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Theory of energy spectra in superfluid 4He counterflow turbulence
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In the thermally driven superfluid 4He turbulence, the counterflow velocity Uns partially decouples normal and
superfluid turbulent velocities. Recently, we suggested [J. Low. Temp. Phys. 187, 497 (2017)] that this decoupling
should tremendously increase the turbulent energy dissipation by mutual friction and significantly suppress
the energy spectra. Comprehensive measurements of the apparent scaling exponent nexp of the second-order
normal-fluid velocity structure function S2(r) ∝ rnexp in the counterflow turbulence [J. Gao et al., Phys. Rev. B
96, 094511 (2017)] confirmed our scenario of gradual dependence of the turbulence statistics on flow parameters.
We develop an analytical theory of the counterflow turbulence, accounting for a twofold mechanism of this
phenomenon: (i) a scale-dependent competition between the turbulent velocity coupling by mutual friction and
the Uns-induced turbulent velocity decoupling and (ii) the turbulent energy dissipation by mutual friction enhanced
by the velocity decoupling. The suggested theory predicts the energy spectra for a wide range of flow parameters.
The mean exponents of the normal-fluid energy spectra 〈m〉10, found without fitting parameters, qualitatively
agree with the observed nexp + 1 for T � 1.85 K.

DOI: 10.1103/PhysRevB.97.214513

I. INTRODUCTION

Below Bose-Einstein condensation temperature Tλ ≈
2.17 K, liquid 4He becomes a quantum inviscid superfluid
[1–3]. The vorticity in superfluid 4He is constrained to vortex-
line singularities of core radius a0 ≈ 10−8 cm and fixed cir-
culation κ = h/M , where h is Planck’s constant and M is
the mass of the 4He atom [4]. The superfluid turbulence takes
form of a complex tangle of these vortex lines, with a typical
intervortex distance [5] � ∼ 10−4–10−2 cm.

Large-scale hydrodynamics of such system can be described
by a two-fluid model, interpreting 4He as a mixture of two
coupled fluid components: a superfluid with zero viscosity and
a viscous normal fluid. The contributions of the components to
the mixture are defined by their densities ρs,ρn : ρs + ρn = ρ.
Here, ρ is the density of 4He. The components are coupled
by a mutual-friction force, mediated by the tangle of quantum
vortices [2,5–8].

There is a growing consensus [9–11] that large-scale tur-
bulence in mechanically driven superfluid 4He is similar to
classical “Kolmogorov” turbulence. In this case, both compo-
nents move in the same direction and the mutual-friction force
couples them almost at all scales. In this “coflowing” quasi-
classical superfluid 4He Kolmogorov turbulence, the energy is
supplied to the turbulent velocity fluctuations by large-scale
instabilities, and is dissipated at small scales (below so-called
Kolmogorov microscale) by viscous friction. Perhaps, its most
important property is a step-by-step energy transfer over scales
with a constant (k-independent) energy flux ε(k) = const in the
intermediate (or “inertial”) interval of scales.

The superfluid turbulence, called ultraquantum or Vinen’s
turbulence, may be excited in 4He directly at scales of the order
of �, for example, by short pulses of electron beam [12]. In this
case, there is no large-scale fluid motion. The tangle energy
is dissipated by the mutual friction in the processes of vortex
reconnections. During reconnection, a sharp vortex tip causes

very fast motion in the vortex lines, that cannot be followed by
the normal-fluid component due to its large inertia. The energy
spectrum of such a turbulence has a form of the peak with a
maximum around kmax ∼ π/�. Here, the energy is pumped and
dissipated at the same scale and there is no energy flux over
scales: ε(k) = 0.

In discussions of the energy spectra of superfluid turbulence
in 4He, the “Kolmogorov turbulence” is often contrasted
with the “ultraquantum” turbulence as the only two forms
of the energy transfer in the superfluids. However, we note
that hydrodynamic turbulence in superfluid 3He, mechanically
driven at large-scales, can be considered as a third type of
superfluid turbulence. In this case, the normal-fluid component
can be considered laminar (or resting) due to its very large
kinematic viscosity. The energy cascade toward small scales is
accompanied by energy dissipation at all scales caused by the
mutual friction. Therefore, the energy flux ε(k) is not constant,
as in the Kolmogorov turbulence, and is not zero, as in Vinen’s
turbulence, but is a decreasing function of k.

There is one more, unique, way to generate turbulence in
superfluid 4He in a channel. When a heater is located at a closed
end of a channel, while another end is open to a superfluid
helium bath, the heat flux is carried away from the heater by
the normal fluid alone. To conserve mass, a superfluid current
arises in the opposite direction. Here, both components move
relative to the channel walls with respective mean velocities Un

and U s. In this way, a counterflow velocity Uns = Un − U s �=
0, proportional to the applied heat flux, is created along the
channel, giving rise to a tangle of vortex lines.

Systematic studies of counterflow turbulence have more
than half of a century history, going back to classical 1957
papers of Vinen [7]. Due to experimental limitations, these
studies were mostly concentrated on global characteristics
of the superfluid turbulence, such as Uns dependence of the
intervortex distance �(Uns) (cf. [9,11]), the time evolution of
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the vortex-line density [13–15], and similar. The statistics of
turbulent fluctuations was inaccessible. Only few years ago,
with the development of breakthrough experimental visual-
ization techniques, the studies of the turbulent statistics of the
normal-fluid [16–19] and superfluid [20,21] components in the
4He counterflow become possible.

In particular, using thin lines of the triplet-state He2 molec-
ular tracers created by a femtosecond-laser field ionization of
He atoms [17,18,22], one can measure the streamwise normal
velocity across a channel vx(y,t) and extract the transversal
second-order structure functions

S2(r) = 〈|δrvx(y,t)|2〉, δrvx(y,t) ≡ vx(y + r,t) − vx(y,t)

of the velocity differences δr . Here, 〈. . . 〉 is a “proper”
averaging: over y, ensemble of visualization pulses and time
(in the stationary regime) or over an ensemble at fixed time
delay after switching off the heat flux. The physical meaning
of S2(r) is the kinetic energy of turbulent velocity fluctuations
(eddies, for shortness) of a scale r . For example, S2(r) ∝ rn

means that the energy of eddies of size r scales as rn.
Another way to characterize the energy distribution in the

one-dimensional (1D) wave-number k space is 1D energy
spectrum E(k,t), normalized such that the energy density per
unit mass is defined as

E(t) = 1

2V

∫
〈|u(r,t)|2〉d r =

∫ ∞

0
E(k,t)dk , (1)

where V = ∫
d r is the system volume.

