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at a finite temperature

Utso Bhattacharya and Amit Dutta
Department of Physics, Indian Institute of Technology, Kanpur 208016, India

(Received 28 March 2018; published 11 June 2018)

We study the one-dimensional Kitaev chain with long-range superconductive pairing terms at a finite
temperature where the system is prepared in a mixed state in equilibrium with a heat reservoir maintained at
a constant temperature T . In order to probe the footprint of the ground-state topological behavior of the model at
finite temperature, we look at two global quantities extracted out of two geometrical constructions: the Uhlmann
and the interferometric phase. Interestingly, when the long-range effect dominates, the Uhlmann phase approach
fails to reproduce the topological aspects of the model in the pure-state limit; on the other hand, the interferometric
phase which has a proper pure state reduction, shows a behavior independent of the ambient temperature.
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I. INTRODUCTION

A tremendous effort is now being focused at the exper-
imental front to realize topological superconductors, which
constitute an essential component of quantum computers
and simulators. What makes the realization of a topological
superconductor an absolute experimental necessity is that it
hosts exotic Majorana modes (MMs) as zero-energy localized
modes at its edges or boundaries. Such modes are absent in
conventional nontopological superconductors. These exotic
MMs are topologically protected against local perturbations
and cannot be removed unless a global change in the ground-
state properties in the form of a topological phase transition
occurs. This robustness serves as a key property which enables
them to be used as qubits to store and manipulate quantum
information in a topological quantum computer without the
chance of quick loss of information through decoherence. MMs
have been proposed to exist in many systems like heterostruc-
tures of topological insulators and s-wave superconductors
[1], cold fermion systems with Rashba spin-orbit coupling,
Zeeman field, and an attractive s-wave interaction [2,3], and
also heterostructures of spin-orbit-coupled semiconductor thin
films [4,5] or nanowires [5–7] proximity coupled with s-wave
superconductors and a Zeeman field. Although there have been
also been claims of observation of MMs in a few experiments
[8–17], they have as yet remained experimentally elusive.

On the other hand, recent experimental realization of long-
range interacting quantum models with tunable long-range
interactions (or a long-range pairing term) [18] has renewed
interest in studying the equilibrium behavior as well as the
nonequilibrium dynamics of quantum models with infinite-
range interactions with interaction strength between two sites
separated by a distance r falling off in a power-law fashion
as 1/rα [19–33]. Let us recall that a power-law interacting
ferromagnetic Ising chain has been studied for longer than the
past four decades [34–46]; quantum phase transitions [47–49]
in the corresponding quantum Ising chain with interaction
decaying in a power-law fashion were also explored long
ago [50].

Recently motivated by the short-range one-dimensional
Kitaev chain [51], a long-range version of an integrable p-
wave superconducting chain of fermions, with a long-range
superconducting pairing term was proposed [19–21]; interest-
ingly, in this model the 2×2 structure corresponding to each
momentum value survives in spite of the power-law interacting
superconducting term. It has been observed [21] that when
the pairing terms decay faster, the model captures short-range
topological superconducting physics; on the contrary, for slow
decay of the long-range interactions given by α < 1, the model
supports a new unconventional topological phase of matter.
In this new phase, the zero-energy MMs coalesce to form
massive nonlocal edge states called massive Dirac modes
which are otherwise absent in the standard Kitaev model.
These new edge states lie within the bulk energy gap and are
topologically protected against local perturbations that do not
break fermionic parity and particle-hole symmetry and may
eventually find novel applications in the field of topological
quantum computations.

Furthermore, the open question of whether higher-order
topological phase transitions can appear in symmetry-
protected topological systems has been rigorously investi-
gated by Cats et al. [52] A staircase to topological phase
transitions of increasing order has been found in the long-
range superconducting chain which is beyond the conventional
second-order phase transition observed in a one-dimensional
topological superconductor. Considering a grand potential
within an adaptive Ehrenfest classification, the order of the
phase transition is determined according to the derivative for
which the grand potential has a divergence or a discontinuity.
The jumps in the order of the transitions for the case of a
topological superconductor with long-range pairings depend
on α, which at unity results in the order of the topological
transition becoming infinite.

Although, throughout the last century, phases of matter have
been very successfully characterized by taking recourse to
a local order parameter in accordance with Landau’s theory,
the order parameter required to classify such one-dimensional
(1D) topological superconductors studied here is, however,
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global in nature. Indeed at zero temperature, most of the phase
diagram for the 1D Kitaev chain with long-range pairings can
be understood using the conventional winding number used
to classify a standard 1D p-wave topological superconductor.
However, an intriguing question remains as to what extent
the topological properties of such a long-range paired system
would survive when coupled to a heat reservoir at some
constant temperature T . We here note that Viyuela et al.
[53] (see also Ref. [54]) introduced the Uhlmann geometric
phase [55,56] as a tool to characterize symmetry-protected
topological phases in 1D fermion systems described by a Gibbs
ensemble. They not only illustrated that the Uhlmann phase
acts as a global order parameter which can classify the two
different topological phases in the standard 1D Kitaev chain but
they also demonstrated that there exists a critical temperature
at which the Uhlmann phase goes discontinuously and abruptly
to zero. Furthermore, at small temperatures, they showed that
the Uhlmann phase can also capture the expected behavior of
topological phases in such fermionic systems. Subsequently,
the behavior of a different geometric phase, introduced in the
context of interferometry by Sjoqvist et al. [57], has also been
studied in the context of the short-range 1D Kitaev chain, which
shows contrasting behavior to that of the Uhlmann approach
[58]. (For a review on these two approaches, see Ref. [59].) We
note in passing that recently the interferometric phase approach
was also found to be relevant in the context of mixed-state
dynamical quantum phase transitions [60,61] and also in the
context of mixed-state topology [62].

