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Phase diagram of the underdoped cuprates at high magnetic field
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The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic
field plane illuminates key issues in understanding the physics of these materials. At low temperature, the
superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist
in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly
reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along
with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism.
We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge
and superconducting orders in the system depending on their relative masses and the coupling strength of the
two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be
understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting
orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and
superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms
in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping
is also discussed.
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I. INTRODUCTION

Enigmatic high transition temperature superconductors, es-
pecially cuprates, are ideal playgrounds to understand various
facets of condensed matter physics. The application of an
external magnetic field suppresses superconductivity giving
an alternative way to investigate the underlying nonsupercon-
ducting phases. We argue that the phase diagram of cuprates
in the temperature (T )-applied magnetic field (B) plane can
enlighten us with some key aspects of these superconductors.

Underdoped cuprates display a mysterious pseudogap phase
[1–3], where the antinodal regions of the Brillouin zone
are gapped out [4–8]. This phenomenon occurs at higher
temperatures than the superconducting transition temperature
(Tc). While �Q = 0 (translational symmetry preserving) orders
like loop currents [9–11] or nematicity [12,13] are detected
below the pseudogap transition temperature, the exact origin
and nature of this pseudogap phase remains to be completely
understood [14,15]. Over the years, numerous experiments
[16–30] revealed the ubiquitous existence of a �Q �= 0 charge
density wave order in the pseudogap phase of the underdoped
cuprates. Recently, �Q �= 0 Cooper-pair density wave (PDW)
order is also observed in the halo surrounding the vortex core
[31–33]. The presence of this PDW order is always accom-
panied with the presence of the charge density modulations.
But, whether the primary order [34] is the PDW or the charge
order is still under intense debate. Thus the study of the charge
order can significantly help in the understanding of the puzzling
pseudogap phase.

X-ray scattering [22,23,35–37] and nuclear magnetic
resonance [25] (NMR) measurements in YBa2Cu3Oy (YBCO)
at zero or low magnetic fields identified the existence of charge
density wave modulations in the doping range 0.09�p�0.13.

The correlation lengths of this charge order were found to be
∼20 lattice spacings along the CuO2 planes and ∼1 lattice
spacing in the perpendicular direction. This established the two
dimensional (2D) and short-range nature of these modulations.
The in-plane modulations showed incommensurate bidirec-
tional checkerboard patterns with the dominant wave vectors
being �Q ≈ (0.3,0) and �Q ≈ (0,0.3). Similar checkerboard
charge modulations were also observed in Bi-based cuprates
using scanning tunneling microscopy [38,39] at low
temperatures. The onset temperature (T 0

co) of this short-range
charge order in YBCO was found to be much higher than Tc.

At high magnetic fields, NMR line splittings [26,27] showed
the presence of long-range charge charge (CO) in YBCO for
p ∼ 0.11–0.12. This was further supported by sound velocity
measurements [40], which indicated a thermodynamic phase
transition to a true long-range charge order at an onset field Bco

(∼17 T) for p = 0.11. In the same doping range (∼0.11–0.12),
quantum oscillations [41–43] associated with a negative Hall
[44–47] constant and a negative Seebeck [46,48,49] coefficient
point towards the formation of a small electron pocket in
the Fermi surface at high magnetic fields (B > 25 T). The
reconstruction of the Fermi surface from large hole arcs
at high doping to small electron pockets at low doping is
attributed to the broken translational symmetry due to the
presence of the charge modulations of a substantial range.
Whether the modulations responsible for this Fermi surface
reconstruction correspond to the bidirectional checkerboard
patterns or unidirectional stripe patterns is still under debate.
Charge modulations obtained in high-field x-ray scattering
measurements [50–52] also show profound signatures. The
in-plane correlation lengths of these modulations become as
high as ∼100 lattice spacings, confirming the long-range
nature of the high-field CO. Additionally, these high-field x-ray

2469-9950/2018/97(21)/214501(22) 214501-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.214501&domain=pdf&date_stamp=2018-06-04
https://doi.org/10.1103/PhysRevB.97.214501


CHAKRABORTY, MORICE, AND PÉPIN PHYSICAL REVIEW B 97, 214501 (2018)

measurements suggest the presence of an incommensurate
unidirectional three dimensional (3D) CO with out-of-plane
correlation length ∼10 lattice spacings. The 3D CO has the
same in-plane incommensuration as the 2D counterpart. This
indicates that the appearance of the 3D CO is somehow related
to the 2D long-range CO. At high magnetic fields, all these
experiments thus demonstrate the appearance of a long-range
CO irrespective of its structure.

