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Role of canting and depleted-triplet minima in superconducting spin valve structures

Thomas E. Baker1,2 and Andreas Bill3,*

1Institut quantique & Département de physique, Université de Sherbrooke, Québec, Canada J1K 2R1
2Department of Physics & Astronomy, University of California, Irvine, California 92697, USA

3Department of Physics & Astronomy, California State University Long Beach, California 90840, USA

(Received 19 February 2018; revised manuscript received 4 April 2018; published 25 June 2018)

The trilayer and pentalayer spin valve structures are revisited to determine the behavior of pair correlations
and Josephson current when the magnetic layers are canted at arbitrary angle. The two systems display markedly
different behaviors in the center magnetic layer. While the trilayer generates a triplet component that is weakly
affected by canting, the pentalayer tunes in singlet pair correlations depending heavily on canting. We also
show that a minimum with depleted m = ±1 triplet components, rather than a 0–π transition, may be observed
in the current profile Ic(dF) of a trilayer spin valve. The depleted-triplet minimum is directly attributable to a
decrease of m = ±1 triplet correlations with increased thickness of the central ferromagnet, accompanied by a
hidden, simultaneous sign change of the Gor’kov functions contributed from the left and right superconductors.
We introduce a toy model for superconducting-magnetic proximity systems to better illuminate the behavior of
individual components of the Gor’kov function and compare with a full numerical calculation.
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I. INTRODUCTION

A spin valve consisting of more than one homogeneous fer-
romagnet (F) in proximity with a singlet pairing superconduc-
tor (S) has been a popular tool with both experimentalists and
theorists to explore odd-frequency triplet pair correlations in
magnetic hybrid systems [1–9]. Creating a heterostructure with
tunable properties is highly desirable in spintronic applications
[10,11] and understanding pair correlations in these hybrid
structures is of current experimental interest [9,12]. Before
being destroyed by the exchange field of the F, singlet Cooper
pairs from S may acquire an angular momentum s, generating
triplet correlations with m = 0 (in the |s,m〉 basis of spin- 1

2
fermions pairs) through the Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) effect [13,14]. Rotating the magnetization’s direction
in space changes the natural quantization axis and causes
mixing of zero-spin-projection m = 0 and parallel-spin m =
±1 pair correlations [15,16]. The main feature of the trilayer
(3F) spin valve (see Fig. 1 with F2, F3, F4 aligned) is that with
a judicious choice of layer thicknesses, the m = 0 components
decay in amplitude to negligible values in the middle layer so
that measured quantities are predominantly determined bym �=
0 components [4,5,7,8,11,12,17–22]. Recently, a calculation
made for a pentalayer (5F) spin valve with π/2 orientation of
the magnetization in F2, F4 showed that m = 0 components
are recovered far beyond one coherence length of an SF or FS
interface [23]. An experimental test of the presence of these
unexpected m = 0 correlations was proposed.

In this paper, we investigate the 3F and 5F geometries for
various canting angles (see Fig. 1),1 and explore the effects

*Author to whom correspondence should be addressed:
andreas.bill@csulb.edu

1Note that the angle φ is the complementary of the angle φ′ in
Refs. [23,30] (φ = π − φ′).

of canting on the Josephson current. The analysis shows that
while canting does not very much affect the pair correlations
mixture in the 3F geometry, these correlations are strongly
canting dependent in the pentalayer 5F. Surprisingly, the most
drastic changes occur at small deviations from the (anti)parallel
or perpendicular configuration of neighboring magnetic layers
(φ slightly off 0,π/2, or π ) and is steadier farther away from
these values.

Further, we demonstrate the presence of a direct signature
of m = ±1 pair correlations in the Josephson current that may
be of interest for applications. A dip, which is a depleted-triplet
minimum (DTM), of the current is observed as a function of the
F-layer thickness. Here, we show this effect in a trilayer spin
valve as one varies the thickness of the outermost F layers.
This DTM of the current is related to two features of pair
correlations: (a) The minimum of the current is found when
the average position of all Matsubara frequency nodes in the
m = 0 Gor’kov functions coincides with the interface between
two Fs. (b) The Gor’kov function generated from the left and
right S’s simultaneously changes sign at the thickness of the
minimum of the dip. This latter feature contrasts the DTM from
the 0–π transition of the Josephson current since the latter is
seen when only one of the two Gor’kov functions changes sign
at the position of the dip, thereby turning into a node. The DTM
is a general feature of hybrid systems that is only related to the
two properties stated above and thus should be visible at any
canting and in any multilayer system, as long as the thicknesses
are chosen appropriately.

Note that the DTM and the effect of canting on the
Josephson current are discussed here in the first harmonic,
separating this case from many interesting effects that can be
found in higher harmonics [24–28].

Section II discusses the methods used for numerical calcula-
tions presented throughout the paper. Section III discusses the
trilayer, starting with results for the pair correlation functions
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FIG. 1. Shown in dark blue is the magnetization profile of a canted
5F spin valve system with F2 and F4 canted by an angle φ (see footnote
1). Translucent orange arrows show the canted Bloch-type domain-
wall magnetization (π flip or π wall). We also consider a spin valve
with three F layers which is realized by aligning F2, F3, and F4.

on a range of canting angles in Sec. III A. The relation to
the current is discussed in Sec. III B. The same discussion
is conducted for the pentalayer in Sec. IV, focusing on the
pair correlation functions in Sec. IV A and Josephson current
in Sec. IV B. The DTM is discussed in detail in Sec. V
by introducing a toy model to fully understand the effects.
Sections V A and V B discuss the pair correlation functions
and Josephson current, respectively.

II. METHODS

We conduct our analysis in the diffusive regime, where
the elastic scattering length is much less than the coherence
lengths in the system, and Usadel’s equations apply [29].
These equations and the approach to solve them numerically
at finite temperature have been described in Refs. [30,31].
We only point out here that we use the Matsubara formal-
ism, and the Green functions (expanded as G = g0 + v̂ · g
with Fermi velocity v̂) and Gor’kov functions (F = f0 +
v̂ · f) are parametrized by trigonometric functions following
Refs. [32,33] (see also Refs. [30,31] for implementation
details). In F the superconducting pair potential � is zero
while h(x) is the position-dependent magnetization profile
with magnitude h. The latter is zero in S.