In this work, we therefore consider a 1D Kitaev chain with
a long-range superconducting pairing term after it has thermal-
ized by being in contact with a heat reservoir at temperature
T and is effectively described by a Gibbs ensemble. In order
to probe the topological aspects of the model considered, two
disjoint approaches are pursued, namely, the Uhlmann geomet-
ric approach and the interferometric geometric approach. The
two main questions addressed here through the two approaches
are the following: (a) Can both approaches properly reproduce
the topological phase diagram in the pure-state (or the zero-
temperature) limit? (b) What do the two approaches reveal
about the extent of the survival of the topological properties in
this long-range superconducting scenario?

The paper is organized in the following fashion: In Sec. II,
we review the topological phase diagram of the long-range
Kitaev (LRK) chain. In Secs. III and IV, the LRK chain is
studied at a finite temperature using the Uhlmann phase and
interferometric phase approaches, respectively. Concluding
comments are presented in Sec. V.

II. THE LONG-RANGE INTERACTING KITAEV CHAIN

Let us consider a simple model of spinless fermions on a
1D lattice with long-range p-wave superconducting pairings,
known as the LRK chain. The Hamiltonian is of the form [19]

H =
N∑

n=1

{
− t(c†n+1cn + c†ncn+1) − μc†ncn

+
N−1∑
l=1

�

dα
l

(c†n+lc
†
n + cncn+l)

}
, (1)

where t > 0 is the hopping amplitude, μ is the chemical
potential, � = |�|ei� is known as the complex supercon-
ducting gap, and cn’s (c†n’s) are the spin-polarized fermionic
annihilation (creation) operators defined at every site n of the
chain with total sites N . The superconducting pairing term
being a function of the distance dl = Max[l,L − l] between
any two sites in the lattice is long-range interacting with the
strength of interaction decaying with a decay exponent α > 0.
Although the total fermionic number is not conserved, the
parity operator (total fermionic number modulo 2) commutes
with the Hamiltonian and is conserved.

Focusing on the rather well-known short-range limit
(α → ∞) [51], when the system is in the topological phase,
there are two Majorana modes at each end of the open chain.
The two MMs having the same degrees of freedom as an
ordinary fermion can either be together occupied or unoccu-
pied. Since the energy of the MMs is zero, these two possible
states (occupied or unoccupied) are both ground states, thereby
rendering the ground state of a short-range 1D Kitaev chain
twofold degenerate with different parities: (i) a bulk with even
fermion parity and unoccupied MMs, whereas (ii) populating
the two Majorana modes at the edges (in addition to the bulk)
amounts to a single ordinary fermion and odd parity. As we
illustrate below, the LRK chain is topologically short ranged
when the decay parameter α > 3/2.

Throughout the rest of the paper, without the loss of
generality, we set t = � = 1/2 and, assuming periodic bound-
ary conditions, one can implement a Fourier transforma-
tion to rewrite the Hamiltonian in the Nambu spinor basis,
ψk = (ck,c

†
−k)T . The thermodynamic limit of N → ∞ yields

[19–21]

H =
∫ 2π

0

dk

2π
�

†
kHk�k, (2)

where

Hk = −fα(k)σy − (μ + cos k)σz (3)

and

fα(k) =
N−1∑
l=1

sin(kl)

lα
. (4)

The eigenvalues of this Hamiltonian are

E±
k = ±

√
(μ + cos k)2 + (fα(k))2. (5)

Moreover, to simplify matters, we consider the Hamiltonian
in a rotated basis, with the Bloch vectors of the Hamiltonian
lying on the equatorial plane so that Hk assumes the form

Hk = −�k

2
�nk · �σ , (6)

where �σ = (σx,σy,σz) are the Pauli matrices and

�nk = 2

�k

(μ + cos k,fα(k),0), (7)

�k = 2|E±
k |. (8)

It is noteworthy that the LRK chain is classified under the
BDI symmetry class of topological insulators and supercon-
ductors [63,64] and is particle-hole, time-reversal, and chiral
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symmetric. These symmetries restrict the movement of the
Bloch vector �nk from the sphere S2 to the circle S1 on the x-y
plane, resulting in a mapping from the Hamiltonians Hk on the
Brillouin zone (BZ) k ∈ S1 onto the winding vectors �nk ∈ S1.
This mapping yields a topological Z2 invariant called the
winding number ω, which is the angle (modulo 2π ) subtended
by �nk when quasimomentum k is varied across the BZ from
−π to π , where

ω = 1

2π

∮
∂kn

y

k

nx
k

dk. (9)

Alternatively, one can consider an adiabatic transport of the
system from a certain crystalline momentum via a reciprocal
lattice vector. The eigenstate of the lower band of the system
|gk〉 then picks up a Berry-Zak phase ϕZ [65–67] which is gen-
erally quantized (0 or π ) and has a one-to-one correspondence
with the winding number [Eq. (9)] defined above:

ϕZ = i

∮
〈gk|∂k|gk〉dk. (10)

In the thermodynamic limit, the polylogarithmic function
fα(k) in Eq. (4) that encodes all the information about the
long-range pairing is divergent at k = 0 for α < 1 and this
results in the likewise divergence of the dispersion relation
[see Eq. (5)] and the group velocity (∂E±(k)/∂k). Moreover,
the impossibility in gauging away the divergence from k = 0
generates a topological singularity. Therefore, according to the
behavior of fα(k) at k = 0, the existence of three different
topological sectors depending on the exponent α have been
rigorously established by Viyuela et al. [21]:

(a) The α > 3/2 sector, also known as the Majorana sector,
is equivalent to the topological phase of the short-range Kitaev
chain [51]. The |μ| > 1 phase is topologically trivial and is
marked by the absence of the Majorana zero modes (MZMs).
On the other hand, in the region μ ∈ (−1,1), the MZMs
are ever present (see Fig. 1). The presence of a U (1) phase
discontinuity at k = 0 in the eigenvector |gk〉 and the function
fα(k) being not divergent yields the Z2 invariant ω = ϕZ

π
= 1,

which characterizes this phase.
(b) The α < 1 sector is truly an emergent feature of

the long-range nature of the hopping and is absent in the
conventional 1D Kitaev model. In this sector, for μ > 1 the
system under open boundary condition is in a trivial phase,
with no edge states, while for μ < 1 this system hosts a
topological massive Dirac fermion at the edges, as shown in
the wave-function plot in Fig. 2(b) of [21]. This massive Dirac
mode (MDM) appears solely due to the coupling induced
between the two MZMs at the two distant edges due to the
presence of long-range superconducting pairing and, thus,
the MDM formed is highly nonlocal. Moreover, the MDM,
although massive, is still topological and is thereby protected
by the bulk gap. Furthermore, as the ground state of the system
in this phase still retains its even parity, populating the MDM,
which is the first excited state of the system, would now require
a change in the fermionic parity from even to odd. Therefore,
this highly nonlocal topological quasiparticle is also protected
by the fermionic parity. Since no discrete symmetry has been
broken, due to the inclusion of the long-range pairing, the
system still belongs to the BDI symmetry class. The winding
number ω, however, is modified by the topological singularity

FIG. 1. Phase diagram of the LRK chain in the μ-α plane: for
α > 3/2 the phase diagram of this model is topologically equivalent
to the short-range Kitaev chain, whereas for α < 1 the model hosts
massive Dirac edge modes for μ < 1 and is characterized by a half-
integer winding number. There is a crossover phase in between (for
1 < α < 3/2) with no well-defined winding number.

at k = 0. This happens because at k = 0 the adiabatic condition
breaks down since both the energy dispersion relation E±

k in
Eq. (5) and the quasiparticle group velocity ∂kE

±
k diverge as the

Berry-Zak phase ω = ϕZ/π evolves under parallel transport.
For the trivial phase μ > 1, the winding number is ω = −1/2,
whereas for the massive Dirac fermion hosting a topological
phase when μ < 1, it turns out to be ω = +1/2. Although
the topological invariant is half integer, the difference of one
unit exists between the two topologically different phases,
indicating that a topological phase transition separates the two
half-integer quantized topological phases.

(c) The third sector for α ∈ (1,3/2) not only hosts MZMs
for −1 < μ < 1 but also includes MDM for μ > 1. The
dispersion relation E±

k is no longer divergent; however, the
group velocity ∂kE

±
k is still singular at k = 0 and, hence, a

winding number cannot be defined for such a crossover sector.
In the rest of the article we are only going to focus on sectors

(a) and (b) with well-defined winding numbers, to see how the
topological invariant behaves when the chain is in constant
contact with a thermal bath at temperature T , and is described
by the Gibbs state

ρ(k) = e−Hk/T

Tre−Hk/T
= 1

2

(
1 + tanh

�k

2T
�nk · �σ

)
. (11)

An important question that has been asked now is whether
it is possible that a geometric phase factor can also be defined
for mixed states, analogous to the Berry-Zak phase for pure
states, which can serve as a topological invariant describing the
phase structure of 1D chains at finite temperature. The work
by Viyuela et al. [53] suggests that the Uhlmann geometric
phase [55,56] can play this role. Alternatively, the behavior
of interferometric geometric phase for mixed states defined in
Ref. [57] was also studied by Andersson et al. [58] for the
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short-range 1D Kitaev chain and was shown to be a candidate
approach. In this work, we illustrate that for the 1D Kitaev
chain for a long-range pairing, although the interferometric
approach still manages to capture the topological properties of
the pure state, the Uhlmann approach fails miserably even to
reproduce the correct pure-state limit.

III. THE UHLMANN APPROACH

Uhlmann’s approach [55,56] is based upon considering pure
states in the extended Hilbert spaceHA ⊗ HB which forms the
total space of a fiber bundle over the mixed states on HA. Now
a purification is performed such that

ρ = TrB [|ψ〉〈ψ |] = ww†, (12)

where the trace is over the auxiliary space HB . This de-
scription contains a U (N ) gauge freedom since under w →
wU (N ), ρ → wU (N )U †(N )w† remains unchanged. A ge-
ometric phase can be associated to any curve in the base
manifold once a parallelism condition for curves in the total
space is defined. A lift w(k) of ρ(k) is said to be parallel
if for every infinitesimal δk the probability for the transition
from ψ(k) to ψ(k + δk) is identical to the fidelity of ρ(k) and
ρ(k + δk):

|Tr(w(k)†w(k + δk))|2 = Tr
√

ρ(k)1/2ρ(k + δk)ρ(k)1/2. (13)

The parallelism condition is eventually described in terms of
a connection A [68], which along the velocity fields of square-
root lifts [69], i.e., w(k) = √