In the scale-invariant situation, such as the inertial interval
of scales in the classical hydrodynamic isotropic turbulence,
E(k) ∝ k−m. In this case, S2(r) may be reconstructed from
E(k) (up to irrelevant for us dimensionless prefactor) as
follows:

S2(r) =
∫ ∞

0
E(k)

[
1 − sin(k r)

k r

]
dk. (2a)

If E(k) ∝ k−m and m belongs to a so-called “window of
locality” [23] 1 < m < 3, the integral (2a) converges and
exponents n and m are related:

n = m − 1. (2b)

For example, Kolmogorov-1941 (K41) dimensional reason-
ing gives mK41 = 5

3 (falls within the window of locality) and
simultaneously nK41 = 2

3 , in agreement with Eq. (2b).
First measurements [17] of S2(r) in the 4He counterflow at

T = 1.83 K found that S2(r) ∝ r (i.e., n = 1) instead of its
K41 value nK41 = 2

3 :

K41: S2(r) ∝ r2/3 ⇒ 4He: S2(r) ∝ r. (3a)

Using the relation (2b), the normal-fluid energy spectrum was
reconstructed in Ref. [17] as

4He: EHe4(k) ∝ k−2. (3b)

Observations (3), with an integer scaling exponent, stim-
ulated attempts to clarify a possible “simple” underlying
physical mechanism. For example, based on the similarity of
the spectrum (3b) with the Kadomtsev-Petviashvili spectrum
[24] of the energy spectrum of strong acoustic turbulence

E(k) ∝ k−2 (cf. [25]) one may think that the 4He spectrum
(3b) originates from (possible) discontinuities of the normal-
fluid and superfluid velocities vx at planes orthogonal to the
counterflow direction x̂. Indeed, in the presence of randomly
distributed velocity discontinuities, their contribution to the
S2(r) is proportional to their number between two space points,
separated by r , i.e., S2(r) ∝ r , as reported in Ref. [17].

However, to the best of our knowledge, no analytical
reasons or numerical justifications for these discontinuities
were found so far. On the contrary, the developed analytic
approach [26–28] to the problem of turbulent statistics of 4He
counterflow suggested a different scenario of this phenomenon.
It was shown [26] that in the counterflow turbulence, the
normal-fluid and superfluid turbulent velocity fluctuations un

and us become increasingly statistically independent (decou-
pled) as their scale decreases. This decoupling is due to
sweeping of the normal-fluid eddies by the mean normal-
fluid velocity Un, while the superfluid eddies are swept by
the mean superfluid velocity Us in the opposite direction.
Therefore, small-scale normal-fluid and superfluid eddies do
not have enough time to be correlated by the mutual friction.
This counterflow-induced decoupling significantly increases
the energy dissipation by mutual friction, leading [27,28] to
a dependence of the turbulent statistics on the counterflow
velocity. To what respect the scenario [28] reflects some (if any)
aspects of the turbulent statistics in counterflow was an open
question.

Recently, systematic experimental studies [18] of the coun-
terflow turbulence statistics in a wide range of temperatures T

and counterflow velocities Uns were carried out. The normal
velocity structure functions S2(r) were found to have scaling
behavior S2(r) ∝ rn in an interval of scales about one decade
with an apparent scaling exponent that depends on both Uns

and T , varying from about 0.9 to 1.4.
A first qualitative attempt to understand theoretically the

underlying physics of these new results was undertaken already
in Ref. [18]. Main physical ideas, used in this approach, largely
overlap with those of the Weizmann group [26,28–31], but are
developed differently.

In this paper, we offer a semiquantitative theory of a sta-
tionary, space-homogeneous isotropic counterflow turbulence
in superfluid 4He for a wide range of temperatures T and
counterflow velocities Uns. The theory clarifies the details
of complicated interplay between competing mechanisms of
the turbulent velocity coupling by mutual friction and the
Uns-induced turbulent velocity decoupling, which, in addition,
facilitates the turbulent energy dissipation by the mutual
friction. Our main results are the turbulent energy spectra
En(k) and Es(k) of the normal-fluid and superfluid components
of 4He in the wide range of the governing parameters: the
temperature, the counterflow velocity, the vortex-line density,
and Reynolds numbers. In particular, we demonstrate that the
counterflow turbulence in 4He can be considered as the most
general form of superfluid turbulence that manifests charac-
teristic features of all three types of turbulence, discussed
above:

(i) The quasiclassical Kolomogov-type turbulence with a
constant energy flux at scales r that exceed some crossover
scale r×, with both fluid components well coupled by mutual
friction.
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FIG. 1. The compensated energy spectra Ej (q) = q5/3Ej (q)/Ej (q0) vs q = k/k0 for Rej = ∞ and different combinations of T and Ũns. The
lines corresponding to different values of 	̃ns are shown by different colors (from top to bottom): 	̃ = 0 (the horizontal gray lines), 	̃ns = 1.0
(black lines), 	̃ns = 5.0 (blue lines), 	̃ns = 10.0 (green lines), and 	̃ns = 20.0 (the lowest red lines). The normal-fluid energy spectra are shown
by solid lines, the superfluid spectra by dashed lines. Note that in the left column q5/3Ej (q) varies from 0.05 to 1.0, while in the middle and the
right columns from 0.01 to 1.0. In these panels, the level 0.05 is shown by the horizontal dotted lines. The labels “	“ in the figures mark one
of the lines of the corresponding color (solid or dashed lines) for further clarity.

(ii) The 3He-like turbulence at scales � < r < r×, at which
the normal-fluid and superfluid components become decoupled
and the turbulent energy is dissipated by the mutual friction
during energy cascade toward small scales, similar to 3He
turbulence with decreasing energy flux.

(iii) The ultraquantum Vinen’s turbulence with the energy
spectrum peak at the intervortex scale � and no energy flux.

The paper is organized as follows: In Sec. II we develop
our analytical theory of the energy spectra in counterflow

superfluid 4He turbulence. Our approach is based on the
coarse-grained Hall-Vinen-Bekarevich-Khalatnikov [32,33]
equations of motion for the normal-fluid and superfluid tur-
bulent velocities, summarized in Sec. II A. In Sec. II B we
derive the balance equations for the normal and superfluid
turbulent energy spectra En(k) and Es(k). In Sec. II C we
suggest an important improvement to the algebraic closure: the
self-consistent differential closure, that connects the energy
fluxes over scales εn(k) and εs(k) with the corresponding
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FIG. 2. The outer-scale scaling exponents of the normal component mn(1) [Eq. (19)] vs 	̃ns for Ũns = 1 (left panel), Ũns = 4 (middle panel),
and Ũns = 8 (right panel). The lines from top to bottom correspond to T = 1.65 K (black lines), T = 1.85 K (blue lines), T = 2.0 K (green
lines), and T = 2.10 K (red lines).

energy spectra En(k) and Es(k) and their k derivatives. The
crucial component of the theory, the cross-correlation function
of the normal-fluid and superfluid velocities [26], is introduced
in Sec. II D. In the following Secs. II E and II F we formulate
a simplified dimensionless version of the energy balance (18),
which is central to our current approach.

We present the results of the numerical solution of Eq. (18)
in a wide range of parameters (T , Uns, L, Re) in Sec. III and
analyze them in details in Secs. III A–III C. This allows us to
clarify how three underlying physical processes, (i) the tur-
bulent velocity coupling by the mutual friction, characterized
by a frequency 	ns [Eq. (11d)], (ii) the velocity decoupling by
counterflow velocity, and (iii) the energy dissipation by mutual
friction, are competing. As a result of this competition, En(k)
and Es(k) have complicated behavior (cf. Fig. 1). In particular,
we show that while the spectra are suppressed compared to
the classical K41 spectrum at all scales, the degree of this
suppression is scale dependent: at small scales, the counterflow
spectrum is less suppressed for larger 	ns, while at larger scales
the suppression becomes stronger with increasing 	ns. The
crossover scale k× depends on both 	ns and Uns such that the
resulting spectra are not scale invariant (cf. Figs. 2 and 3).

FIG. 3. The 	̃ns dependence of the scaling exponents mj (1) and
the mean exponent 〈mj 〉10. The normal-fluid component exponent
mn(1) is marked as red solid line, and 〈mn〉10 by red full circles. The
superfluid exponent ms(1) is marked by blue dashed line, and the
mean exponent 〈ms〉10 by empty blue circles. The exponents were
calculated for T = 2.0 K and Ũns = 4.