We introduce the coherence length ξc = √
DF/(2πTc), with

critical temperature Tc of the proximity system and diffusion
length DF of the F, in order to compare different F’s on the
same length scale. Other length scales are ξF = √

DF/h that
characterizes the decay of m = 0 components, and the normal
state coherence length ξN = ξc

√
DN/T (at temperature T )

over which singlet pair correlations decay in a normal metal and
m = ±1 components decay in a F [34,35]. Note that h � T

typically and thus ξF is only a few nanometers even in a weak F
whereas the m �= 0 components may propagate at length scales
of the order of ξN that are much larger.

We consider transparent interface conditions between F’s,
where the values and derivatives of the functions match on
either side of each interface, noting though that the trans-
parency can affect the results [36]. At the SF interfaces, the
boundary condition is set to (M0,M) = (1,0) [37]. The bound-

ary condition on ϑ (the trigonometric functions of Ref. [31];
see Ref. [37]) is the bulk value in S, ϑ(SF) = ϑ(FS) = θB =
arctan(|�|/ωn) (ωn is the fermionic Matsubara frequency; see
Ref. [31]).

In the wide limit, the Gor’kov function f (x,ωn) ≡ fn(x)
[for each α = 0,y,z we have fα,n(x)] may be written as the
sum of two components from the left SF proximity system (L)
and right FS system (R) superconductors [36,38]

fn(x) = eiϕ/2fn,L(x) + e−iϕ/2fn,R(x), (1)

where ϕ is the phase difference between the S’s. Hence, the
contributions from the left and the right S may be calculated
separately and added together. Calculating the components
generated by each S (L and R) independently also allows
for a clear representation of pair correlations in the proximity
system.

Once the Gor’kov functions have been obtained, the mea-
surable Josephson current density is [6,39]

jc(x) = πT

2eRN

∑
ωn�0

∑
α=0,y,z

Im[f ∗
α,−n∂xfα,n], (2)

requiring an integration over the thickness of F for the total
current Ic (e is the electron charge, RN is the normal state
resistance).2

III. TRILAYER SPIN VALVES AND CANTING

A. Effect of canting on pair correlations

We consider SF1F2F3S with the following magnetization
profile:

h(x) =
{
h ẑ, x ∈ F1,F3

−h sin φ ŷ + h cos φ ẑ, x ∈ F2
(3)

where φ denotes the arbitrary but fixed, constant angle of
the magnetization in F2 with respect to ẑ. The origin of the
coordinate system has been set at the center of the magnetic
multilayer (see Fig. 1).

Figure 2 shows the Gor’kov functions for the spin valve
when F2 is oriented at a right angle with respect to F1 and
F3 (φ = π/2). The line and color types used to represent
the Gor’kov functions in this figure (and in Fig. 8) have
a special meaning. They have been chosen to highlight the
symmetry of pair correlations that appear in each F region.
Solid lines (blue) denote singlet pair correlations while dotted
lines (red) highlight m = 0 triplet correlations. Thick, dashed
lines (black) show m = ±1 pair correlations.

It is important not to be confused by the line style and
color code in Fig. 2 (and Fig. 8); we use the same convention
as in Ref. [23]. Each of the components f0, fy, and fz is a
continuous function of x (as also seen in subsequent figures),
in particular at each interface. But, the symmetry of the
correlations, as specified by the line style and color in Fig. 2,
changes at each rotation of the quantization axis. For example,
|fz| is a dotted red line in F1 and F3 because it is the component

2A position-dependent spinor that has significance only near the SF
or FS interfaces has been neglected. Hence, the analysis best applies
to wide F as in Refs. [36,38,41].
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FIG. 2. The Gor’kov functions for the spin valve SF1F2F3S
contributed from the left S only as obtained by solving the full
Usadel equations numerically. The contribution from the right S is
obtained by mirroring the curves in the figure about the x = 0 vertical
line (not shown). Thick dashed lines (black) denote m �= 0 triplet
components while solid lines (blue) denote singlets. Dotted lines (red)
show m = 0 triplets. The line style and color denote the symmetry of
pair correlations with respect to the local natural quantization axis and
not the components of the Gor’kov functions; all functions fα (α =
0,y,z) are continuous across the multilayer (see text). φ = π/2, h =
(3,14,3)πTc, dF = (1,6,1)ξc, T = 0.4Tc, ωn = ω0. Note that this
figure is equivalent to Fig. 11 of Ref. [31], except that the thickness of
F2 in the latter reference is about double the thickness considered here,
which explains why |f0| and |fy | are visible throughout the layer.

parallel to the direction of the magnetization in these layers,
Eq. (3), and thus represents the m = 0 triplet state. The same
component |fz| is a thick dashed black line in F2 since the
magnetization points in a direction perpendicular to ẑ and fz

thus represents the m �= 0 triplet correlations in F2. The latter
is the largest component in the center F (F2) since the spin
valve is constructed so that the m = 0 contributions become
negligible and only the m = ±1 components contribute to the
measured Josephson current [6].

Figure 3 shows how the canting of the middle layer (F2)
magnetization affects the Gor’kov functions. We consider
different values of φ in the range [0,π/2] in Eq. (3). The case
φ = π/2 reproduces the result of Fig. 2 and the smallest angle
for which the correlations are represented is φ = π/8. The
results would be unchanged had we considered the interval
[π/2,π ]. In Fig. 3, each componentfα (α = 0,y,z) is presented
on a separate plot and the line and color styles now distinguish
different choices of the angle φ. The breakdown into m = 0
and m �= 0 triplets for each component is revealed by the
oscillatory and smooth exponential decays, respectively. One
can differentiate more clearly the pair correlation contributions
by representing the triplet Gor’kov function f in the rotating
basis {x̂,e⊥(x),e‖(x)} introduced in Ref. [31], rather than the
Cartesian coordinate system of Fig. 1. The basis vectors e⊥,e‖
are perpendicular and parallel to the local magnetization h and
thus depend on φ(x). The m �= 0 components are in f⊥ and
m = 0 components in f‖ [31].