ρ(k), becomes

A(∂kw) =
∑
i,j

|ui〉 〈ui |[∂kw,w]|uj 〉
pi + pj

〈uj |, (14)

where the pi and the |ui〉 are the eigenvalues and eigenstates
of ρ in Eq. (11) and

p+ = 1

2

(
1 + tanh

�k

2T

)
, p− = 1

2

(
1 − tanh

�k

2T

)
. (15)

The above formula simplifies for a two-level system into

A(∂kw) = (
√

p+ − √
p−)2{|u+〉〈u+|∂ku−〉〈u−|

+ |u−〉〈u−|∂ku+〉〈u+|}, (16)

where

|u+〉 = 1√
2

(
1

eiϕ

)
, |u−〉 = 1√

2

(
1

−eiϕ

)
, (17)

and ϕ = arctan (ny/nx). As the connection in our case be-
comes Abelian,

A(∂kw) = i

2
(∂kϕ)(

√
p+ − √

p−)2

(−1 0
0 1

)
, (18)

path ordering is automatically taken care of in computing

U = exp

(
−

∮
dkA(∂kw)

)
=

(
eiB 0
0 e−iB

)
, (19)

where

B = 1

2

∮
dk (∂kϕ)(

√
p− − √

p+)2. (20)

Let us now remark that even though ϕ(k) is periodic, the
function B need not be periodic. Finally, we obtain the
Uhlmann’s geometric phase as the argument of the phase factor
of the function

Tr(w(0)†w(0)U )

= 1
2 (

√
p+(0) +

√
p−(0))2 cos B

+ 1
2 (

√
p1(0) −

√
p2(0))2cos(ϕ(0) + B). (21)

Using ϕ(0) = 0, Eq. (21) reduces to

Tr(w(0)†w(0)U ) = cos(B)

= cos

[
1

2

∮
dk (∂kϕ)

{
1 − sech

(
�k

2T

)}]
.

(22)

Let us first study the T → 0 limit. In this limit the Berry-Zak
phase for the pure-state case (see phase diagram in Fig. 1)
should be

ϕZ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |μ| > 1 and α > 3
2

π, −1 < μ < 1 and α > 3
2

not applicable, ∀μ and 1 < α < 3
2−π

2 , μ > 1 and 1 < α � 0
π
2 , μ < 1 and 1 < α � 0.

In the T → 0 limit, Eq. (22) becomes

Tr(w(0)†w(0)U )

= lim
T →0

cos

[
1

2

∮
dk (∂kϕ)

{
1 − sech

(
�k

2T

)}]

= cos

[
1

2

∮
dk (∂kϕ)

]
; (23)

on the other hand,

ϕU = Arg[Tr(w(0)†w(0)U )] (24)

reduces to

ϕU = Arg

[
cos

(
1

2

∮
dk (∂kϕ)

)]
. (25)

This yields

ϕU =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |μ| > 1 and α > 3
2

π, −1 < μ < 1 and α > 3
2

not applicable, ∀μ and 1 < α < 3
2

undefined, μ > 1 and 1 < α � 0
undefined, μ < 1 and 1 < α � 0.

We observe that, although the Uhlmann phase ϕU equals the
Berry-Zak phase ϕZ in the pure-state limit for all range of
μ when α > 1, Tr (w(0)†w(0)U ) = 0 for all μ in the strong
long-range limit when α < 1 results in ϕU being undefined.
Therefore, one of the key results of our work is that for the
1D Kitaev chain with long-range hopping, the Uhlmann phase
fails to detect the topological phase transition at μ = 1 for
α < 1 in the pure-state limit. It is therefore necessary to resort
to a different geometric approach that with a well-defined pure-
state limit can predict the fate of the topological phases when
the system is described by mixed quantum states.
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IV. THE INTERFEROMETRIC PHASE

In the geometric interferometric phase approach by Sjoqvist
et al., a normalized state under purification is represented by
|w〉 ∈ Hw, where Hw = HS

⊗
HA, HS is the Hilbert space

of the system, HA is the Hilbert space spanned by ancillary
states, and

|w〉 =
∑

i

√
pi |ψi〉

⊗
|ψ ′

i 〉 (26)

with |ψ ′
i 〉 ∈ HA, and the index i runs over the dimensions of

the Hilbert space HS (or HA). Therefore, the original density
matrix is obtained by tracing over the ancillary states:

ρ = TrA (|w〉〈w|). (27)

Let the states |w(k)〉 be parametrized by a continuous parame-
ter k, with |w(k)〉 tracing out a curve in the Hilbert space Hw.
A metric is defined in Hw as the measure of distance between
two states as d = |||w(k1)〉 − |w(k2)〉||. Let us note that the two
states |w(k1)〉 and |w(k2)〉 are said to be parallel if the distance
between them is a minimum. But, the purification states |w(k)〉
also have a phase ambiguity or a U (1) gauge freedom as under
a gauge transformation |w(k)〉 → eiδ(k)|w(k)〉 produces the
same density matrix and preserves inner products in the space
Hw, which needs to be fixed to generate a unique trajectory in
Hw. This gauge fixing is implemented by demanding that two
infinitesimally separated states inHw are parallel to each other.
We should also note that under such a parallel transport the state
of the system, |ψ(k)〉, is only affected while the ancillary states
|ψ ′(k)〉 are not. For the purifications, using the orthonormality
of |w(k)〉, the corresponding parallel transport condition can
be recast to the form