A competition between the CO and the superconductivity
(SC) is already noticeable at zero or moderate magnetic fields.
First evidence of this competition can be viewed from the
suppression of the zero field Tc in the same doping range where
the short-range CO is observed [22]. Second, the intensity
of the zero-field x-ray scattering CO peaks decreases for
T < Tc [22,35]. The presence of a moderate magnetic field
reduces this decrease [22,25,35]. The competition can be
further substantiated by scanning tunneling microscopy, which
detects the short-range CO in regions of space where the
amplitude of the superconductivity is reduced (both near the
vortex core [53] at low fields and surrounding Zn impurities
[31] at zero magnetic field).

In this paper, we will focus on the competition between
the SC and the long-range CO at high magnetic fields. This
competition is prominent in the B-T phase diagram of under-
doped cuprates. In Fig. 1, we show a schematic B-T phase
diagram summarizing various experiments on underdoped
(0.11 � p � 0.13) YBCO. Our endeavor in this work will be
to understand the following salient features of the long-range
CO in the B-T phase diagram:

(1) The long-range CO phase is associated with an onset
magnetic field (Bco), which is found to be surprisingly insen-
sitive to the temperature and remains flat up to the scale of Tc

[40,47,54].
(2) At high magnetic fields, the long-range CO transi-

tion temperature (Tco) is nearly independent of the magnetic
field [40,54]. Remarkably, Tco is very close to zero-field
Tc [26,27,40,55] and significantly lower than T 0

co (transition
temperature of the short-range CO) in the doping range 0.11 �
p � 0.13. In fact, Tco is bound by zero-field Tc for all doping.

(3) Sound velocity measurements [40,54], NMR [26,27],
and x-ray scattering [50–52] measurements all indicate that
there exists a coexisting phase in the B-T phase diagram at low
temperatures. This is further illustrated by the identification
of the upper critical field of the superconductor [56–58] to
be higher than the onset field of the long-range CO at low
temperatures.

In particular, we argue that the flatness of Bco is a signature
of an SU(2) symmetry between the SC and the CO. The
coexisting phase in the phase diagram is a result of a weak
biquadratic symmetry breaking between the two, caused by
interaction terms in the free energy.

Theoretically, competing orders [59–76] are studied enor-
mously in the context of the underdoped cuprates. In the
presence of a magnetic field, the SC is suppressed near a vortex
core. As a result, any competing order like charge density
wave [60,63,77], spin density wave [61–63,78], or pair density
wave [79] becomes recognizable near the vortex cores. The
competing orders are often treated within a Ginzburg-Landau
theory. In particular, it was shown in Ref. [60] that the CO
can coexist with the SC in a halo surrounding the vortex core

FIG. 1. A schematic B-T phase diagram of underdoped YBCO
summarizing various experiments. Type-II superconductors have two
critical fields: a lower critical field (Bc1) and an upper critical field
(Bc2). The system completely expels magnetic fields for B < Bc1

showing the Meissner effect and allows magnetic field flux lines to
penetrate at various locations (called vortices) for Bc1 < B < Bc2.
Cuprates have very low Bc1 and so form vortices with the application
of a very small magnetic field. Bc2 varies with temperature as shown in
the figure and its exact profile depends on the specifics of the sample.
At low temperatures, the vortices form periodic arrays called vortex
solid with local short-range charge modulations inside the vortex core.
Increasing the temperature, this solid melts for B > Bm. Though Bm

has a different temperature dependence than Bc2, it intersects the Bc2

line in the two different limits of zero temperature and zero magnetic
field. At high magnetic field, system shows a long-range charge
density wave order with the transition field Bco. Bco is insensitive
to temperature at low temperatures and marks a sudden rise. Tco is
the temperature at high magnetic fields where the charge order marks
a transition to the pseudogap phase. Tco is effectively insensitive to
the magnetic field. The green region is the pseudogap phase where
one looses any coherence of either charge or superconducting order.
The pseudogap phase persists for temperatures below T ∗, which is
very large compared to Tc or Tco. At low temperatures, the magenta
charge order region merges with the blue superconducting order
region showing the coexistence of both the orders. The short-range
charge order is present even for low magnetic fields, but is not shown
in this schematic.

where the SC is suppressed partially. This CO inside each
halo fluctuates enormously with no long-range CO. It was
postulated that only an interlayer coupling [60] or a finite
magnetic field [26,60] (inducing vortex-vortex interaction) can
stabilize a true long-range CO.