A noteworthy feature of Fig. 3 is the presence of dis-
continuities in f⊥ and f‖. As stated earlier, the components
fα (α = y,z) are clearly continuous (see |f0,y,z| in Figs. 2
and 3), but the angle φ(x) of the magnetization is discontinuous
across the interfaces, which results in the discontinuity of the

FIG. 3. Gor’kov functions f0 and f in the SF1F2F3 spin valve
structure (S is not shown). From top to bottom, we display f0 for the
singlet, fy and fz for the triplet correlations. Also shown is the triplet
Gor’kov function f , decomposed in components perpendicular and
parallel to the local magnetization direction [31]. One notices that
the exponential decay of m �= 0 triplet components (f⊥) is robust to
canting. The m = 0 components in f‖ see their nodes shift slightly
with the canting. Parameters used are h = (3,14,3)πTc, T = 0.4Tc,
and dF = (1,6,1)ξc.

components perpendicular and parallel to the magnetization.
This is demonstrated by analyzing the relation between f⊥,‖
and fα (α = y,z). Consider, for example, the behavior of
f⊥(x) = − cos φ(x)fy(x) + sin φ(x)fz(x) across the interface
FLFR , with φ = 0 in the left F, and 0 < φ � π/2 in the right
F. Using the continuity of fα (α = y,z) we have

[f⊥(x+) − f⊥(x−)] ≈ [− cos φ(x+) + cos φ(x−)]fy(xi)

+ [sin φ(x+) − sin φ(x−)]fz(xi)

≈ φfz(xi), (4)

where x± = xi ± δ, xi is the location of the interface, and
0 < δ � 1. This result shows that for continuous functions
fy,z, even at small misalignment of the magnetization at the
interface FLFR , there is a jump of f⊥ proportional to the
mismatch angle φ and to the m = 0 triplet component. At
higher angle φ the conclusion remains, but the relation is more
complicated, to the point that even the sign of f⊥ and f‖ may
change; this depends on the thicknesses of the F layers. The
mismatch discussed here is not seen in the smooth continuous
rotation of the magnetization φ(x) of an exchange spring or a
helix [31].

A surprising result of Fig. 3 is seen in f⊥. The canting
may change the magnitude of the correlations by a factor of
2 or 3, but essentially does not affect the order of magnitude
of m �= 0 components in the 3F layer beyond φ ≈ π/8. This
implies that no matter how the structure is canted in this range,
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FIG. 4. Josephson current as a function of the outer layers’ thick-
nesses dF1 = dF3 for a 3F structure at various cantings φ of the central
layer F2. A configuration where all F are parallel is also shown (lowest
left solid green line). Usually, the nodes in the curve represent a sign
change of the current (a crossing of the Ic = 0 line); this is the case for
the homogeneous configuration (φ = 0). However, in this figure the
dips near 3.2ξc and 5.9ξc for φ > 0 are true minima without current
reversal (|Ic| > 0 for all dF1 ). The inset shows the signed current and
demonstrates that Ic > 0 through the dip; it is a DTM and not a node.
This indicates a hidden change of sign in the Gor’kov functions (see
text). h = (3,14,3)πTc, dF = (dF1 ,6,dF1 )ξc, T = 0.4Tc.

the m = ±1 components dominate. The decrease in f⊥ is
evident as φ is decreased but this is a small change from the
φ = π/2 configuration on the logarithmic scale. Nevertheless,
the small change in the Gor’kov functions is significant when
considering the Josephson current.

B. Effect of canting on the Josephson current

We briefly consider how the canting affects the Josephson
current through the spin valve (Fig. 4) for typical thicknesses
of dF1 � 2.5ξc considered in experiment and discuss features
beyond 2.5ξc in Sec. V. Even the small change in the Gor’kov
functions is significant when considering the Josephson current
since this change is the reason for the “humplike” structure seen
in Fig. 4 below dF1/ξc � 3, and also in Ref. [6]. Note, however,
that we consider only angles below φ = π/2 and are thus not
analyzing the 0-π transition discussed in Refs. [6,31].

Comparing the curves for different canting angle φ in
Fig. 4 we note that increasing the canting notably increases
the current flowing through the junction. The increase is most
pronounced for small angles φ. For example, at dF1 � 2ξc the
current increases several orders of magnitude as one goes from
the homogeneous case (φ = 0) to even the smallest canting
(π/8). As one increases the canting further, say from φ = π/8
to π/2 in Fig. 4, the growth of the current tends to level
off; for example, the curves for φ = π/3 and π/2 almost
overlap. Although the growth of the current with increasing
angle φ appears modest on the logarithmic scale, the current
still increases by a factor of 10 between the cases φ = π/8 and
π/2. The change in current as a function of canting angle away
from φ = 0 or π is therefore large enough to be considered for
applications [11].

Notwithstanding, we underline that the trilayer’s m �= 0
components, and consequently the Ic, are quite robust to

canting in the range of angles considered. The largest variation
in the current occurs for angles very close to φ = 0. In Fig. 4
the most drastic change in current occurs for φ � π/8.

It has been shown earlier that the critical current is a
nonoscillating exponentially decaying function of the middle
layer thickness dF2 [6,7]. The same works also show that
varying dF1 (= dF3 ) leads to a nonmonotonic current with a
maximum. The latter behavior corresponds to the hump seen
in Fig. 4 for dF1/ξc � 2.5. This hump is similar to the one
calculated in Fig. 2 of Ref. [6], except that the latter was
represented on a linear scale and did therefore not analyze
the behavior of the Josephson junction past dF1/ξc � 2.5. It is
also known that varying dF1 (= dF3 ) affects the magnitude of
the m �= 0 component in F2, but current experimental studies
consider the case where this thickness is small, of the order of
dF = ξF to generate the maximal current [4,5,7,8,17–21,40].
Figure 4 extends the scope of these studies to reveal an
interesting feature, that we term “depleted-triplet minima”
(DTM) in the current seen at dF1 � 3.2ξc and � 5.9ξc. This
feature deserves special attention and the full discussion for
dF1 � 2.5ξc is postponed to Sec. V.

IV. PENTALAYER SPIN VALVES AND CANTING

In Ref. [23], we studied pair correlations in, and Josephson
current through, a pentalayer with magnetizations of F2 and F4

perpendicular to F1, F3, and F5 (see Fig. 1). In that paper we
showed that a singlet component is present deep in the magnetic
multilayer and is the origin of a Josephson current through the
pentalayer. This challenged the common view that the m = 0
components are only present near the interface between a
singlet S and a F because they decay over the characteristic
length ξF. We introduced the cascade effect, the means by
which all possible components are regenerated (with varying
magnitude) at each rotation of the magnetization. Here, we
consider the same pentalayer to analyze how the canting angle
φ of F2 and F4 affects pair correlations and the Josephson
current through the multilayer.