〈w(k)|∂kw(k)〉 = Tr(ρ(0)V †(k)∂kV (k)) = 0, (28)

where ρ(0) = ∑
i pi |ψi(0)〉〈ψi(0)| and

V (k) = e− ∫ k

0 dk′ 〈ψ(k′)|∂k′ψ(k′)〉. (29)

In summary, if we consider a family of density operators
parametrized by k,

ρ(k) =
∑

i

pi(k)|ψi(k)〉〈ψi(k)|, (30)

such that for each k, the eigenvalues pi(k) are nondegenerate,
the parallel gauge-fixing condition,

〈ψi(k)|∂kψi(k)〉 = 0, (31)

after a parallel transport across the whole 1D Brillouin zone,
yields the interferometric phase [58] of ρ(k),

θg = Arg

[∑
i

√
pi(0)pi(2π )〈ψi(0)|Vi(2π )|ψi(2π )〉

]
, (32)

where Vi(2π ) = e− ∮
dk′ 〈ψi (k′)|∂k′ψi (k′)〉.

It is now straightforward to calculate this interferometric
phase θg in the case of the 1D Kitaev model with long-range
hoppings which is essentially a two-level quantum system for
each independent k -mode. Using Eqs. (15), (8), and (5) and

identifying ψi(k) as ui(k) in Eq. (17), we finally obtain

θg = Arg

[
exp

(
− i

2

∮
dk′ ∂ϕ

∂k′

)∑
i=±

pi(0)

]
(33)

= 1

2

∮
dk′ ∂ϕ

∂k′ = ϕZ. (34)

It can now easily be seen that not only does the interferometric
geometric phase θg reduce to the Berry-Zak phase in the
pure-state limit for all values of α and thus reproduce the phase
diagram properly, but also θg is completely independent of the
temperature of the bath. This happens as the phase accumulated
by both the eigenstates under parallel transport across the
k-space remains the same and is identical to the Berry-Zak
phase ϕZ .

V. DISCUSSION AND CONCLUDING COMMENTS

The 1D Kitaev chain with short-range (nearest-neighbor)
superconducting pairings is a model of a p-wave topological
superconductor [51] which possesses a topological phase char-
acterized by a Z2 topological invariant in the zero-temperature
limit. After coupling this model to a bath maintained at a
constant temperature T , its topological behavior has been
thoroughly investigated in the works of Viyuela et al. [53]
and Andersson et al. [58]. While the former works used
the Uhlmann phase approach to provide an order parameter,
the latter resorted to the geometric interferometric phase to
ascertain its topological aspects as both these approaches
correctly reproduce the pure-state topological nature of this
model. The Uhlmann phase approach predicts the presence of
a critical temperature Tc beyond which the system loses its
topological behavior. But it also has a memory effect which
prevents it from determining the fate of the edge modes at
finite temperatures. The interferometric phase, on the other
hand, does not detect any phase transition in temperature, but
it correctly captures the zero-temperature phase portrait of this
model.

In our work, we have considered a generalized version of the
1D Kitaev chain [19] with a superconducting pairing which is
now long ranged. The phase diagram of this model is different
as it hosts a new massive Dirac phase characterized by a half-
integer winding number and is the sole result of the long-ranged
nature of the superconducting term. Having prepared the state
of this system in a (mixed) Gibbs state which is in thermal
equilibrium with a bath at finite temperature T , the effect of
the long-ranged nature of the interaction on the topological
behavior is probed using both the aforementioned geometric
approaches. We interestingly observe that the Uhlmann phase
approach in the extreme long-range limit (α < 1) fails to detect
the zero-temperature behavior of this model. In the presence
of the long-range hopping terms, there exists a singularity in
the Hamiltonian and in turn in its energy spectrum at k = 0 for
α < 1. The behavior of these divergences indeed affects the
definition of the winding numbers that classify the emergent
long-range phases. In spite of the fact that they are measured on
a closed 1D loop, winding numbers should assume only integer
values; in our case, the existence of semi-integer winding
numbers for α < 1 has been observed. The root cause behind
the generation of such semi-integer winding numbers can be
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traced to the fact that, although the eigenvectors themselves are
orthonormalized and nonsingular, the ∂k|uk〉 term in Eqs. (10)
and (16) are both singular for α < 1. These observations
eventually lead to the existence of two purely long-range
phases at α < 1 totally disjoint from the short-range ones [70].

This can elaborately be understood by first considering
the system to be in the short-range trivial phase where |uk〉
is continuous throughout the BZ. On the other hand, when
the system lies in the short-range topological phase, there is
a U (1) phase discontinuity at the singular point k = 0, i.e.,
|uk→0+〉 = eiπ |uk→0−〉. This U (1) phase shift at k = 0 results
in the accumulation of the Berry phase by the system after an
adiabatic transport across the whole BZ. However, for α < 1,
the topological singularity at k = 0 makes the winding vector
ill defined at that point, even though its contribution to the
winding number can still be determined. The divergence of the
function fα(k) at k = 0 as fα(k−) → −∞ and fα(k+) → +∞
results in the crumbling of the adiabatic condition and the
divergence of the quasiparticle group velocity at k = 0. Due
to the breakdown of adiabaticity, no longer does the system
only pick up just a U (1) phase after a closed loop in BZ;
the eigenvectors at k = 0 are now related via a phase-shift

unitary jump (depending upon the value of |μ|) which cannot
simply be gauged away via a unitary phase transformation [21].
The above considerations can easily be extended to Eq. (16),
where the Uhlmann connection has been evaluated. The terms
〈u±|∂ku∓〉 in the Uhlmann connection itself become singular
at k = 0, which eventually makes the argument of cosine in
ϕU [in Eq. (25)] ±π/2, but the cosine being an even function
fails to discern between the two, rendering the Uhlmann phase
insufficient in capturing the long-range phase transition at
μ = 1.