Note that all results, discussed above, are related to the
quasiclassical energy spectra of turbulent motion with the
scales r much larger than the intervortex distance �. In Sec.
III D we consider the presumed quantum peak in the superfluid
energy spectra, clarifying its intensity with respect to the qua-
siclassical part of the superfluid spectra. Our important result
is that the quasiclassical and quantum parts of the superfluid
spectra are well separated in the wave-number space (see
Fig. 5).

In Sec. III E we apply out theory to the range of param-
eters, similar to those realized in Ref. [18]. To this end, we
first discuss and estimate in Sec. III E 1 the dimensionless
parameters Rej , 	ns, and Ũns that determine, according to our
theory, the energy spectra. These parameters for 11 experi-
mental conditions at four temperatures T = 1.65, 1.85, 2.0,
and 2.1 K are collected in Table II. The resulting pairs of
normal-fluid and superfluid energy spectra are shown in Fig. 6.
The relation between experimental apparent scaling exponents
nexp of the second-order structure and the theoretical apparent
scaling exponents of the energy spectra are discussed in
Sec. III E 2.

Finally, we summarize our findings. We discuss the restric-
tions and simplifications, used in our theory, and delineate
possible directions of further development. In particular, we
connect the discrepancy between theoretical and experimental
scaling exponents at low temperatures with the possible influ-
ence of the space inhomogeneity of the counterflow turbulence
in a channel at low Reynolds numbers, which is not accounted
for in our theory.

II. ENERGY-BALANCED EQUATION

A. Gradually damped HVBK equations for counterflow
4He turbulence

Following Refs. [28,31,34], we describe the large-scale tur-
bulence in superfluid 4He by the gradually damped version [35]
of the coarse-grained Hall-Vinen-Bekarevich-Khalatnikov
(HVBK) [32,33] equations, generalized in Ref. [26] for the
counterflow turbulence. In these equations, the superfluid
vorticity is assumed continuous, limiting its applicability to
large scales with characteristic scale of turbulent fluctuations
R > �. HVBK equations have a form of two Navier-Stokes
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equations for the turbulent velocity fluctuations un(r,t) and
us(r,t):

∂ us

∂t
+ [(us + U s) · ∇]us − 1

ρs
∇ps = νs �us + f ns , (4a)

∂ un

∂t
+ [(un + Un) · ∇]un − 1

ρn
∇pn = νn �un − ρs

ρn
f ns ,

pn = ρn

ρ

[
p + ρs

2
|us − un|2

]
, ps = ρs

ρ

[
p − ρn

2
|us − un|2

]
,

f ns � 	s (un − us), 	s = α(T )κL, (4b)

coupled by the mutual-friction force f ns in the form (4b),
suggested in Ref. [29]. It involves the turbulent velocity
fluctuations of the normal-fluid and superfluid components,
the temperature-dependent dimensionless dissipative mutual-
friction parameter α(T ), and the superfluid vorticity κL,
defined by the vortex-line density L, � = L−1/2.

Other parameters entering Eqs. (4a) include the pressures
pn, ps of the normal-fluid and the superfluid components, the
total density ρ ≡ ρs + ρn of 4He and the kinematic viscosity of
normal-fluid component νn = η/ρn with η being the dynamical
viscosity [1] of normal 4He component. The dissipative term
with the Vinen’s effective superfluid viscosity νs [5] was
added in Ref. [35] to account for the energy dissipation at
the intervortex scale � due to vortex reconnections, the energy
transfer to Kelvin waves, and similar effects.

Generally speaking, Eqs. (4a) involve also contributions of
a reactive (dimensionless) mutual-friction parameter α′, that
renormalizes the nonlinear terms. For example, in Eq. (4a) (us ·
∇)us ⇒ (1 − α′)(us · ∇)us. However, in the studied range of
temperatures |α′| � 0.02 
 1 and this renormalization can be
ignored. For similar reasons, we neglected all other α′-related
terms in Eqs. (4).

B. General energy-balance equations

Our theory is based on the stationary balance equations for
the 1D energy spectra En(k) and Es(k) of the normal-fluid
and superfluid components, defined by Eq. (1). To derive these
equations, Eqs. (4a) were Fourier transformed, multiplied by
the complex conjugates of the corresponding velocities, and
properly averaged. The pressure terms were eliminated using
the incompressibility conditions. Finally, the energy-balance
equations have a form

dεj

dk
= 	j [Ens(k) − Ej (k)] − 2 νjk

2Ej (k). (5)

Here, we use subscript “j” to denote either superfluid or
normal fluid j ∈ {s, n} and define 	n = 	sρs/ρn. The normal-
fluid–superfluid cross-correlation function Ens(k) is defined
similarly to Eq. (1):

Ens = 1

2V

∫
〈un(r,t) · us(r,t)〉d r =

∫ ∞

0
Ens(k) dk. (6)

The energy-transfer term dεj/dk in Eq. (5) originates from
the nonlinear terms in the HVBK Eqs. (4) and has the same

form [23,36,37] as in classical turbulence:

dεj (k)

dk
= 2 Re

{ ∫
V ξβγ (k,q, p) F

ξβγ

j (k,q, p)

× δ(k + q + p)
d3q d3p

(2π )6

}
, (7a)

V ξβγ (k,q, p) = i

(
δξξ ′ − kξ kξ ′

k2

)
(kβδξ ′γ + kγ δξ ′β). (7b)

Here, F
ξβγ

j (k,q, p) is the simultaneous triple-correlation
function of turbulent (normal-fluid or superfluid) velocity
fluctuations in the k representation, that we will not specify
here and V ξβγ (k,q, p) is the interaction vertex in the HVBK
(as well as in the Navier-Stokes) equations. Importantly, the
right-hand side of Eq. (7a) conserves the total turbulent kinetic
energy [i.e., the integral of Ej (k) over entire k space] and
therefore can be written in the divergent form as dεj/dk.

C. Self-consistent differential closure

One of the main problems in the theory of hydrody-
namic turbulence is to find the triple-correlation function
F ξβγ (k,q, p), which determines the energy flux ε(k) in
Eqs. (7). The simplest way is to directly model ε(k) using
dimensional reasoning to connect ε(k) and the energy spectrum
E(k) with the same wave number k:

ε(k) = Ck5/2E3/2(k). (8)

Here, C is the phenomenological constant with the value
C ≈ 0.5, corresponding to the fully developed turbulence of
classical fluid [38,39]. The algebraic closure (8) is based
[40] mainly on the Kolmogorov-1941 (K41) assumption of
the universality of turbulent statistics in the limit of large
Reynolds numbers and on the Richardson-1922 step-by-step
cascade picture of the energy transfer towards large k. The
energy-cascade picture combined with the K41 idea that in this
case ε(k) is the only relevant physical parameter determining
the level of turbulent excitations and their statistics lead to
Eq. (8).