A. Effect of canting on pair correlations in the pentalayer

The pair correlations in the 5F pentalayer are shown as
a function of the canting angle φ in F2,4 in Figs. 5 and 6.
The first feature to note is the opposite behavior of pair
correlations in the central layer of the 5F and 3F spin valves
(F3 and F2, respectively). In the 3F one starts with m = 0 pair
correlations in the homogeneous alignment and progresses to a
domination of m �= 0 correlations, as one cants the central layer
F2 from parallel to perpendicular magnetization with respect
to the outer layers. By contrast, the central layer F3 of the
pentalayer (Fig. 6) has a dominant m = 0 component in the
perpendicular configuration (when F2,4 have φ = π/2) and
progresses to one dominated by m �= 0 triplets close to the
parallel alignment [23].

Similarly to the trilayer discussed in Sec. III B, the most
drastic changes of the pair correlations in the pentalayer occur
near φ = 0 (and π/2 near SF). The growth of the m �= 0
components is substantial and important for understanding the
current as a function of canting angle as one lowers the value of
φ from π/2 to π/8. But, this component must collapse below
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FIG. 5. Singlet (f0) and triplet fy,z Gor’kov functions in the 5F
for singlets leaking from a S located on the left of the pentalayer.
Also shown are the pair correlations in the components perpendicular
f⊥ and parallel f‖ to the local magnetization. These functions
were calculated numerically using the techniques in Ref. [31]. Each
plot depicts one Gor’kov function for several angles. The curve
φ = π/2 coincides with that shown in Ref. [23]. Parameters: h =
(3,14,14,14,3)πTc, T = 0.4Tc, and dF = (1,6,1.5,6,1)ξc.

the smallest angle since the m �= 0 components are absent at
φ = 0.

Both |fy | and |fz| of the pentalayer display the presence of
m �= 0 components, recognizable by the slow nonoscillatory
decay of the correlations at various points. They also show
m = 0 oscillatory behavior at large angles in F2,4 and F2,3,4,

FIG. 6. Same as Fig. 5 but focusing on the central layer F3. Note
the different ranges of the ordinates. In F3, fy = f‖ and fz = f⊥ in F3

since the magnetization of F3 is along ẑ. This identification does not
apply to the canted layers F2 and F4 since the axes are not coincident
with the magnetization’s direction.

respectively. Not surprisingly, the behavior of fy and fz, or f⊥
and f‖, as a function of canting is very similar in layer F2 of
the pentalayer and F2 of the trilayer. In particular, f⊥ is fairly
robust to canting in F2 of either structure.

Interesting are the correlations in layer F4 of the 5F. Them �=
0 components in f⊥ are much less robust to canting as in F2;
the component varies notably with φ. Hence, the further from
the SF (or FS) interface, the more sensitive f⊥ (and to some
extent f‖) is to canting. As discussed below, this component
is influenced by the m = 0 components in the F3 layer. The
effect is opposite to that in F2. With increasing φ, one observes
in Fig. 5 an increase (decrease) of f⊥ in F2 (F4). As above (see
Sec. III), both f⊥ and f‖ components also have discontinuities
at the interfaces where the magnetization is discontinuous.

Due to the cascade effect introduced in Ref. [23], the
scalar singlet component |f0| is affected by the rotation of
the magnetization, similarly to the 3F case of Fig. 3. This is
reflected in the fact that the curves do not exactly overlap for
different angles φ. Figure 6 also highlights the resurgence of
singlet components in the central layer F3, due to the reverse
FFLO effect [23]. Finally, f0 displays no oscillation and only
has a minimum in F3 at small, finite angles. The minimum
monotonously deepens and moves towards the right interface
as the angle increases. It crosses the f0 = 0 line for φ > π/4
as denoted by the two nodes. These nodes further move apart
as one continues to increase the canting. When φ = π/2 the
minimum is located at or near the F3F4 interface; there is only
one node in F3. This means that f0 has the same sign at either
boundaries of the F3 layer for 0 < φ < π/2, whereas the sign
at either end is opposite for φ = π/2, indicative of the drastic
change in f0 for angles close to φ = π/2.

B. Effect of canting on the Josephson current through
the pentalayer

Figure 7(a) shows the Josephson current flowing through
the 5F layer as a function of the central layer thickness dF3 for
different canting angles φ of layers F2 and F4 with respect
to the ẑ axis (φF2 = φF4 = φ; see Fig. 1). We first focus
on the general features of the current as a function of dF3

at the fixed value φ = π/2. As discussed in Ref. [23], the
current displays a characteristic 0–π oscillation at thicknesses
dF3 � 2.5ξc, recovering the physics of m = 0 correlations deep
in the magnetic layer [23]. The oscillation is revealed by the
presence of two nodes seen in the lower dashed blue line of
Fig. 7(a). Beyond dF3 ∼ 2.5ξc, the m = ±1 correlations start
dominating, leading to the monotonic exponential decay over
the longer length scale ξN .

As one changes the canting in the interval φ ∈ [0,π/2),
one identifies three regimes for the current in Fig. 7(a): dF3 �
ξc/2, ξc/2 � dF3 � 2.5ξc, and dF3 � 2.5ξc. For dF3 � 0.5ξc,
the current rapidly increases as a function of canting angle φ

towards the value of the 3F perpendicular configuration (where
the magnetization in F2 is perpendicular to F1 and F3). The
increased current is due to the generation of a stronger f⊥
component with larger φ.

Figure 6 can be used to understand the behavior of the
Gor’kov function components for these smaller thicknesses.
The Gor’kov functions look very similar to this figure if the
right edge is moved the appropriate distance from the left. For
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FIG. 7. Josephson current through a magnetic pentalayer as a
function of the thickness of the central layer F3. (a) Current for
different canting angles φ (see Fig. 1). Shown is also the “π flip”
whereby each layer is misaligned by π/4 with respect to its neigh-
bors, mimicking a Bloch domain wall (see full discussion of the
continuous case in Ref. [31]). The solid line labeled “3F” is the
current through a spin valve with φ = π/2, with a smooth decay
characteristic of the current entirely composed of m �= 0 correlations.
(b) Decomposition of the total Josephson current (solid line) for φ =
π/2 into the individual contributions of singlet correlations (dotted
magenta line), m = 0 correlations (IcRN )‖ (dashed-dotted red line),
and m �= 0 correlations (IcRN )⊥ (dashed blue line). Parameters: (a)
h = (3,14,14,14,3)πTc, T = 0.4Tc, and dF = (1,6,dF3 ,6,1)ξc. (b)
As in (a) but φ = π/2 and hF3 = 3πTc.

example, if a layer of dF3 = ξc is required, we could simply
cut off Fig. 6 a distance ξc away from the F2F3 interface. In
this way, the parallel components are seen to dominate over
the perpendicular components.