On the other hand, the interferometric phase approach, al-
though it correctly reproduces the pure-state topological limit,
invariably fails to capture any topological phase transition with
temperature. Our study, therefore, establishes that both the
Uhlmann and interferometric phase approaches are inadequate
in describing the finite-temperature topology of a LRK chain.

ACKNOWLEDGMENT

A.D. acknowledges financial support from SERB, DST,
India.

[1] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[2] C. W. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma,

Phys. Rev. Lett. 101, 160401 (2008).
[3] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,

020401 (2009).
[4] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,

Phys. Rev. Lett. 104, 040502 (2010).
[5] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das

Sarma, Phys. Rev. B 82, 214509 (2010).
[6] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[7] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[8] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
[9] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795

(2012).
[10] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and

H. Q. Xu, Nano Lett. 12, 6414 (2012).
[11] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.

Shtrikman, Nat. Phys. 8, 887 (2012).
[12] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.

Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B
87, 241401(R) (2013).

[13] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Phys. Rev. Lett. 110, 126406 (2013).

[14] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[15] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27,

124003 (2012).
[16] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113

(2013).
[17] T. D. Stanescu and S. Tewari, J. Phys.: Condens. Matter 25,

233201 (2013).

[18] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M.
Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe,
Nature (London) 511, 198 (2014).

[19] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G.
Pupillo, Phys. Rev. Lett. 113, 156402 (2014).

[20] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys.
18, 015001 (2016).

[21] O. Viyuela, D. Vodola, G. Pupillo, and M. A. Martin-Delgado,
Phys. Rev. B 94, 125121 (2016).

[22] L. Lepori, A. Trombettoni, and D. Vodola, J. Stat. Mech. (2017)
033102.

[23] M. Van Regemortel, D. Sels, and M. Wouters, Phys. Rev. A 93,
032311 (2016).

[24] B. Žunkovič, A. Silva, and M. Fabrizio, Philos. Trans. R. Soc.
A 374, 20150160 (2016).

[25] S. Nandy, A. Sen, and K. Sengupta, arXiv:1709.08897.
[26] A. Alecce and L. Dell’Anna, Phys. Rev. B 95, 195160 (2017).
[27] S. Fey and K. P. Schmidt, Phys. Rev. B 94, 075156 (2016).
[28] B. Žunkovič, M. Heyl, M. Knap, and A. Silva, Phys. Rev. Lett.

120, 130601 (2016).
[29] J. C. Halimeh, V. Zauner-Stauber, I. P. McCulloch, I. de Vega, U.

Schollwock, and M. Kastner, Phys. Rev. B 95, 024302 (2017).
[30] J. C. Halimeh and V. Zauner-Stauber, Phys. Rev. B 96, 134427

(2017).
[31] I. Homrighausen, N. O. Abeling, V. Zauner-Stauber, and J. C.

Halimeh, Phys. Rev. B 96, 104436 (2017).
[32] A. Dutta and A. Dutta, Phys. Rev. B 96, 125113 (2017).
[33] D. Jaschke, K. Maeda, J. D. Whalen, M. L. Wall, and L. D. Carr,

New J. Phys. 19, 033032 (2017).
[34] D. Ruelle, Commun. Math. Phys. 9, 267 (1968).
[35] F. J. Dyson, Commun. Math. Phys. 12, 91 (1969).
[36] F. J. Dyson, Commun. Math. Phys. 12, 212 (1969).
[37] M. Kac and C. J. Thompsom, J. Math. Phys. 10, 8 (1969).

