813047
https://doi.org/10.1103/PhysRevLett.103.217003
https://doi.org/10.1103/PhysRevLett.103.217003
https://doi.org/10.1103/PhysRevLett.103.217003
https://doi.org/10.1103/PhysRevLett.103.217003
https://doi.org/10.1038/ncomms9628
https://doi.org/10.1038/ncomms9628
https://doi.org/10.1038/ncomms9628
https://doi.org/10.1038/ncomms9628
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1038/s41535-017-0037-4
https://doi.org/10.1038/s41535-017-0037-4
https://doi.org/10.1038/s41535-017-0037-4
https://doi.org/10.1038/s41535-017-0037-4
https://doi.org/10.1209/0295-5075/99/50004
https://doi.org/10.1209/0295-5075/99/50004
https://doi.org/10.1209/0295-5075/99/50004
https://doi.org/10.1209/0295-5075/99/50004
https://doi.org/10.1103/PhysRevB.96.184508
https://doi.org/10.1103/PhysRevB.96.184508
https://doi.org/10.1103/PhysRevB.96.184508
https://doi.org/10.1103/PhysRevB.96.184508
https://doi.org/10.1063/1.1445468
https://doi.org/10.1063/1.1445468
https://doi.org/10.1063/1.1445468
https://doi.org/10.1063/1.1445468
https://doi.org/10.1063/1.3000963
https://doi.org/10.1063/1.3000963
https://doi.org/10.1063/1.3000963
https://doi.org/10.1063/1.3000963
https://doi.org/10.1038/nphys1169
https://doi.org/10.1038/nphys1169
https://doi.org/10.1038/nphys1169
https://doi.org/10.1038/nphys1169
https://doi.org/10.1038/nphys1127
https://doi.org/10.1038/nphys1127
https://doi.org/10.1038/nphys1127
https://doi.org/10.1038/nphys1127
https://doi.org/10.1103/PhysRevB.79.214530
https://doi.org/10.1103/PhysRevB.79.214530
https://doi.org/10.1103/PhysRevB.79.214530
https://doi.org/10.1103/PhysRevB.79.214530
https://doi.org/10.1103/PhysRevB.92.100501
https://doi.org/10.1103/PhysRevB.92.100501
https://doi.org/10.1103/PhysRevB.92.100501
https://doi.org/10.1103/PhysRevB.92.100501
https://doi.org/10.1038/ncomms12801
https://doi.org/10.1038/ncomms12801
https://doi.org/10.1038/ncomms12801
https://doi.org/10.1038/ncomms12801
https://doi.org/10.1021/acs.nanolett.5b04444
https://doi.org/10.1021/acs.nanolett.5b04444
https://doi.org/10.1021/acs.nanolett.5b04444
https://doi.org/10.1021/acs.nanolett.5b04444
https://doi.org/10.1103/PhysRevLett.107.247002
https://doi.org/10.1103/PhysRevLett.107.247002
https://doi.org/10.1103/PhysRevLett.107.247002
https://doi.org/10.1103/PhysRevLett.107.247002
https://doi.org/10.1038/srep07598
https://doi.org/10.1038/srep07598
https://doi.org/10.1038/srep07598
https://doi.org/10.1038/srep07598
https://doi.org/10.1038/ncomms13880
https://doi.org/10.1038/ncomms13880
https://doi.org/10.1038/ncomms13880
https://doi.org/10.1038/ncomms13880
https://doi.org/10.1021/acs.nanolett.7b02180
https://doi.org/10.1021/acs.nanolett.7b02180
https://doi.org/10.1021/acs.nanolett.7b02180
https://doi.org/10.1021/acs.nanolett.7b02180
https://doi.org/10.1103/PhysRevLett.90.098302
https://doi.org/10.1103/PhysRevLett.90.098302
https://doi.org/10.1103/PhysRevLett.90.098302
https://doi.org/10.1103/PhysRevLett.90.098302
https://doi.org/10.1209/epl/i2004-10075-y
https://doi.org/10.1209/epl/i2004-10075-y
https://doi.org/10.1209/epl/i2004-10075-y
https://doi.org/10.1209/epl/i2004-10075-y
https://doi.org/10.1103/PhysRevE.78.011402
https://doi.org/10.1103/PhysRevE.78.011402
https://doi.org/10.1103/PhysRevE.78.011402
https://doi.org/10.1103/PhysRevE.78.011402
https://doi.org/10.1103/PhysRevLett.108.028303
https://doi.org/10.1103/PhysRevLett.108.028303
https://doi.org/10.1103/PhysRevLett.108.028303
https://doi.org/10.1103/PhysRevLett.108.028303
https://doi.org/10.1140/epjst/e2013-02060-5
https://doi.org/10.1140/epjst/e2013-02060-5
https://doi.org/10.1140/epjst/e2013-02060-5
https://doi.org/10.1140/epjst/e2013-02060-5
https://doi.org/10.1103/PhysRevLett.92.108301
https://doi.org/10.1103/PhysRevLett.92.108301
https://doi.org/10.1103/PhysRevLett.92.108301
https://doi.org/10.1103/PhysRevLett.92.108301
https://doi.org/10.1103/PhysRevLett.107.138301
https://doi.org/10.1103/PhysRevLett.107.138301
https://doi.org/10.1103/PhysRevLett.107.138301
https://doi.org/10.1103/PhysRevLett.107.138301
https://doi.org/10.1126/science.274.5290.1167
https://doi.org/10.1126/science.274.5290.1167
https://doi.org/10.1126/science.274.5290.1167
https://doi.org/10.1126/science.274.5290.1167
https://doi.org/10.1103/PhysRevLett.97.240402
https://doi.org/10.1103/PhysRevLett.97.240402
https://doi.org/10.1103/PhysRevLett.97.240402
https://doi.org/10.1103/PhysRevLett.97.240402