More realistic modeling of ε(k) can be reached in the frame-
work of integral closures, widely used in analytic theories of
classical turbulence [40], for example, so-called eddy-damped
quasinormal Markovian (EDQNM) closure or Kraichnan’s
direct interaction approximation [41,42]. These closures are
based on the representation of third-order velocity correlation
functionF

ξβγ
s in Eq. (7a) as a product of the vertexV [Eq. (7b)],

two second-order correlations E(k), and the response (Green’s)
functions G(k) ∼ �(k), the typical relaxation frequencies at
scale k. Keeping in mind the uncontrolled character of integral
closures, L’vov, Nazarenko, and Rudenko (LNR) suggested in
Ref. [43] a simplified version of EDQNM closure with the same
level of justification for isotropic turbulence. LNR replaced
a volume element [d3q d3p δ3(k + q + p)] in Eq. (7a), in-
volving three-dimensional vectors k, q, and p, by its isotropic
version [q2dq p2dp δ(k + q + p)/(k2 + q2 + p2)], involving
only one-dimensional vectors k, q, and p varying over the
interval (−∞, + ∞). In addition, they replaced the interaction
amplitude V ξβγ (k,q, p) [Eq. (7b)] by its scalar version (ik).
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The resulting LNR closure can be written as follows:

dε(k)

dk

= A1 k

2π2

∫ ∞

−∞

dq dp δ(k + q + p)

2π (k2 + q2 + p2)

× k3 E(|q|)E(|p|) + q3 E(|k|)E(|p|) + p3 E(|q|)E(|k|)
�(|k|) + �(|q|) + �(|p|) .

(9a)

Here, A1 is a dimensionless parameter of the order of unity.
The integral closure (9a) may be related to the algebraic

closure (8) by assuming that the integral (9a) converges (i.e.,
the main contribution to it comes from the wave numbers of
similar scales q ∼ p ∼ k, so-called locality of interaction) and
estimating �(k) as

√
k3E(k) and dε(k)/dk as ε(k)/k.

The LNR model (9a) satisfies all the general closure
requirements: (i) it conserves energy,

∫
dε(k)
dk

dk = 0 for any
E(k); (ii) dε(k)

dk
= 0 for the thermodynamic equilibrium spec-

trum E(k) ∝ k2 and for the cascade K41 spectrum E(k) ∝
|k|−5/3. Importantly, the integrand in Eq. (9a) has the correct
asymptotic behavior in the limits of small and large q/k, as
required by the sweeping-free Belinicher-L’vov representation
[37]. This means that the model (9a) adequately reflects the
contributions of the extended-interaction triads and thus can
be used for the analysis of the nonlocal energy transfer,
which become important [31] when the scaling exponent m

approaches m = 3.
The mutual-friction terms in Eqs. (4a) cause additional en-

ergy dissipation at all scales. Therefore, we can expect that the
energy spectra may be steeper than K41 and not scale invariant.
To generalize the closure (9a) for such a situation, assume
that the energy spectrum has a form E(k) = E0/km with a
scaling exponent m ≥ 5

3 . As m → 3, the main contribution to
the integral (9a) comes from the distant interactions with wave
vectors of different scales. In particular, the δ function in the
integral dictates that for q 
 k, p ≈ −k and the integral (9a)
may be approximated as

dε(k)

dk
≈ A1 E0

8π3k�(|k|)
∫ k

−k

dq

qm

× [k3 E(|k + q|) − (k + q)3E(k)] (9b)

≈ A1 E0

8π3k�(|k|)
d2

dq2
[k3 E(|k + q|)−(k + q)3E(k)]q→0

×
∫ ∞

0
q2−mdq � A1[kE(k)]3/2

8π3(3 − m)
. (9c)

Dimensionally, Eq. (9c) coincides with the K41 algebraic
closure (8), but contains additional prefactor 1/(3 − m). This
may be interpreted as m-dependent parameter C in front of
Eq. (8), which diverges as m → 3. The physical reason for
such a dependence is simple: as m increases, more and more
extended triads that involve k and (q 
 k) modes contribute
to the energy influx in the k mode. As a result, the energy flux
grows ∝1/(3 − m), according to Eq. (9c). Moreover, when
m � 3 the integral (9c) formally diverges, meaning that the
leading contribution to the flux at k mode comes not from
comparable (q ∼ k) modes (as assumed in the Richardson-

Kolmogorov step-by-step cascade picture of the energy flux),
but directly from the largest, energy-containing modes in the
turbulent flow.

Thus, by accounting for the possible scale-dependent non-
local energy transfer over scales, we generalize the stan-
dard K41 closure (8) by including the k dependence of the
prefactor C:

ε(k) = C(k)k5/2E3/2(k), C(k) = 4 C

3 [3 − m(k)]
. (10a)

For convenience, the prefactor C(k) is chosen to reproduce the
Kolmogorov constant C for the K41 scaling exponent m(k) =
5
3 . As follows from above arguments, the function of m(k) in
(10a) should be understood as a local scaling exponent of E(k):

m(k) = d ln E(k)

d ln(k)
, (10b)

making the new closure a self-consistent differential clo-
sure.

D. Cross-correlation function

The general form of the cross-correlation function [26] Ens

reads as

Ens(k) = D(k)E(0)
ns (k), D(k) = arctan[ξ (k)]

ξ (k)
, (11a)

ξ (k) = k

k×
, k× = �(k)

Uns
. (11b)

Here, D(k) is the Uns-dependent decoupling function, and
E(0)

ns (k) has the form [35,44]

E(0)
ns (k) = 	ns[ρnEn(k) + ρsEs(k)]

�(k) ρ
, (11c)

�(k) = 	ns + γs(k) + γn(k) + (νs + νn) k2,

	ns = 	n + 	s = ακL ρ

ρn
, γj (k) = Cγ

√
k3Ej (k).

(11d)

Here, Cγ is a phenomenological parameter, the same for both
components. However, En(k) and Es(k) in Eq. (11c) are not
the energy spectra at Uns = 0, but the Uns-dependent energy
spectra, found self-consistently by solving Eqs. (5) with Ens(k)
given by Eqs. (11).

E. Simplified energy-balance equation

Equations (5) are coupled via cross-correlation function
Ens, which depend on the energy spectra of both components.
To find the leading contributions to Ens, we recall that at k

close to k0 the velocities are well correlated [26], meaning that
En(k) � Es(k), while for k � k0 they are almost decorrelated
and Ens(k) is negligible compared to En and Es. Therefore,
without loss of accuracy we can replace En(k) by Es(k) in
Eqs. (11) for Ens that enters into balance equation (5) for
the superfluid and Es(k) by En(k) for Ens that enters into
normal-fluid balance equation.
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TABLE I. The parameters [1] of the superfluid 4He: the normal
component fraction ρn/ρ; the mutual-friction parameter α, the combi-
nation αρ/ρn; the kinematic viscosity of the normal-fluid component
νn ≡ μ/ρn; the effective superfluid viscosity [5] ν ′

s.

T (K) 1.4 1.65 1.85 1.95 2.0 2.1

ρn/ρ 0.0728 0.193 0.364 0.482 0.553 0.741
α 0.051 0.111 0.181 0.236 0.279 0.481
αρ/ρn 0.701 0.575 0.497 0.489 0.504 0.649
νn/κ 1.34 0.462 0.248 0.199 0.182 0.167
ν ′

s/κ 0.135 0.228 0.265 0.296 0.312 0.427

In this way, we obtain decoupled equations for the fluxes εn

and εs:

dεj

dk
= Ej (k){	[Dj (k) − 1] − 2 νjk

2}, (12a)

with different decoupling functions for the normal-fluid and
superfluid components:

Dj (k) = 	ns arctan[kUns/�j (k)]

kUns
, (12b)

and different values of full damping frequencies:

�j (k) = 	ns + 2Cγ

√
k3Ej (k) + (νs + νn)k2. (12c)

The balance equations (12), being uncoupled for the
normal-fluid and superfluid components, are already much
simpler than the fully coupled balance equations (5) and (11).