In the opposite regime of large central layer thicknesses
dF3 � 2.5ξc, the current in Fig. 7(a) displays a behavior
that may appear counterintuitive at first. The current is
monotonously decaying with dF3 but increases in magnitude
overall with decreasing angles. Again, this can be understood
from the Gor’kov functions. The general trend of the m �= 0
components for large dF3 are the same as those in a long trilayer,
already shown in Fig. 2 [but labeling Fi with i3F ↔ (i +
1)5F for i = 1,2,3]. In the pentalayer, the m = 0 correlations
generated from the cascade effect [23] at the F2F3 interface
decay quickly in F3 and the m �= 0 components dominate, as is
the case of the central layer in the trilayer. The study of the latter
would lead one to think that the m �= 0 components increase

with canting leading to an increase of the current. However, the
opposite is observed for the pentalayer in Fig. 7(a). The reason
is that in the 5F the m �= 0 components are already generated
in F2 and they increase with canting in that layer. Thus, when
entering the central layer F3, more of these components will be
transformed into m = 0 components, implying a decrease of
f⊥ with increased canting in F3. Since the m = 0 components
are not contributing much to the current in this configuration,
the decrease of m �= 0 components in F3 leads to lower current
Ic, as observed for dF3 � 2.5ξc in Fig. 7(a).

Finally, for 0.5 � dF3 � 2.5ξc, the sign of the current in
Fig. 7(a) changes as one increases the canting angle. The
structure is undergoing a 0–π transition of the Houzet-Buzdin
type since in this regime the dominant contributions to the
current are m �= 0 components [6,31]. This type of 0–π

transition was originally proposed in trilayers while changing
the magnetization direction in F1 and F3 with one orientation
changing [6]. However, there is an important difference in the
pentalayer. While in the trilayer the m = 0 components play
no role whatsoever, in the pentalayer (5F) they are controlling
the sign of the f⊥ components and thus the direction of
the current. To understand this point, we consider the pair
correlations in Fig. 6 (or Fig. 5). We first note that f⊥ does
not change sign in F3. Yet, f⊥ has opposite sign in F2 and
F4 for φ = π/2. The node leading to this sign change is in
the continuous function fz and appears in F3. While fz = f⊥
in both F2 and F4 (where φ = π/2), we have fz = f‖ in F3

(where φ = 0). Thus, the correlations represented by f⊥ in F2

are continued by the f‖ curve in F3 before continuing back into
the f⊥ curve in F4. The node of f‖ = fz in F3 implies a sign
change of f⊥ in F4. Thus, in the intermediate thickness regime,
the m = 0 components in the central layer F3 determine the
sign of f⊥ across the pentalayer and the existence of a 0–π

transition. In the pentalayer, the m = 0 components control
this Houzet-Buzdin transition.

To corroborate this statement, we point out that at lower
canting angles, the nodes of the m = 0 components disappear
in Fig. 6, concurrent with the disappearance of 0–π transitions
in the current; as the canting angle decreases, the nodes on
either side of dF3 ∼ ξc move towards each other and disappear
for φ � π/3. This indicates that the minimum of the current
has shifted above the Ic = 0 axis and there are no longer 0–π

transitions. The smooth decay of the critical current for fixed
φ < π/3 indicates that there are no m = 0 correlations of
noticeable strength to the current.

To complete this discussion, note that the remarks made in
Sec. IV A about pair correlations for small canting angles (φ <

π/8) transfer to the current. As the canting decreases to φ = 0,
it must tend towards the same current found in a homogeneous
configuration, where there are no m �= 0 components and the
current is much lower for this thickness. Hence, the changes
in the current are most drastic close to φ = 0. This does not
diminish the observation that the current through the pentalayer
is much more susceptible to canting than the more robust
current through the trilayer.

Figure 7(b) (φ = π/2, and weaker magnetization hF3 ) is
similar to the result presented in Fig. 4 of Ref. [23] but disen-
tangles the contribution of parallel (m = 0) and perpendicular
(m �= 0) components of the Gor’kov functions to the Joseph-
son current using the techniques of Ref. [31]. While in the
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latter reference we disentangled the contributions for various
domain-wall twists at fixed thickness of the hybrid structure,
Fig. 7(b) considers a fixed canting, and varies the thickness
of the central layer dF3 . We first note that both the parallel
and perpendicular components of the current undergo a sign
change in the intermediate regime [this regime spans a larger
dF3/ξc range than in Fig. 7(a) because we chose hF3 weaker].
As discussed above, the sign change of the perpendicular
component is determined by the m = 0 correlations and the
perpendicular component remains dominant at all thicknesses.
This is revealed by two features in the figure. The magnitude
(IcRN )⊥ is similar to that of the total current. Furthermore,
the nodes of this component of the current almost exactly
coincide with the nodes of the total current, while the m = 0
contributions lead to nodes that are slightly shifted. These
features indicate that the m �= 0 correlations determine the
behavior of the current in this intermediate regime.

It would be of great interest to perform a measurement of the
Josephson critical current through a pentalayer heterostructure
as a function of the middle layer thickness F3. The variation
of the current with decreasing angle would provide direct evi-
dence of the m = 0 and m �= 0 Gor’kov function contributions.
The results could be compared to the trilayer case to show that,
while m = ±1 components are robust to canting in the trilayer,
the five-layer system tunes in m = 0 components.