In Sec. II, we focus on a similar Ginzburg-Landau theory of
the competing SC and 2D CO, but in a different perspective.
We will treat a Ginzburg-Landau free energy with effective
homogeneous order parameters (averaging the vortex induced
inhomogeneities) near the upper critical magnetic field of the
superconductor. In this approach, the magnetic field renormal-
izes the effective mass (coefficient of the quadratic term of
order parameters in the free energy) of the SC order parameter.
We couple this effective free energy of the SC with the free
energy of the CO and study the competition. Note that we
only consider the long-range CO. We phenomenologically
construct the B-T phase diagram with increasing coupling

214501-2



PHASE DIAGRAM OF THE UNDERDOPED CUPRATES AT … PHYSICAL REVIEW B 97, 214501 (2018)

strength between the two orders. This helps us quantifying
the relation between the region of the coexisting phase and
different parameters in the Ginzburg-Landau theory (like
coupling strength and the mass of the two order parameters).
We show that a strong competition between the SC and the CO
leads to a phase diagram with no coexisting phase. Within this
mean field picture, we infer that the temperature insensitivity
of Bco is specific to an extreme fine tuning of the temperature
dependence of each mass parameter. We demonstrate that, for
a range of parameters, there is an enlarged symmetry between
the SC and the CO where they are energetically degenerate. For
this regime of parameters, the associated massless fluctuations
[80,81] of the two order parameters become important and
cannot be captured in a Ginzburg-Landau picture.

A similar enhanced symmetry between the SC and the
CO is proposed in Ref. [81] in the pseudogap phase of the
underdoped cuprates. In this approach, the pseudogap phase is
characterized by a composite SU(2) order parameter compris-
ing the SC and the CO. The SU(2) symmetry between these
suborders imposes a constraint on them, reflecting their strong
competition. Fluctuations associated with this symmetry are
described by a non linear sigma model [81]. This SU(2) theory
is successful in describing some of the phenomenological
aspects [82–87] of the much debated pseudogap phase. A
similar non linear sigma model describing the fluctuating CO
and SC was also studied in Refs. [88–90], which explain many
trends of the zero or low field x-ray scattering data.

In Sec. III, we study the competition of the SC and the
CO within the SU(2) theory. We use a renormalization group
treatment of the associated nonlinear sigma model (similar to
the one developed in Ref. [82]) and illustrate the B-T phase
diagram. We show that the temperature insensitivity of Bco

at low temperatures is a unique feature of the SU(2) theory.
Our analysis shows that Tco ≈ Tc, another exclusive feature of
the SU(2) theory. We discuss the role of the underlying SU(2)
symmetry in the pseudogap phase, which is characterized as
a disordered phase of the fluctuating SC or CO. We further
illustrate the possibility of the presence of a coexisting phase
even in the existence of a strong constraint between the SC and
the CO. This coexisting phase is likely to stabilize the PDW
order (showing supersolidity) and might serve as a candidate
for explaining the recently observed unusual effects [91] in the
density of states.

We also predict some features of the B-T phase diagram
in the doping range 0.13 � p � 0.2 (close to the pseudogap
quantum critical doping under the superconducting dome).
Using a quantum non linear sigma model [92], we postulate
that Bco becomes temperature dependent as the doping goes
close to the pseudogap quantum critical doping. Very similar
temperature dependence of Bco is observed recently in sound
velocity measurements [54] for 0.13 � p � 0.14.