MANIPULATION OF INDIVIDUAL SUPERCONDUCTING … PHYSICAL REVIEW B 97, 214521 (2018)

[48] C. Reichhardt, D. Ray, and C. J. O. Reichhardt, Quantized
transport for a skyrmion moving on a two-dimensional periodic
substrate, Phys. Rev. B 91, 104426 (2015).

[49] A. Benassi, A. Vanossi, and E. Tosatti, Nanofriction in cold ion
traps, Nat. Commun. 2, 236 (2011).

[50] P. T. Korda, M. B. Taylor, and D. G. Grier, Kinetically Locked-In
Colloidal Transport in An Array of Optical Tweezers, Phys. Rev.
Lett. 89, 128301 (2002).

[51] T. Bohlein, J. Mikhael, and C. Bechinger, Observation of kinks
and antikinks in colloidal monolayers driven across ordered
surfaces, Nat. Mater. 11, 126 (2012).

[52] A. Vanossi, N. Manini, and E. Tosatti, Static and dynamic friction
in sliding colloidal monolayers, Proc. Natl. Acad. Sci. USA 109,
16429 (2012).

[53] A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, and E. Tosatti,
Modeling friction: From nanoscale to mesoscale, Rev. Mod.
Phys. 85, 529 (2013).

[54] R. Willa, A. E. Koshelev, I. A. Sadovskyy, and A. Glatz,
Strong-pinning regimes by spherical inclusions in anisotropic
type-II superconductors, Supercond. Sci. Technol. 31, 014001
(2018).

[55] C. Reichhardt, C. J. Olson, and F. Nori, Nonequilibrium dynamic
phases and plastic flow of driven vortex lattices in superconduc-
tors with periodic arrays of pinning sites, Phys. Rev. B 58, 6534
(1998).