Finally, we point out one more difference between the
trilayer and pentalayer. As shown in Figs. 6 and 7, the Gor’kov
functions and the Josephson critical current, respectively, do
not display the same monotonous behavior as a function of φ

as in the trilayer case. A continuous increase of the angle does
not necessarily translate into a continuous increase or decrease
of correlations and current. For example, the φ = 3π/8 curve
in Fig. 5 is below the π/2 line. This is particularly visible
for fz and f⊥ in the F4 layer. Similarly, the current may be a
nonmonotonous function of angle φ when the thickness of F3

is near a node of the current (a 0–π transition). As the angle
decreases from φ = π/2 in Fig. 7(a), the second node shifts to
lower values of dF3 . As a result, for example at fixed thickness
dF3 � 1.5ξc the current at φ = 3π/8 is lower than at π/2. The
pentalayer thus displays a much richer physics that could be
advantageous for applications.

V. DEPLETED-TRIPLET MINIMA IN THE JOSEPHSON
CURRENT OF A SPIN VALVE

A thorough study of the effects of canting on the magnetic
structure has been conducted in the previous sections for the
trilayer and pentalayer spin valve systems. One remarkable
effect that we reserved for this section is the presence of the
depleted-triplet minima seen in Fig. 4 near dF1 ∼ 3ξc and 6ξc.
Although they seem to be similar to the dips found in all other
figures, they do not signify a sign change of the current and
have a different origin. This feature of the current through a
trilayer has not been previously discussed in the literature and
occurs in first harmonic, at arbitrary, but fixed canting as one
varies the thickness of the external magnetic layers F1 and F3

in the trilayer. The phenomenon is found when one extends
the study beyond the range of thicknesses considered so far
experimentally and theoretically, that is, for dF1 = dF3 � 2.5ξc

for the parameters of Fig. 4. As noted in the inset of that figure,

the dips do not cross the Ic = 0 line, meaning they are not
indicative of 0–π transitions on the logarithmic scale but are
true minima. Because the figures for the Josephson current
generally plot the absolute value of the current, the feature is
not readily identifiable in the representation of Fig. 4. This
section is focused on revealing why this feature appears.

As discussed above, previous work demonstrated that a
0–π transition can be generated in the trilayer structure by
increasing the angle of one of F1 and F3 beyond φ = π/2 [6,7].
Alternative procedures to generate a 0–π transition are either to
setφ = 0 (homogeneous case) and vary the thicknessdF1 = dF3

or to fix the canting angle to a finite value but vary the thickness
of one of the two layers only (dF1 or dF3 ), which will be shown
in Sec. V B (see Fig. 9, curve E). All these current reversal
transitions were shown to relate to the change of relative sign
of the Gor’kov functions generated from the left and the right
S [6,31]. This is not the situation encountered with the DTMs
of Fig. 4 since the current does not change direction.

Two ingredients lead to the presence of the DTMs in Fig. 4.
First, as the thickness increases through the minimum located
at dDTM

F1
(≈ 3.2ξc), the sign of the m = ±1 Gor’kov functions

from either S changes at the same time. In the case of Fig. 4,
the Gor’kov function from the left and right S are negative at
the SF1 and F3S interfaces when dF � dDTM

F1
, while both are

positive when dF > dDTM
F1

. Had the Gor’kov function change
sign on only one side of the junction, we would have a 0–π

transition. Here, both sides change sign simultaneously, which
leaves the overall sign of the current unchanged since these
two states are indistinguishable. This leads to the DTM. The
simultaneous change of sign is due to the symmetric treatment
of F1 and F3; as a result, no node should be observed. By
contrast, the aforementioned procedures to generate the 0–π

transition rely on an asymmetric treatment of F1 and F3.
A second ingredient is necessary to explain the DTM.

Inspection reveals that at the thickness dDTM
F1

the Matsubara
frequency-averaged position of the nodes of m = 0 Gor’kov
functions coincides with the interface. Since the m = 0 com-
ponents are nearly zero at the interface, the m �= 0 pair cor-
relations amplitudes are depleted in F2. Both factors lead to a
minimum in the Josephson current rather than a 0–π transition.

Demonstrating unequivocally that the DTM feature near
dF1/ξc ∼ 3 in Fig. 4 is not a 0–π transition is challenging for the
numerical techniques used here as it would require to calculate
the Gor’kov functions for all Matsubara frequencies with great
precision close to the DTM. It is much more convincing to
reveal the effect by constructing a toy model of the trilayer
from an analytic solution [23] to show that the sign of the
Gor’kov function as contributed from the left and the right
changes together, hence avoiding a sign change in Ic.

We construct the toy model following simple rules to
provide a clearer picture of the full numerical calculation
presented in Sec. IV B. The purpose of the toy model is not
to emulate the physics entirely, but to bring to light specific
behaviors. We will specify which features are not reproduced
by the toy model.

A. Pair correlations in the toy model

The main simplification of the toy model consists in setting
the magnetization to zero artificially for homogeneous layers
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with magnetization perpendicular to the outer layers. This
approximation results from the known fact that the component
perpendicular to h propagates as though it were in a normal
metal [31,34]. Hence, choosing the magnetization direction of
F1 along ẑ, we set h = 0 in F2. It is important to realize that
this model does not simply describe an FNF system where a
normal metal (N) is sandwiched between two F’s. Rather, our
toy model is equivalent to an FNF with spin active FN and FN
interfaces to generate the m �= 0 triplet components in F2. The
solution of the Usadel equation for the toy model is best de-
scribed in terms of the alternate trigonometric parametrization
used in Refs. [23,36,38,41–44]. The Gor’kov function in this
spin valve configuration as contributed from the left S (indexed
by L) takes the form of a piecewise function

FL(x,h,θ0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0 + ifz = sin θ (x,h,θB), x ∈ F1

f0 + ify = sin θ (x,h,Re[θ (−dF2/2)])

and ifz = sin θ (x,0,i Im[θ (−dF2/2)]), x ∈ F2

f0 + ifz = sin θ (x,h,i Im[θ (dF2/2)]), x ∈ F3

(5)

where θ (x,h,θ0) is the complex function parametrizing the
Gor’kov functions, x is defined as in Fig. 1, h is the magnitude
of the magnetization in each layer, θ0 is the boundary value of
θ for the given F layer at the left edge and determined by the
value of θ in the adjacent left layer, θB is the bulk value in S
defined above Eq. (1). The real part of θ, Re[θ ] ≡ ϑ , is defined
in the parametrization of Sec. II (see also Refs. [23,31]). The
imaginary part Im[θ ] determines the functions M0 and M in
Refs. [31,37]. The function describing the contribution from
the right S (FR) is found by setting x → −x and F1 ↔ F3.