II. GINZBURG-LANDAU THEORY OF
COMPETING ORDERS

A. Generic features of the free energy:
Conditions for coexistence

Ginzburg-Landau (GL) theories are used extensively to
describe phase transitions phenomenologically without getting

into the microscopic details of a system. The main idea behind
this formulation is to write the free-energy density in powers
of the order parameters corresponding to broken symmetries
near the transition. The GL free energy describing systems
with multiple broken symmetries can be written as a sum
of the free energies for each broken symmetry if there is
no interaction between the fields describing individual order
parameters. The competition or repulsion between the fields
increases this free energy. This imposes a restriction on the
strength of the interaction for the existence of a coexisting
phase. In the following, we derive the conditions imposed
on this interaction strength based on the GL theory of two
competing order parameters: the superconducting and the
charge order parameters. The free-energy density functional
of two complex order parameters, ψ (describing the SC order)
and φ (describing the CO), is given by

f [ψ,φ] = αψ |ψ |2 + βψ

2
|ψ |4 + αφ|φ|2

+ βφ

2
|φ|4 + γ |ψ |2|φ|2, (1)

where ψ and φ are N1 and N2 component fields, respectively,
γ is the coupling between the two fields and βψ,βφ > 0. In
Eq. (1), we have kept terms up to the fourth order in fields.
Our calculation in this section is for general N1 and N2, unless
mentioned.

In the absence of any coupling between the two fields, both
the fields condense to form a state with ψ �= 0 and φ �= 0 if
αψ < 0 and αφ < 0. In the presence of the coupling between
the fields, there exists four possible phases: the SC phase (ψ �=
0 and φ = 0), the CO phase (φ �= 0 and ψ = 0), the coexisting
phase (ψ �= 0 and φ �= 0), and a normal state (φ = 0 and ψ =
0). An illustration of these phases is shown in Figs. 2(a) and
2(b). The mean-field solution of Eq. (1) can be obtained by
minimizing the free energy with respect to the order parameters
ψ and φ. For the SC phase and the CO phase, we have the
solutions |ψ |2 = −αψ/βψ and |φ|2 = −αφ/βφ , respectively.
When both the orders coexist, we can obtain the solution by
minimizing the free energy simultaneously with respect to ψ

and φ, which yields

αψ + βψ |ψ |2 + γ |φ|2 = 0, (2)

and αφ + βφ|φ|2 + γ |ψ |2 = 0. (3)

These coupled equations have a unique solution for γ 2 �=
βψβφ :

|ψ |2 = γαφ − αψβφ

βψβφ − γ 2
, |φ|2 = γαψ − αφβψ

βψβφ − γ 2
. (4)

The mean-field free-energy density for the SC phase and
the CO phase is fsc = −α2

ψ/(2βψ ) and fco = −α2
φ/(2βφ),

respectively. The free energy corresponding to the coexisting
phase is given by

fsc+co = fsc − (αφβψ − γαψ )2

2βψ (βψβφ − γ 2)
= fco − (αψβφ − γαφ)2

2βφ(βψβφ − γ 2)
.

(5)
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FIG. 2. An illustration of the four different phases possible in a GL free energy [Eq. (1)] with two competing orders (here, superconducting
and charge order). If αψ (mass of the superconducting field) and αφ (mass of the charge order field) are both positive, only the normal state
is stable; if αψ < 0 and αφ > 0, only the superconducting (SC) phase is stable; if αψ > 0 and αφ < 0, only the charge order (CO) phase is
stable; if αψ < 0 and αφ < 0, there is a possibility of a coexisting (SC+CO) phase. If the repulsion strength (γ ) between the fields is small
(γ 2 < βψβφ), the phase diagram in (a) accommodates the SC+CO phase in the region bound by two lines given by the mass conditions in
Eqs. (7) and (8). Strong γ disfavors any coexistence of the fields as shown in (b). We show the free-energy density landscapes (c–f) and their
contour maps (g–j) in the plane of the norm of the order parameters for four different GL parameter regimes. (c, g) If the conditions for the
coexistence are satisfied, we see four minima in the free-energy density corresponding to both ψ �= 0 and φ �= 0. (d, h) Even if γ is small, the
free-energy density will form minima in either ψ = 0 or φ = 0 sectors depending on the mass conditions in Eqs. (7) and (8). Here, we show
the case where Eq. (8) is violated. (e, i) For the specific case of γ 2 = βψβφ and αψ = αφ , the free-energy density shows an enlarged symmetry
with no change in its value for a fixed |ψ |2 + |φ|2. The Mexican hat shape of the free-energy density is evident. (f, j) γ 2 > βψβφ disfavors any
coexistence with minima in both ψ = 0 and φ = 0 axes. In this case, the stable phase is governed only by |αψ |-|αφ | [case with |αψ | = |αφ | is
shown in the plot (f) and (j)]. In all the plots, we have taken βψ = βφ = 1.