[56] V. Misko, S. Savel’ev, A. Rakhmanov, and F. Nori, Negative
differential resistivity in superconductors with periodic arrays
of pinning sites, Phys. Rev. B 75, 024509 (2007).

[57] G. Blatter, V. B. Geshkenbein, and J. A. G. Koopmann, Weak to
Strong Pinning Crossover, Phys. Rev. Lett. 92, 067009 (2004).

[58] L. N. Bulaevskii and S. Z. Lin, Prediction of Polaronlike
Vortices and a Dissociation Depinning Transition in Magnetic
Superconductors: The Example of ErNi2B2C, Phys. Rev. Lett.
109, 027001 (2012).

[59] S.-Z. Lin and C. Reichhardt, Stabilizing fractional vortices
in multiband superconductors with periodic pinning arrays,
Phys. Rev. B 87, 100508(R) (2013).

[60] S. Scheidl and V. M. Vinokur, Dynamic melting and decoupling
of the vortex lattice in layered superconductors, Phys. Rev. B 57,
13800 (1998).

[61] A. Sheikhzada and A. Gurevich, Dynamic transition of vortices
into phase slips and generation of vortex-antivortex pairs in thin
film Josephson junctions under dc and ac currents, Phys. Rev. B
95, 214507 (2017).

[62] C. Reichhardt and F. Nori, Phase Locking, Devil’s Staircases,
Farey Trees, and Arnold Tongues in Driven Vortex Lattices with
Periodic Pinning, Phys. Rev. Lett. 82, 414 (1999).

[63] J. M. Sancho, M. Khoury, K. Lindenberg, and A. M. Lacasta,
Particle separation by external fields on periodic surfaces,
J. Phys.: Condens. Matter 17, S4151 (2005).

[64] J. Villegas, E. Gonzalez, M. Montero, I. Schuller, and J. Vicent,
Vortex-lattice dynamics with channeled pinning potential land-
scapes, Phys. Rev. B 72, 064507 (2005).

[65] J. Koplik and G. Drazer, Nanoscale simulations of directional
locking, Phys. Fluids 22, 052005 (2010).

[66] C. Reichhardt and C. J. O. Reichhardt, Structural transitions
and dynamical regimes for directional locking of vortices and
colloids driven over periodic substrates, J. Phys.: Condens.
Matter 24, 225702 (2012).

[67] L. Embon, Y. Anahory, Z. L. Jelic, E. O. Lachman, Y. Myasoe-
dov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milosevic,
A. Gurevich, and E. Zeldov, Imaging of super-fast dynamics and
flow instabilities of superconducting vortices, Nat. Commun. 8,
85 (2017).

[68] D. Stosic, T. B. Ludermir, and M. V. Milosevic, Pinning of mag-
netic skyrmions in a monolayer Co film on Pt(111): Theoretical
characterization and exemplified utilization, Phys. Rev. B 96,
214403 (2017).

[69] Z. L. Jelic, M. V. Milosevic, J. Van de Vondel, and A. V.
Silhanek, Stroboscopic phenomena in superconductors with
dynamic pinning landscape, Sci. Rep. 5, 14604 (2015).

[70] Z. L. Jelic, M. V. Milosevic, and A. V. Silhanek, Velocimetry
of superconducting vortices based on stroboscopic resonances,
Sci. Rep. 6, 35687 (2016).