We are now ready to make the next step and to analyze the
relative importance of different contributions to the damping
frequencies �j (k), comparing the dissipation due to mutual
friction 	ns, the rate of the energy transfer between scales
Cγ

√
k3E(k), and the viscous dissipation (νs + νn)k2. We start

with 	ns = α(T )κLρ/ρn(T ). In the intermediate range of
temperatures α(T )ρ/ρn(T ) ≈ 0.5, weakly depending on T (cf.
Table I). Therefore, we can easily take 	ns ≈ 0.5κL.

Next, the sum (νs + νn) in this temperature interval also
weakly depends on T and is very close to 0.5 κ (cf. Table I and
Fig. 5 in Refs. [16,35] for discussion on physical origin of the
numerical value). Estimating the largest wave number of the
inertial interval by the quantum cutoff kmax ∼ 1/� = √

L, we
find that (νs + νn)k2

max � 0.5κL ≈ 	ns.
Therefore, (νs + νn)k2 < 	ns in the entire inertial interval,

except for its large-k end, where the accurate representation
of the decoupling functions is not important. This allows us to
neglect in most cases the viscous contributions in Eq. (12c) for
�j (k).

To estimate the energy-transfer terms, recall that in the
classical K41 turbulence [with E(k) ∝ k−5/3]

√
k3E(k) grows

as k2/3. It remains larger than viscous terms in the entire
inertial range and becomes compatible with νk2 at the large-k
end of the inertial interval, at the Kolmogorov microscale.
In our case, the spectra Ej (k) decay with k faster than the
K41 spectrum, owing to the energy dissipation due to mutual
friction. Therefore, in the inertial interval of counterflow
turbulence

√
k3Ej (k) grows slower than in K41 turbulence and

remains smaller than 	ns for all k. Moreover, recent estimates

of Cγ using direct numerical simulations of the superfluid 4He
turbulence [34] give Cγ 
 1. Therefore, for these conditions
we can neglect the energy-transfer terms compared to 	ns.
Having all these in mind, we approximate �j as 	ns and, using
Eq. (12b), get

Dn(k) = Ds(k) ≡ D(k), (13)

with ξ (k) = kUns/	ns.
Now, we combine Eqs. (10), (12a), and (13) to finalize an

approximation for the balance equations

C(k)
d

dk
k5/2E

3/2
j (k) = Ej (k){	j [D(k) − 1] − 2νj k

2}, (14a)

D(k) = arctan[ξ (k)]

ξ (k)
, ξ (k) = kUns

	ns
. (14b)

In deriving Eq. (14a) we neglected for simplicity the k

derivative of m(k) in the expression for C(k) with respect to
d[k5/3E(k)]/dk since m(k) varies between 5

3 to 3 in the entire
range of k, while k5/3E(k) varies by many orders of magnitude.

F. Dimensionless form of the energy-balance equation

To analyze the energy balance (14) and to open a way to
its numerical solution, we first rewrite it in the dimensionless
form. To this end, we introduce a dimensionless wave number
q and a dimensionless energy spectrum E(q):

q = k/k0, E(q) = E(k)/E(k0). (15)

Here, the minimal wave number is estimated as k0 = 2π/�,
where � is the outer scale of turbulence.

The resulting dimensionless equations for new dimension-
less functions

�j (q) =
√

q5/3Ej (q) (16a)

take the form

d�j (q)

dq
= Aj

D(qk0) − 1

q5/3
− aj q1/3, j ∈ {s,n} (16b)

Aj = 	j

3C(k)
√

k3
0Ej (k0)

, (16c)

aj = 2νj

√
k0

3C(k)
√

Ej (k0)
. (16d)

To clarify further the parameters in Eqs. (16), we define
the dimensionless parameters that govern the counterflow
superfluid turbulence: the turbulent Reynolds numbers, the effi-
ciency of dissipation by mutual friction, and the dimensionless
counterflow velocity.

Similar to the classical hydrodynamic turbulence, the en-
ergy dissipation by viscous friction in the superfluid turbulence
is governed by the Reynolds number. There are two such
Reynolds numbers, Ren and Res:

Rej = uT

k0νj

, uT �
√

k0E(k0). (17a)

Here, we ignore the presumably small difference between
velocity fluctuations of the components at scale k0 [i.e., assume
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Es(k0) = En(k0) = E(k0)] and estimate the root-mean-square
(rms) turbulent fluctuations uT as

√
k0E(k0). The ratio of

the Reynolds numbers (17a) is defined by the viscosities
Res/Ren = νn/νs and depends only on the temperature. There-
fore, for a given temperature we are left with only one Reynolds
number, say Ren.

There is one more mechanism of the energy dissipation
in superfluid turbulence: the dissipation by mutual friction.
This kind of dissipation is characterized by the frequency 	ns

[Eq. (11c)].
As was mentioned above, 	ns ≈ 0.5κL in the entire temper-

ature range. Then, the partial frequencies 	s and 	n that govern
the energy dissipation by mutual friction in the superfluid and
normal-fluid components with a given 	ns, depend only on
the densities ρs and ρn, according to Eq. (11c). Therefore, we
can say that for a given temperature, the dissipation by mutual
friction is governed by only one frequency 	ns ∝ L.

As was shown in Refs. [29–31], the rate of energy dis-
sipation by mutual friction should be compared with the
k-dependent rate of the energy transfer over the cascade,
characterized by the turnover frequency of the eddies of scale
1/k, γj (k) [Eq. (11c)]. This dictates a natural normalization of
	ns by γ (k0), which can be estimated as k0uT. In other words,
we suggest to use

	̃ns ≡ 	ns/k0uT, (17b)

as the dimensionless parameter that characterizes the efficiency
of dissipation by mutual friction.

The last important parameter of the problem is the counter-
flow velocity Uns. It is natural to normalize it by the turbulent
velocity uT, introducing a dimensionless velocity

Ũns ≡ Uns/uT. (17c)

Using parameters (17) together with Eqs. (10) and (14b) we
rewrite Eq. (16) as follows:

4C
d�j

dq
= −

[
2

3
+ d�j

dq

q

�j

]

×
{

	̃j

q5/3

[
1 − arctan(q/q×)

q/q×

]
+ 2

Rej

}
, (18a)

	̃n = 	̃ns
ρs

ρ
, 	̃s = 	̃ns

ρn

ρ
, q× = 	̃ns

Ũns
. (18b)

These are the first-order ordinary differential equations for
�j (q). Aside from the temperature-dependent parameter ρn/ρ,
they include four dimensionless parameters that characterize
the superfluid counterflow turbulence: 	̃ns, Uns, and Rej .

III. ENERGY SPECTRA OF COUNTERFLOW
TURBULENCE

A. Qualitative analysis of the energy spectra

To qualitatively analyze the energy spectra, we first neglect
in Eqs. (18) the influence of the viscous dissipation. In Fig. 1
we show the energy spectra, obtained by solving Eq. (18a) in
a wide range of dimensionless parameters with Res,n → ∞.
In all panels, the normal-fluid component spectra are shown
by solid lines and the superfluid component spectra by dashed

lines. Each row represents the spectra at one of four temper-
atures, from top to bottom: T = 1.65, 1.85, 1.95, and 2.1 K.
The three columns show solutions for three different values of
the dimensionless counterflow velocity (17c): Ũns = 1 (left),
Ũns = 4 (middle), and Ũns = 8 (right).

Each of the panels contains the spectra for five values of the
dimensionless frequency 	̃ns from 0 (the horizontal gray lines)
to 	̃ns = 20 (the lowest red lines), color coded as described in
the figure caption.