214505-6

https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.101.160401
https://doi.org/10.1103/PhysRevLett.101.160401
https://doi.org/10.1103/PhysRevLett.101.160401
https://doi.org/10.1103/PhysRevLett.101.160401
https://doi.org/10.1103/PhysRevLett.103.020401
https://doi.org/10.1103/PhysRevLett.103.020401
https://doi.org/10.1103/PhysRevLett.103.020401
https://doi.org/10.1103/PhysRevLett.103.020401
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevB.82.214509
https://doi.org/10.1103/PhysRevB.82.214509
https://doi.org/10.1103/PhysRevB.82.214509
https://doi.org/10.1103/PhysRevB.82.214509
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13450
https://doi.org/10.1103/PhysRevLett.113.156402
https://doi.org/10.1103/PhysRevLett.113.156402
https://doi.org/10.1103/PhysRevLett.113.156402
https://doi.org/10.1103/PhysRevLett.113.156402
https://doi.org/10.1088/1367-2630/18/1/015001
https://doi.org/10.1088/1367-2630/18/1/015001
https://doi.org/10.1088/1367-2630/18/1/015001
https://doi.org/10.1088/1367-2630/18/1/015001
https://doi.org/10.1103/PhysRevB.94.125121
https://doi.org/10.1103/PhysRevB.94.125121
https://doi.org/10.1103/PhysRevB.94.125121
https://doi.org/10.1103/PhysRevB.94.125121
https://doi.org/10.1088/1742-5468/aa569d
https://doi.org/10.1088/1742-5468/aa569d
https://doi.org/10.1088/1742-5468/aa569d
https://doi.org/10.1103/PhysRevA.93.032311
https://doi.org/10.1103/PhysRevA.93.032311
https://doi.org/10.1103/PhysRevA.93.032311
https://doi.org/10.1103/PhysRevA.93.032311
https://doi.org/10.1098/rsta.2015.0160
https://doi.org/10.1098/rsta.2015.0160
https://doi.org/10.1098/rsta.2015.0160
https://doi.org/10.1098/rsta.2015.0160
http://arxiv.org/abs/arXiv:1709.08897
https://doi.org/10.1103/PhysRevB.95.195160
https://doi.org/10.1103/PhysRevB.95.195160
https://doi.org/10.1103/PhysRevB.95.195160
https://doi.org/10.1103/PhysRevB.95.195160
https://doi.org/10.1103/PhysRevB.94.075156
https://doi.org/10.1103/PhysRevB.94.075156
https://doi.org/10.1103/PhysRevB.94.075156
https://doi.org/10.1103/PhysRevB.94.075156
https://doi.org/10.1103/PhysRevLett.120.130601
https://doi.org/10.1103/PhysRevLett.120.130601
https://doi.org/10.1103/PhysRevLett.120.130601
https://doi.org/10.1103/PhysRevLett.120.130601
https://doi.org/10.1103/PhysRevB.95.024302
https://doi.org/10.1103/PhysRevB.95.024302
https://doi.org/10.1103/PhysRevB.95.024302
https://doi.org/10.1103/PhysRevB.95.024302
https://doi.org/10.1103/PhysRevB.96.134427
https://doi.org/10.1103/PhysRevB.96.134427
https://doi.org/10.1103/PhysRevB.96.134427
https://doi.org/10.1103/PhysRevB.96.134427
https://doi.org/10.1103/PhysRevB.96.104436
https://doi.org/10.1103/PhysRevB.96.104436
https://doi.org/10.1103/PhysRevB.96.104436
https://doi.org/10.1103/PhysRevB.96.104436
https://doi.org/10.1103/PhysRevB.96.125113
https://doi.org/10.1103/PhysRevB.96.125113
https://doi.org/10.1103/PhysRevB.96.125113
https://doi.org/10.1103/PhysRevB.96.125113
https://doi.org/10.1088/1367-2630/aa65bc
https://doi.org/10.1088/1367-2630/aa65bc
https://doi.org/10.1088/1367-2630/aa65bc
https://doi.org/10.1088/1367-2630/aa65bc
https://doi.org/10.1007/BF01654281
https://doi.org/10.1007/BF01654281
https://doi.org/10.1007/BF01654281
https://doi.org/10.1007/BF01654281
https://doi.org/10.1007/BF01645907
https://doi.org/10.1007/BF01645907
https://doi.org/10.1007/BF01645907
https://doi.org/10.1007/BF01645907
https://doi.org/10.1007/BF01661575
https://doi.org/10.1007/BF01661575
https://doi.org/10.1007/BF01661575
https://doi.org/10.1007/BF01661575
https://doi.org/10.1063/1.1664976
https://doi.org/10.1063/1.1664976
https://doi.org/10.1063/1.1664976
https://doi.org/10.1063/1.1664976


TOPOLOGICAL FOOTPRINTS OF THE KITAEV CHAIN … PHYSICAL REVIEW B 97, 214505 (2018)

[38] D. J. Thouless, Phys. Rev. 187, 732 (1969).
[39] M. E. Fisher, S. K. Ma, and B. G. Nickel, Phys. Rev. Lett. 29,

917 (1972).
[40] P. W. Anderson and G. Yuval, J. Phys. C 4, 607 (1971).
[41] J. M. Kosterlitz, Phys. Rev. Lett. 37, 1577 (1976).
[42] J. L. Cardy, J. Phys. A 14, 1407 (1981).
[43] J. Bhattacharjee, S. Chakravarty, J. L. Richardson, and D. J.

Scalapino, Phys. Rev. B 24, 3862 (1981).
[44] J. K. Bhattacharjee, J. L. Cardy, and D. J. Scalapino, Phys. Rev.

B 25, 1681 (1982)
[45] J. Z. Imbrie and C. M. Newmann, Commun. Math. Phys. 118,

303 (1988).
[46] E. Luijten and H. Messingfeld, Phys. Rev. Lett. 86, 5305 (2001).
[47] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, UK, 2011).
[48] S. Suzuki, J.-I. Inoue, and B. K. Chkarabarti, Quantum Ising

Phases and Transitions in Transverse Ising Models, Lecture
Notes in Physics Vol. 862 (Springer, Berlin, 2013).

[49] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. Rosen-
baum, and D. Sen, Quantum Phase Transitions in Transverse
Field Spin Models: From Statistical Physics to Quantum Infor-
mation (Cambridge University Press, Cambridge, UK, 2015).

[50] A. Dutta and J. K. Bhattacharjee, Phys. Rev. B 64, 184106
(2001).

[51] A. Kitaev, Phys.-Usp. 44, 131 (2001); A. Kitaev and C. Laumann,
arXiv:0904.2771.

[52] P. Cats, A. Quelle, O. Viyuela, M. A. Martin-Delgado, and C.
Morais Smith, Phys. Rev. B 97, 121106(R) (2018).

[53] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys. Rev.
Lett. 112, 130401 (2014); 113, 076408 (2014).

[54] Z. Huang and D. P. Arovas, Phys. Rev. Lett. 113, 076407 (2014);
O. Viyuela, A. Rivas, and M. A. Martin-Delgado, 2D Mater. 2,
034006 (2015).