The imaginary parts of the Gor’kov function F (fy in
F2 or fz in F1,3) denote m = 0 triplet correlations and are
the components parallel to the magnetization; these are the
signature of the FFLO effect [13,14]. In the analytic toy model
proposed here, only the values of the functions are matched
at the interface. Alternatively, one could construct a similar
model of the system by ensuring the derivatives match. The
toy model can be interpreted as a full calculation with different
interface transparencies [36]. This is one contrasting feature of
the toy model since the full numerical calculations presented
in this paper are performed for transparent interfaces; both the
value and derivatives of the Gor’kov functions match across
the interfaces.

Figure 8(a) displaysFL, the solution of the Usadel equations
with Eq. (5). As in Fig. 2 (see discussion in Sec. III A), we chose
the line style and color of the curves in each layer to identify the
pair correlation symmetries |s,m〉 rather than the components
(fα, α = 0,y,z); the Gor’kov functions are continuous across
interfaces. Comparing Fig. 8(a) with Fig. 2 allows to identify
the components present in the full numerical calculation that
are absent in the toy model. For example, the m = 0 triplet
components arise in F1 (dotted red line) and generate m �= 0
triplet components in F2 (dashed black line). Hence, the toy
model accurately provides an m �= 0 triplet component along
ŷ in F2 [23]. On the other hand, the amplitude of the m = 0
components f0 and fy in F2 generated at the F2F3 interface are
not seen in Fig. 8(a) since they are orders of magnitude smaller.

F1 F2 F3

f0

f y

fz Toy Model

4 2 0 2 4

10 6

10 4

10 2

100

x Ξc

G
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'k
ov
Fu
nc
tio
n

FIG. 8. A toy model calculation [Eq. (5)] of pair correlations in
a trilayer spin valve structure for two different thicknesses of F1,3

(dF1 = dF3 = ξc). The line style and color code are explained in Fig. 2
and refer to the symmetry of pair correlations. (a) Solution of the toy
model for the same parameters as Fig. 2, allowing to compare the toy
model with the full numerical solution (see text). (b) Calculation for
thicknessesdF1,3 � 2.79ξc (dF1,3 � 3.21ξc for the inset) corresponding
to the location of the minimum of the DTM in Fig. 9 (and the first
DTM in Fig. 4 for the inset). The critical feature seen in (b) is that a
node of |fy | exactly coincides with the F1F2 interface (see text). Both
figures have magnetization configuration (φF1 ,φF2 ,φF3 ) = (0,π/2,0).
Parameters are h = (3,14,3)πTc, dF2 = 6ξc, T = 0.4Tc, ωn = ω0.

For this same reason,m �= 0 components are absent in F3, while
m = 0 are of substantial magnitude. It is noteworthy that even
in the toy model the singlet reappears in the F3 layer [23]. This
difference between the two cases owes to the absence of “back
diffusion” of pair correlations in the toy model. In Fig. 8(a),
only pairs diffusing from the left S to the right appear; the
toy model neglects components in each layer that result from
reflections at the interfaces. Figures 2 and 8(a) demonstrate
that the main feature of the spin valve is reproduced by the toy
model since both reveal the m �= 0 component as the dominant
pair correlation.

Figure 8(b) reveals the essential feature that explains why
there is a DTM in the Josephson current (Figs. 4 and 9).
At dDTM

F1
the first node of the m = 0 component (dotted red

line) coincides with the F1F2 interface. This minimizes the
formation of m �= 0 correlations (|fz|) at that interface and
thus depletes the pair correlations contributing to the Josephson
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FIG. 9. Critical current through a trilayer spin valve in the per-
pendicular configuration as a function of the thickness dF1 (= dF3

for curves A–D). A: full numerical calculation; same as the curve for
φ = π/2 in Fig. 4. B: same as A but neglecting the singlet contribution
(only triplet current). C and D: same as A and B, respectively, but using
the toy model (5). E: full numerical calculation for the case when
dF3 = ξc for all values of dF1 (this is the only case where dF1 �= dF3 in
the figure). A and B, and C and D essentially overlap, indicating that
the cascading singlets only minimally influence the current. As the
text explains, the toy model shows that the dip in the current, the DTM
in A–D, is not a 0–π transition but a finite minimum at dF1 ≈ 3.2ξc

(∼2.8ξc in the toy model; the shift from the numerical calculation is
due to different transparencies) resulting from the diminished pres-
ence of m �= 0 triplet pair correlations. The 0–π transition is recovered
in curve E by fixing dF3 (see text). Parameters are (φF1 ,φF2 ,φF3 ) =
(0,π/2,0), h = (3,14,3)πTc, T = 0.4Tc with dF2 = 6ξc.

current (see next section). As dF1 varies through dDTM
F1

, the node
approaches and passes the interface, resulting in a minimum
at dDTM

F1
of m �= 0 pair correlations in F2. The small m �= 0

component (dashed black line) seen in the inset of Fig. 8(b)
is orders of magnitude smaller than in Fig. 8(a). This residual
component comes from the inability to choose a thickness of
F1,3 with enough numerical accuracy to have the node of the
m = 0 component exactly coincide with the position of the
node. This underlines the advantage of the toy model.

B. Josephson current in the toy model

Figure 9 presents the Josephson current through the per-
pendicular trilayer spin valve (φF1 = φF3 = 0, φF2 = π/2),
using both the full numerical calculation and the toy model.
To calculate the current in the toy model, and check that
it reproduces the qualitative features of the full numerical
determination of Ic, we use Eq. (2) replacing fα → F from
Eq. (5) [23,31]. Line A in Fig. 9 (dashed black line; same as
the φ = π/2 line in Fig. 4) is obtained from the full numerical
computation and is compared with line C for the toy model
(solid blue line). They show that the toy model correctly
captures the experimentally measurable Josephson current of
the 3F spin valve system, giving similar magnitude and DTM
of the current albeit shifted to smaller values of dF1 : the DTM
appears at dF1,F3/ξc ∼ 2.8 in the toy model (lines C,D) and
dF1,F3/ξc ∼ 3.2 in the full numerical calculation (lines A, B).