214521-11

https://doi.org/10.1103/PhysRevB.91.104426
https://doi.org/10.1103/PhysRevB.91.104426
https://doi.org/10.1103/PhysRevB.91.104426
https://doi.org/10.1103/PhysRevB.91.104426
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1103/PhysRevLett.89.128301
https://doi.org/10.1103/PhysRevLett.89.128301
https://doi.org/10.1103/PhysRevLett.89.128301
https://doi.org/10.1103/PhysRevLett.89.128301
https://doi.org/10.1038/nmat3204
https://doi.org/10.1038/nmat3204
https://doi.org/10.1038/nmat3204
https://doi.org/10.1038/nmat3204
https://doi.org/10.1073/pnas.1213930109
https://doi.org/10.1073/pnas.1213930109
https://doi.org/10.1073/pnas.1213930109
https://doi.org/10.1073/pnas.1213930109
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1088/1361-6668/aa939e
https://doi.org/10.1088/1361-6668/aa939e
https://doi.org/10.1088/1361-6668/aa939e
https://doi.org/10.1088/1361-6668/aa939e
https://doi.org/10.1103/PhysRevB.58.6534
https://doi.org/10.1103/PhysRevB.58.6534
https://doi.org/10.1103/PhysRevB.58.6534
https://doi.org/10.1103/PhysRevB.58.6534
https://doi.org/10.1103/PhysRevB.75.024509
https://doi.org/10.1103/PhysRevB.75.024509
https://doi.org/10.1103/PhysRevB.75.024509
https://doi.org/10.1103/PhysRevB.75.024509
https://doi.org/10.1103/PhysRevLett.92.067009
https://doi.org/10.1103/PhysRevLett.92.067009
https://doi.org/10.1103/PhysRevLett.92.067009
https://doi.org/10.1103/PhysRevLett.92.067009
https://doi.org/10.1103/PhysRevLett.109.027001
https://doi.org/10.1103/PhysRevLett.109.027001
https://doi.org/10.1103/PhysRevLett.109.027001
https://doi.org/10.1103/PhysRevLett.109.027001
https://doi.org/10.1103/PhysRevB.87.100508
https://doi.org/10.1103/PhysRevB.87.100508
https://doi.org/10.1103/PhysRevB.87.100508
https://doi.org/10.1103/PhysRevB.87.100508
https://doi.org/10.1103/PhysRevB.57.13800
https://doi.org/10.1103/PhysRevB.57.13800
https://doi.org/10.1103/PhysRevB.57.13800
https://doi.org/10.1103/PhysRevB.57.13800
https://doi.org/10.1103/PhysRevB.95.214507
https://doi.org/10.1103/PhysRevB.95.214507
https://doi.org/10.1103/PhysRevB.95.214507
https://doi.org/10.1103/PhysRevB.95.214507
https://doi.org/10.1103/PhysRevLett.82.414
https://doi.org/10.1103/PhysRevLett.82.414
https://doi.org/10.1103/PhysRevLett.82.414
https://doi.org/10.1103/PhysRevLett.82.414
https://doi.org/10.1088/0953-8984/17/49/010
https://doi.org/10.1088/0953-8984/17/49/010
https://doi.org/10.1088/0953-8984/17/49/010
https://doi.org/10.1088/0953-8984/17/49/010
https://doi.org/10.1103/PhysRevB.72.064507
https://doi.org/10.1103/PhysRevB.72.064507
https://doi.org/10.1103/PhysRevB.72.064507
https://doi.org/10.1103/PhysRevB.72.064507
https://doi.org/10.1063/1.3429297
https://doi.org/10.1063/1.3429297
https://doi.org/10.1063/1.3429297
https://doi.org/10.1063/1.3429297
https://doi.org/10.1088/0953-8984/24/22/225702
https://doi.org/10.1088/0953-8984/24/22/225702
https://doi.org/10.1088/0953-8984/24/22/225702
https://doi.org/10.1088/0953-8984/24/22/225702
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1103/PhysRevB.96.214403
https://doi.org/10.1103/PhysRevB.96.214403
https://doi.org/10.1103/PhysRevB.96.214403
https://doi.org/10.1103/PhysRevB.96.214403
https://doi.org/10.1038/srep14604
https://doi.org/10.1038/srep14604
https://doi.org/10.1038/srep14604
https://doi.org/10.1038/srep14604
https://doi.org/10.1038/srep35687
https://doi.org/10.1038/srep35687
https://doi.org/10.1038/srep35687
https://doi.org/10.1038/srep35687