[55] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).
[56] A. Uhlmann, Ann. Phys. 501, 63 (1989).
[57] E. Sjoqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson,

D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845 (2000).
[58] O. Andersson, I. Bengtsson, M. Ericsson, and E. Sjoqvist,

Philos. Trans. R. Soc. A 374, 20150231 (2016).
[59] F. D. Zela, The Pancharatnam-Berry phase: Theoretical and

experimental aspects, in Theoretical Concepts of Quantum
Mechanics, edited by M. R. Pahlavani (IntechOpen Limited,
London, 2012), Chap. 14.

[60] U. Bhattacharya, S. Bandyopadhyay, and A. Dutta, Phys. Rev.
B 96, 180303(R) (2017).

[61] M. Heyl and J. C. Budich, Phys. Rev. B 96, 180304(R) (2017).
[62] C. E. Bardyn, L. Wawer, A. Altland, M. Fleischhauer, and S.

Diehl, Phys. Rev. X 8, 011035 (2018).
[63] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[64] A. Kitaev, in Advances in Theoretical Physics: Landau Memorial

Conference, edited by V. Lebedev and M. Feigel’man (AIP,
New York, 2009).

[65] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[66] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593

(1987).
[67] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[68] A. Uhlmann, Lett. Math. Phys. 21, 229 (1991).
[69] M. Hubner, Phys. Lett. A 179, 226 (1993).
[70] L. Lepori and L. Dell’Anna, New J. Phys. 19, 103030 (2017).

214505-7

https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1088/0022-3719/4/5/011
https://doi.org/10.1088/0022-3719/4/5/011
https://doi.org/10.1088/0022-3719/4/5/011
https://doi.org/10.1088/0022-3719/4/5/011
https://doi.org/10.1103/PhysRevLett.37.1577
https://doi.org/10.1103/PhysRevLett.37.1577
https://doi.org/10.1103/PhysRevLett.37.1577
https://doi.org/10.1103/PhysRevLett.37.1577
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1103/PhysRevB.24.3862
https://doi.org/10.1103/PhysRevB.24.3862
https://doi.org/10.1103/PhysRevB.24.3862
https://doi.org/10.1103/PhysRevB.24.3862
https://doi.org/10.1103/PhysRevB.25.1681
https://doi.org/10.1103/PhysRevB.25.1681
https://doi.org/10.1103/PhysRevB.25.1681
https://doi.org/10.1103/PhysRevB.25.1681
https://doi.org/10.1007/BF01218582
https://doi.org/10.1007/BF01218582
https://doi.org/10.1007/BF01218582
https://doi.org/10.1007/BF01218582
https://doi.org/10.1103/PhysRevLett.86.5305
https://doi.org/10.1103/PhysRevLett.86.5305
https://doi.org/10.1103/PhysRevLett.86.5305
https://doi.org/10.1103/PhysRevLett.86.5305
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
http://arxiv.org/abs/arXiv:0904.2771
https://doi.org/10.1103/PhysRevB.97.121106
https://doi.org/10.1103/PhysRevB.97.121106
https://doi.org/10.1103/PhysRevB.97.121106
https://doi.org/10.1103/PhysRevB.97.121106
https://doi.org/10.1103/PhysRevLett.112.130401
https://doi.org/10.1103/PhysRevLett.112.130401
https://doi.org/10.1103/PhysRevLett.112.130401
https://doi.org/10.1103/PhysRevLett.112.130401
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1088/2053-1583/2/3/034006
https://doi.org/10.1088/2053-1583/2/3/034006
https://doi.org/10.1088/2053-1583/2/3/034006
https://doi.org/10.1088/2053-1583/2/3/034006
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1002/andp.19895010108
https://doi.org/10.1002/andp.19895010108
https://doi.org/10.1002/andp.19895010108
https://doi.org/10.1002/andp.19895010108
https://doi.org/10.1103/PhysRevLett.85.2845
https://doi.org/10.1103/PhysRevLett.85.2845
https://doi.org/10.1103/PhysRevLett.85.2845
https://doi.org/10.1103/PhysRevLett.85.2845
https://doi.org/10.1098/rsta.2015.0231
https://doi.org/10.1098/rsta.2015.0231
https://doi.org/10.1098/rsta.2015.0231
https://doi.org/10.1098/rsta.2015.0231
https://doi.org/10.1103/PhysRevB.96.180303
https://doi.org/10.1103/PhysRevB.96.180303
https://doi.org/10.1103/PhysRevB.96.180303
https://doi.org/10.1103/PhysRevB.96.180303
https://doi.org/10.1103/PhysRevB.96.180304
https://doi.org/10.1103/PhysRevB.96.180304
https://doi.org/10.1103/PhysRevB.96.180304
https://doi.org/10.1103/PhysRevB.96.180304
https://doi.org/10.1103/PhysRevX.8.011035
https://doi.org/10.1103/PhysRevX.8.011035
https://doi.org/10.1103/PhysRevX.8.011035
https://doi.org/10.1103/PhysRevX.8.011035
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1007/BF00420373
https://doi.org/10.1007/BF00420373
https://doi.org/10.1007/BF00420373
https://doi.org/10.1007/BF00420373
https://doi.org/10.1016/0375-9601(93)90668-P
https://doi.org/10.1016/0375-9601(93)90668-P
https://doi.org/10.1016/0375-9601(93)90668-P
https://doi.org/10.1016/0375-9601(93)90668-P
https://doi.org/10.1088/1367-2630/aa84d0
https://doi.org/10.1088/1367-2630/aa84d0
https://doi.org/10.1088/1367-2630/aa84d0
https://doi.org/10.1088/1367-2630/aa84d0