As discussed in the previous section, an examination of the
Gor’kov function in Fig. 8(b) demonstrates why the dip appears

in Fig. 9 and why it is not a 0–π transition. The absence of
asymmetry for identical F1 and F3 implies that the contributions
to the Josephson current of correlations from the left and right S
are constructive and do not lead to a node and change of sign of
the current as a function of dF1 (≡ dF3 ). For dF1 corresponding
to the bottom of the current dip, the m = 0 correlations have
a node located exactly at the F1F2 (F2F3) interface for pairs
leaking from the left (right) superconductor (see Fig. 8). This
results in the lowest amount of m �= 0 correlations in F2

contributing to Ic.
The different locations of the DTM in Fig. 9 (curves A,C

and B,D) result from the simplification made in the toy model
where only correlations essential for the physics described are
taken into account, and different transparencies are considered:
slightly opaque in the toy model and transparent F interfaces
in the numerical calculation.

The decrease of the current but absence of its reversal is
the characteristic feature of the DTM, and is a distinctive
feature of the presence and the role that m �= 0 components
play in the generation of the Josephson current through the
spin valve structure. In order to tune the location of the DTM,
an experimental setup may vary the magnetization strengths h

of the F1 and F3 layers.
From the DTM to the 0–π transition. It is natural to ask

how the DTM can be transformed into a 0–π transition. The
only requirement for this to happen is to induce an asymmetry
between F1 and F3. It is shown in Ref. [6] that a calculation
with dF1 = dF3 but changing the magnetization direction of
either F1 or F3 (the relative canting angle) reverses the current.
If this operation is performed, then the correlations generated
from the left and right S acquire opposite sign and the sign of
the currents in Fig. 9 change at the minimum; the minimum
transforms into a node. The second way to transform the DTM
into a 0–π transition is debuted here in Fig. 9, curve E. This
occurs by varying, say dF1 , while keeping dF3 constant. When
dF1 crosses a node of the m = 0 triplet component passing the
dip near x/ξc ∼ 3, then the m �= 0 components from the left
side change sign while those from the right remain unchanged.
This case is depicted as curve E (dashed-dotted green line) in
Fig. 9. We emphasize that the curves A, C, and E have similar
shape on the figure, but only curve E displays an actual current
reversal. This 0–π transition is still of the Houzet-Buzdin
type, but from a different mechanism from Ref. [6]. The 0–π

transition is similar to the transition of the 5F presented in
Sec. IV B since the sign change of the m �= 0 components
is controlled by m = 0 components (see the discussion in
Sec. IV B).

We end this section by pointing out the effect on the DTM
when canting the central layer F2 away from π/2. The min-
imum of the DTM deepens in Fig. 4 as one decreases the
canting of F2. Below a certain angle φ the minimum will
cross the Ic = 0 line. When that happens, two 0–π transitions
appear along the dF1/ξc axis. The separation between these
transitions increases as one decreases the canting from the
φ = π/2 case since the algebraic minimum continues moving
down. As one further lowers the canting, the DTM transforms
into a true 0–π transition for a very small canting angle interval
0 � φ < π/8. This feature, implied by Fig. 4, underlines the
point made earlier about the drastic changes of pair corre-
lations as one approaches the homogeneous configuration.
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Interestingly, the 0–π transitions generated in this way result
from the competition between the increasing m �= 0 compo-
nents and the m = 0 correlations and are thus of the singlet-
triplet type according to the classification proposed in Ref. [31].
Noteworthy is that this transition occurs in a discrete domain
wall, adding to the classification of 0–π transitions of that
paper. It is also possible to find this behavior without canting
and for highly tuned parameters choices for the trilayer.

VI. CONCLUSION

Spin valves with three and five homogeneous but misaligned
ferromagnetic layers were studied to show the effect of canting
on pair correlations and the Josephson current in first harmonic.
While the trilayer has parallel-spin pair correlation components
(m = ±1) that are robust to canting, the pentalayer is much
more susceptible to misalignment. The pentalayer also tunes
in zero-spin-projection pair correlations (m = 0) components
in the central layer. Another difference between the trilayer
and the pentalayer is that the presence of m = 0 components
in the central layer controls the sign of the m �= 0 components
generated from either side of the multilayer. As a result, the
critical current in the pentalayer displays a 0–π transition
(current reversal) that is determined by the m = 0 components.

Both geometries display characteristic features related to
m �= 0 pair correlations for a wide range of canting angles; a
physical system does not need to have perfectly perpendicular
magnetization configuration for these effects to be prominent.
With a canting angle that is too small, of course, the results
will mimic a homogeneous system, but above the minimum
angle used here of π/8, a measurable current was for example
obtained in the trilayer that does not vary drastically from the
π/2 configuration with canting (by a factor of less than 10).
This outcome is relevant for experiments and applications.

The determination of the critical current as a function
of the central layer thickness dF3 for varying canting in the
pentalayer led to distinguish three thickness regimes. For thin
central layers, increased canting leads to a current approaching
that of the trilayer spin valve. In the intermediate regime, an
increase in canting leads to the appearance of a 0–π transition,
characteristic of the presence of m = 0 pair correlations in

the central layer. Finally, for large thicknesses we observed a
decrease of the current with increased canting. The critical
current through the pentalayer thus provides a variety of
predictions to be tested experimentally.

An important result of this work is the demonstration that
for wide enough junctions, depleted-triplet minima (DTM)
rather than 0–π transitions appear in the first harmonic critical
current profile. Unlike the transition, the minimum cannot
simply be identified by inspecting the figures depicting the
Josephson current as a function of a parameter of the system
(thickness or canting of the magnetic layer for example); it is
difficult to distinguish on a logarithmic scale a dip representing
a minimum from the dip characteristic of a 0–π transition
node. Introducing an analytic toy model, we showed that for
wide junctions the dips indeed are true minima that do not
cross the Ic = 0 line. These minima appear when two effects
occur simultaneously. A node of the m = 0 pair correlations
must be located at the interface between ferromagnets and
a hidden sign change must occur for both the left and right
correlation contributions (unseen in the Josephson current).
The concurrence of these two effects leads to a reduction of the
m �= 0 triplet contributions that determine the magnitude of the
Josephson current in these spin valves. It is recommended that
experimental studies on spin valves with thicknesses beyond
those investigated so far be made to identify the DTM feature.
This experiment would provide yet another unambiguous
demonstration of the appearance of m �= 0 components. The
results obtained by varying the canting angle provide a variety
of situations that could be used in applications.
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