Comparing spectra shown in Fig. 1, we can make a set of
observations:

(i) The larger the counterflow velocity Ũns, the stronger is
the suppression of the energy spectra compared to the K41
prediction. This is an expected result: the normal-fluid and su-
perfluid velocity fluctuations decorrelate faster with increasing
Ũns, leading to stronger energy dissipation by mutual friction
and, as a result, to a more prominent suppression of the energy
spectra.

(ii) In the absence of viscous dissipation, the dissipation
by mutual friction defines the suppression of the spectra. The
corresponding frequencies 	j [Eq. (18b)] are proportional to
the other component’s densities: 	s ∝ ρn, 	n ∝ ρs. There-
fore, at low temperatures (two upper rows), when ρn 
 ρs, the
normal-fluid component spectra are suppressed stronger than
the superfluid spectra, while at high T the relation is reversed
(the lowest row).

(iii) The competition between the velocity fluctuations
coupling and the dissipation due to mutual friction leads to
a complicated q dependence of the spectra, described by
Eq. (12a): the rate of energy dissipation is proportional to
	j [Dj (q) − 1]. The larger is 	j the stronger is the coupling,
however, simultaneously Dj (q) → 1. Which factor wins, de-
pends on the scale: at large q the dissipation wins and the
spectra suppression is directly proportional to 	̃j . On the other
hand, at small q, the spectra for larger 	̃j are less suppressed,
especially at weak counterflow velocity.

Note that the applicability range of HVBK [Eqs. (4)]
is limited by k < π/� = π

√
L � π

√
2	ns/κ . However, our

analysis is performed for given values of 	̃ns = 	ns/k0uT with
k0 = 1 and an arbitrary value of uT. Therefore, there is no
formal restriction on the range of k in Figs. 1 (as well as in
Figs. 2, 3, and Fig. 4), which was chosen to expose all important
features of the energy spectra.

B. Outer-scale and mean scaling exponents of the energy spectra

To characterize in a compact form the energy spectra de-
pendence on the flow parameters T , Uns, and 	̃ns, we consider
first a scaling exponent m(q) [Eq. (10b)] in the beginning of
the scaling interval k = k0, q = 1. Using Eqs. (16a) and (18)
we get for outer-scale exponent mj (q = 1):

mj (1) = 5

3
+ 4

3

	̃j [1 − q× arctan(1/q×)]

4C + 	̃j [1 − q× arctan(1/q×)]
. (19)

The 	̃ns dependencies of the normal-fluid outer-scale expo-
nent mn(1) for different Ũns and T are shown in Fig. 2.
As expected, for 	̃ns = 0 (no mutual friction damping)
mn(1) = 5

3 , the classical K41 value. In the limit 	̃ns →
∞, lim

q×→∞[q× arctan(1/q×)] ∝ 1/q2
× and mn(1) again tends to
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FIG. 4. The viscous corrections to the energy spectra at different temperatures: T = 1.65 K (left panel), T = 1.95 K (middle panel), and
T = 1.21 K (right panel). The normal-fluid spectra are shown by solid lines, the superfluid spectra by dashed lines. The spectra are shown for
Ren = ∞ (black lines), Ren = 103 (blue lines), and 102 (red lines). All spectra were calculated with Ũns = 4 and 	̃ns = 10.

its K41 value 5
3 . In this limit, the normal-fluid and superfluid

components are fully coupled and there is no energy dissipation
by mutual friction. The resulting 	̃ns dependence of mn(q)
is nonmonotonic with a maximum around 	̃ns ∼ 1. As we
saw before, the mn(1) is largest (i.e., the strongest suppression
of normal-fluid energy spectra) at lowest T = 1.65 K (upper
black lines), the smallest at high T = 2.1 K (the lowest red
lines). Conversely, the superfluid exponents ms(1) (not shown)
reflect strong suppression [larger ms(1)] at high temperatures,
while at low temperatures ms(1) are smaller.

To characterize the degree of deviation from the scale
invariance, we introduce the mean scaling exponent over some
q interval from q = 1 [with Ej (1) = 1] to a given value of q:

〈mj 〉q = − ln Ej (q)/ ln q. (20)

The value 〈mj 〉q should be q independent and equal to the
outer-scale exponent mj (1) = [d ln Ej (q)/d ln q]q=1 for the
scale-invariant spectra and vary otherwise. In Fig. 3 we
compare mj (1) and 〈mj 〉10 for T = 2.0 K and Ũns = 4.
The outer-scale scaling exponent mn(1) is shown by solid
line, ms(1) by dashed line. The values of 〈mn〉10 and 〈ms〉10,
calculated for a set of 	̃ns, are shown by full and empty circles,
respectively. Clearly, the spectra coincide (at least within the
first decade) for 	̃ns � 3, while for stronger 	̃ns they vary
significantly: the actual spectra are more suppressed than is
suggested by mj (1) and 〈mj 〉10 > mj (1) for 	̃ns > 3 at this
temperature. The nonmonotonic behavior is evident in all
curves, although the maximum in the mean exponents 〈mj 〉10
is broader and less prominent.

C. Viscous damping of the energy spectra

Having in mind the influence of 	̃ns and Ũns on the energy
spectra, we now add the viscous dissipation to the picture and
plot in Fig. 4 the compensated spectra for T = 1.65, 1.95,
and 2.10 K, using Ũns = 4 and 	̃ns = 10. The spectra for
Ren → ∞ are shown by black lines, those for Ren = 103 by
blue lines, while red lines denote the spectra for Ren = 102.
The corresponding Res were calculated using the ratio of
viscosities (cf. Table I).

As expected, the reduction of Rej leads to progressive
damping of the energy spectra. This effect is mostly
concentrated at large q, while at small q the energy dissipation
by mutual friction dominates. The viscous damping is most

prominent for the denser component (superfluid at T = 1.65 K
and normal fluid at T = 2.1 K). At T = 1.95 K, the densities
of the components are close and the spectra are similar for all
Re numbers.

D. Quantum peak in superfluid energy spectra

As has long been known [7] and understood [45] that,
aside from large-scale turbulence, discussed above, the
intense counterflow generates the superfluid turbulence (the
vortex tangle). The corresponding energy spectra peak at
the intervortex scale � = 1/

√
L. This kind of superfluid

turbulence has no classic analog and is traditionally called
Vinen’s or ultraquantum turbulence.

The total-energy density of quantum turbulence (per unit
mass of superfluid component) EQ may be reasonably esti-
mated within the local induction approximation [45] as

EQ = κ2L�

2π
, � ≈ ln(�/a0). (21a)

Here, a0 is the vortex core radius (∼10−8 cm in 4He). For the
typical value L � 105,� ≈ 12.6 and very weakly depends on
L. Therefore, for our purposes we can estimate

EQ � 2 κ2L. (21b)

Using experimental values of L, discussed below, we found
EQ and compared them with Ecl, calculated for the experimen-
tal conditions. It is interesting to realize that Ecl ∼ EQ. For
example, at T = 1.65 K the ratio EQ/Ecl varies between 1.2
and 1.8, for T = 2.00 K, EQ/Ecl � 5. This fact may be ratio-
nalized by simple models of turbulent channel flow (cf., e.g.,
Ref. [46]) and by dimensional reasoning. Indeed, for the classi-
cal channel flow, the dimensional reasoning (and simple mod-
els, up to logarithmic corrections) give�un � Uns as supported
by the experiment (column No. 8 of Table II). Thus, Ecl � U 2

ns.
For the quantum energy of superfluid turbulence, Eqs. (21b)

give EQ � 2κ2L, whileL = (γUns)2 with γ � 1/κ . Therefore,
also for the quantum energy EQ � U 2

ns.
Our knowledge of quantum peak k dependence, EQ(k), is

quite limited. Dimensional reasoning, supported by the numer-
ical simulations [47], predicts maximum of EQ(k) at the inverse
intervortex distance k∗ � 2π

√
L. For k∗ 
 k < 2π/a0, EQ(k)

is dictated by the velocity field near the vortex line: v(r) ∝ κ/r ,
where r is the distance to the vortex line. Modeling quantum
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TABLE II. Columns 1–5: the experimental parameters of the flow [18]. Columns 6–9: the parameters of the model. Columns 10 and 11:
Ecl = (uT)2/2 and EQ ≈ 2κ2 L. Columns 12 and 13: the experimental values of the apparent scaling exponent nexp + 1, and the theoretical
normal-fluid mean exponents over first decade 〈mn〉10.

1 2 3 4 5 6 7 8 9 10 11
T Q Un uT L Ren = Res = Ũns = 	̃ns = Ecl EQ 12 13
K mW/cm2 cm/s cm/s cm−2 uT/(k0νn) uT/(k0νs) Uns/uT 	ns/(k0uT) cm2/s2 cm2/s2 nexp + 1 〈mn〉10

1 150 1.87 0.5 8.63 ×104 37.89 76.78 4.64 3.47 0.12 0.17 1.89 ± 0.03 2.48
2 1.65 200 2.23 0.61 16.2 ×104 46.23 93.67 4.52 3.35 0.18 0.32 2.14 ± 0.03 2.47
3 300 3.27 1.12 38.2 ×104 84.88 171.99 3.61 6.87 0.62 0.73 2.18 ± 0.04 2.43

4 200 1.18 0.38 8.11 ×104 53.22 50.21 4.87 3.72 0.07 0.16 1.88 ± 0.04 2.41
5 1.85 300 1.78 0.67 19.8 ×104 94.21 88.52 4.17 5.14 0.22 0.39 2.23 ± 0.02 2.38
6 497 3.03 1.17 58.5 ×104 165.52 154.59 4.07 8.71 0.68 1.09 2.35 ± 0.03 2.37

7 233 0.86 0.44 14.1 × 104 84.65 51.01 4.37 5.66 0.096 0.28 2.3 ± 0.02 2.34
8 2.0 386 1.34 0.68 47.3 × 104 130.82 78.84 4.41 12.29 0.23 0.89 2.31 ± 0.03 2.32
9 586 2.09 1.16 112 × 104 223.17 134.49 4.03 17.05 0.67 2.04 2.36 ± 0.02 2.23

10 2.1 200 0.57 0.51 37.3 × 104 106.93 41.82 4.31 16.62 0.13 0.71 2.09 ± 0.02 2.08
11 350 0.99 1.01 114 × 104 211.76 82.82 3.79 25.65 0.51 2.07 2.11 ± 0.04 1.96

vortex tangle as a set of randomly oriented vortex lines with
the vortex-line density L and averaging over line orientations,
we get an asymptotic behavior EQ(k) � κ2L/k for 2π/a0 �
k � k∗. The same answer follows from dimensional reasoning
based on a natural assumption that EQ(k) ∝ L.

For k 
 k∗ we do not expect inverse energy cascade
in three-dimensional (3D) turbulence. Therefore, following
Ref. [27], we assume here local thermodynamic equilibrium
spectra with equipartition of energy between degrees of free-
dom: EQ(k) ∝ k2. A simple analytic formula that reflects all
these properties has a form

Eq(k) = EQ

�

k2

k3∗ + k3
, k∗ = 2π

�
. (22a)

Here, EQ is the total energy of quantum peak,

EQ =
∫ 2π/a0

0
EQ(k) dk. (22b)

FIG. 5. The (uncompensated) energy spectra of counterflow
turbulence Es(q) = E(q)/E(q0) vs q = k/k0 (dashed lines) and
the sketch of the quantum peak (dotted-dashed lines) for T =
1.65 K, Q = 300 mW/cm2 (upper black lines), T = 1.85 K, Q =
497 mW/cm2 (blue lines), T = 2.00 K, Q = 586 mW/cm2 (green
lines) and T = 2.10 K, Q = 350 mW/cm2 (lowest red lines). Note
that here the q range, where Es(q) are valid, is limited by q � 200.

Taking the values of EQ and � = 1/
√
L from Table II, we

plot in Fig. 5 the energy spectra, corresponding to the quantum
peak (22) for four temperatures (dotted-dashed lines). We
also show by dashed lines the quasiclassical superfluid energy
spectra Es(k). We see that the quasiclassical and quantum parts
of the superfluid energy spectra are well separated in the k

space, as was suggested in Refs. [5,27] for the explanation
of the vortex-line density decay L(t) after switching off the
counterflow.

What is important for us now is that the distinct separa-
tion of the quasiclassical and quantum contributions to the
superfluid energy spectra allows us to neglect the direct effect
of the quantum peak on the behavior of the normal-fluid and
superfluid quasiclassical turbulence. The only role played by
the quantum peak in our theory is to give an independent and
leading contribution to the vortex-line density that determines
the mutual friction.

E. Energy spectra in the conditions
of the Tallahassee experiments

Now, we are ready to analyze the energy spectra for condi-
tions, close to realized in the 4He counterflow visualization
experiment [18]. The experiments [18,19] in the turbulent
counterflow of superfluid 4He were conducted for a range of
temperatures and heat fluxes. A number of important properties
of the flow, required for comparison between theory and
experiment, are listed in Table II.

The normal velocity fluctuations were deduced by the
visualization of the molecular tracers [17,18]. The ratio of this
turbulence intensity to the mean normal velocity is almost in-
dependent of the values of the heat flux for a given temperature
[18]. The vortex-line density L was measured by the second
sound attenuation.

1. Measured and estimated parameters of the experiments

The experiments [18] were performed at four temperatures
T = 1.65, 1.85, 2.0, and 2.10 K using different values of
the heat flux Q, ranging from 150 to ∼600 mW/cm2. The
measured values of the resulting mean normal-fluid velocity
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FIG. 6. The compensated energy spectra for experimental conditions at T = 1.65 K (a), T = 1.85 K (b), T = 2.0 K (c), and T = 2.1 K
(d). The spectra for large heat fluxes Q are shown by red lines [upper lines in (a)–(c)], for moderate heat fluxes by green lines, and for small heat
fluxes by lower blue lines. The explicit values of Q are given in Table II. The normal-fluid spectra are shown by solid lines, the superfluid spectra
by dashed lines. Note that all spectra here are shown for q < 100, within the applicability range of Eqs. (4) for the relevant flow parameters.

Un, the normal-fluid rms turbulent velocity fluctuation uT,
and the vortex-line densities L (columns 3–5, Table II) are
reproduced according to Table I, Ref. [18].

Using these data and parameters of superfluid 4He for
relevant temperatures (Table I), we computed the “turbulent”
Reynolds numbers Rej and listed them in columns 6 and 7 of
Table II. We used a simplified assumption that at large, energy-
containing scales, the rms turbulent velocity fluctuations uj of
the normal-fluid and superfluid components are close due their
coupling by mutual friction: us ≈ un = uT. As an estimate of
the outer scale of turbulence, we take � = 0.225 cm which is a
mean upper limit of the approximate scaling behavior of S2(r),
measured in Ref. [18]. Note that the values of Rej in these
experiments are quite low, with Ren ranging from Ren � 38
(line 1) to Ren � 223 (line 9).

The counterflow velocity Uns = Un − Us was found from
the measured mean normal-fluid velocity Un and the condition
of zero mass flux. Its resulting dimensionless values Ũns =
Uns/uT are given in the column 8.

The mutual-friction frequencies 	ns were calculated from
Eq. (11d), using measured values of the VLD L and 4He
parameters. The dimensionless values 	̃ns are listed in the

column 9. They are ranging from ≈3.4 for T = 1.65 K to ≈26
for T = 2.10 K. We used the estimate k0 ≈ 2π/� = 28 cm−1.

2. Scaling behavior of the energy spectra and the second-order
structure function

The energy spectra for each of 11 sets of measurements,
computed using Eqs. (18) with the corresponding parameters,
are collected in Fig. 6. At each temperature, the red lines
correspond to the spectrum with the largest value of the
heat flux Q, the green lines for the intermediate value of
Q, and the lowest blue lines to the smallest Q. For these
flow conditions, all spectra are strongly suppressed and are
not scale invariant, although the degree of the deviation from
scale invariance varies. Interestingly, at these conditions the
normal-fluid spectra for all temperatures, except T = 2.1 K,
appear very similar to each other. To characterize the scaling
behavior of these spectra, we use again Eq. (20) and calculate
the mean exponents over first decade 〈mn〉10.

The scaling behavior of such non-scale-invariant spectra
do not have a simple relation to the scaling exponents of the
second-order structure function. The experimentally measured
second-order transversal structure functions S⊥

2 (r) were found
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FIG. 7. The second-order structure functions [19] S2(r) as a
function of separation r for T = 1.85 K and different heat fluxes.
The black dashed lines indicate the scaling behavior r2/3 and r3/2 and
serve to guide the eye only.

to exhibit a power-law behavior over an interval of scales
of about one decade. The examples [19] of the experimental
S⊥

2 (r) for T = 1.85 K and different heat fluxes are shown in
Fig. 7. The scaling exponents nexp were measured by a linear
fit over the corresponding r range and it was suggested [18]
that the scaling exponents of the underlying energy spectra
should scale as nexp + 1. We therefore compare the theoretical
predictions 〈mn〉10 with the proposed experimental exponents
nexp + 1, listed in the columns 12 and 13 of Table II. The
error bars for nexp + 1 correspond to the fit quality of S⊥

2 (r).
It was assumed [18] that additional experimental inaccuracies
(supposedly present in previous experiments [17]) are absent.

To rationalize the results, we first analyze the dimensionless
model parameters, corresponding to the experimental con-
ditions. First of all, the dimensionless counterflow velocity
Ũns ≈ 4 for all conditions. Therefore, the differences in flow
conditions for a given temperature are mostly translated to
the differences in efficiency of the dissipation by mutual
friction 	̃ns. As we saw in Figs. 2 and 3, in the relevant range
	̃ns � 3.5–26, the mean scaling exponents 〈mn〉10 are expected
to be strongly affected by the dissipation due to mutual friction
and to weakly depend on 	̃ns. Indeed, for relatively large 	̃ns,
the exponentsnexp + 1 are clustered by temperatures and do not
vary much. However, their values are smaller for T = 2.1 K
than for T = 2.0 K, while exponents for T = 2 and 1.85 K are
compatible (except for the smallest heat flux, for which both
the Ren and 	̃ns are small). This trend agrees with the expected
T dependence, shown in Fig. 2, if we also account for the dif-
ference in the Reynolds numbers (cf. Fig. 4). Remarkably, for
these conditions the theoretical values of 〈mn〉10 are in a good
qualitative agreement with nexp + 1. Note that these values
were obtained without any fitting parameters. The discrepancy
between experimental estimates and theoretical predictions is
limited to the flows with low Reynolds numbers (T = 1.65
and 1.85 K, Q = 200 mW/cm2). In these conditions, the flow
inhomogeneity, not accounted for by our theory, may play an
important role. In particular, in the low Re channel flow, the

width of the near-wall buffer layer is compatible [46] with
the width of the turbulent core (the region of well-developed
turbulence around the channel centerline). Its contribution to
the velocity structure functions become significant. The typical
size of the largest eddies in the buffer layer is not constant:
it is of order of the local distance to the wall and smaller
than the outer scale in the turbulent core. A more accurate
estimate of � (or k0, which defines the dimensionless model
parameters) for these conditions, may improve the agreement
between the theory and experiment. For instance, with all other
parameters unchanged, larger k0 leads to smaller 	̃ns. These
smaller 	̃ns correspond to the lower, fast-changing part of the
m vs 	̃ns curves in Fig. 3. This kind of behavior is indeed
observed at T = 1.65 K. The simplifications of the theory in
the description of the energy exchange between components
are another possible reason for the discrepancy at low T .

IV. CONCLUSIONS

We developed a semiquantitative theory of stationary,
space-homogeneous isotropic developed counterflow turbu-
lence in superfluid 4He. The theory captures basic physics of
the energy spectra dependence on the main flow parameters and
accounts for the interplay between (i) the turbulent velocity
coupling by mutual friction, dominant at large scales r >

r× � π/k×; (ii) its decoupling, caused by the sweeping of the
normal-fluid and superfluid eddies in the opposite directions,
which becomes important at scales r < r×; (iii) the turbulent
energy dissipation due to mutual friction at scales r < r×, that
gradually decreases the energy flux over scales and suppresses
the energy spectrum, similar to the turbulence in 3He.

The ultraquantum peak, well separated from the quasiclassi-
cal interval of scales r > �, serves in our theory as a space- and
time-independent source of the vortex-line density L involved
in the mutual frequency force ∝L(un − us).

The resulting energy spectra of the normal-fluid and su-
perfluid components are greatly suppressed with respect to
their classical fluid counterpart. Moreover, the spectra are
non-scale-invariant, and strongly depend on the temperature
and the counterflow velocity. Their scaling behavior may be
characterized by local slopes. These slopes, calculated at the
largest scales (smallest wave numbers) depend nonmonoton-
ically on the mutual-friction frequency. The deviation from
scale invariance is evident by comparison of the outer-scale
slope mj (1) with the mean over an interval slope 〈mj 〉q .
The small-scale behavior is further affected by the viscous
dissipation. This effect is most prominent for the normal-fluid
spectra at high T and for the superfluid spectra at low T .

By comparing the mean scaling exponents, calculated over
the interval k ∈ [k0 − 10k0] without any fitting parameters,
with the experimental estimates nexp + 1, we find a good
qualitative agreement between our theory and observations
for T � 1.85 K. This allows us to believe the most important
simplifications used in developing the theory: (i) the space
homogeneity and isotropy of the flow; (ii) the uncontrolled
approximations in the derivations of the differential closure
and the decorrelation function; (iii) further simplification of
the cross-correlation function that ignores the energy flux
between the normal-fluid and superfluid subsystems, play just
a secondary role and may be relaxed in later developments. In
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particular, the energy transfer between the fluid components
by mutual-friction force is expected to affect the scaling
behavior of both spectra, especially at low T . Therefore, a
better approximation for the cross-correlation function may
account for this effect. The possible influence of the flow
space inhomogeneity and anisotropy may be responsible for
the differences between the apparent scaling behavior of the
transverse structure functions and of the isotropic 3D energy

spectra. An account for these factors is beyond the scope of
this paper.
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