From Eq. (5), it is clear that the coexisting phase can be stable
with respect to either the SC phase or the CO phase if fsc+co <

fsc and fsc+co < fco, which gives

γ 2 < βψβφ. (6)

The coexisting phase also demands the existence of a solution
ψ �= 0 and φ �= 0 in Eq. (4). This gives two more conditions

on the masses:

γαφ > αψβφ, (7)

and γαψ > αφβψ. (8)

The conditions in Eqs. (6)–(8) can only be satisfied with αψ <

0 and αφ < 0, which is a necessary but not sufficient condition.
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With both masses (αψ and αφ) being negative, conditions in
Eqs. (7) and (8) can also be rewritten as γ |αφ| < |αψ |βφ and
γ |αψ | < |αφ|βψ .

We plot the free-energy density (f ) in Fig. 2 for βψ = βφ =
1. We first discuss the case when the coupling between the fields
is weak enough satisfying condition in Eq. (6). Additionally, if
we satisfy both the conditions in Eqs. (7) and (8), the coexisting
phase becomes stable as shown in Figs. 2(c) and 2(g). If one
of these conditions is not satisfied, the coexisting phase is not
stable anymore and the positions of the minima of f shift to
either φ = 0 if |αφ| < γ |αψ | [shown in Figs. 2(d) and 2(h)] or
ψ = 0 if |αφ| > |αψ |/γ .

If we increase the coupling between the fields such that we
satisfy γ 2 = βψβφ , the system of Eqs. (2) and (3) has no unique
solution. Hence, we show that this coupling is special and
results into an enhanced symmetry in the free-energy density.
Indeed, if we scale the masses and the fields by the corre-
sponding coefficients of their quartic potentials such that ᾱψ =
αψ/

√
βψ , ᾱφ = αφ/

√
βφ , |ψ̄ |2 = |ψ |2/√βψ , and |φ̄|2 =

|φ|2/√βφ , we can rewrite the system of Eqs. (2) and (3) as

ᾱψ + |ψ̄ |2 + |φ̄|2 = 0, (9)

and ᾱφ + |φ̄|2 + |ψ̄ |2 = 0. (10)

If these scaled masses of the two fields are the same (ᾱψ = ᾱφ),
we have a larger symmetry between ψ and φ fields: The free
energy is invariant if we keep |ψ̄ |2 + |φ̄|2 fixed. The two fields
are degenerate with no energy cost needed to rotate from one
to the other. In this case the free energy, which is O(N1) ×
O(N2) symmetric in general, displays a higher symmetry of
O(N1 + N2). This O(N1 + N2) symmetry is visible in the
Mexican-hat-like form of the free energy in Figs. 2(e) and
2(i). The constraint of fixed |ψ̄ |2 + |φ̄|2 introduces fluctuations
in each ψ̄ and φ̄. These fluctuations can be treated within a
O(N1 + N2) nonlinear sigma model (see Sec. III for details).

Further increasing γ 2 above βψβφ pushes the minima in the
free energy to either the SC phase or the CO phase depending
on their relative masses. If αψ = αφ , all four minima are
degenerate as shown in Figs. 2(f) and 2(j).

B. Free energy in the presence of an external magnetic field

In a type-II superconductor, the external magnetic field
does not penetrate the sample below a lower critical field
Bc1 due to the Meissner effect. If the magnetic field (B) is
increased above Bc1, the magnetic field couples to the orbital
motion of the electrons and the flux lines penetrate the sample
through different locations creating vortices. This state is
commonly known as the mixed phase. The magnitude of the
SC order parameter vanishes at the core of these vortices. The
inhomogeneities arising due to the vortices will add gradient
terms in the free-energy functional of the superconductor,
which is given by

Fsc − Fn =
∫

α′
ψ |ψ(r)|2 + βψ

2
|ψ(r)|4

+ λ

2

∣∣∣∣∣
(

∇
i

− 2e �A
c

)
ψ(r)

∣∣∣∣∣
2

dR, (11)

where Fsc is the free-energy functional of the superconductor
alone, Fn is the free-energy functional of the normal state,
�A is the vector potential corresponding to the magnetic field,

and ψ is the complex SC order parameter. Cuprates are
commonly known as extremely type-II superconductors with a
high Ginzburg-Landau parameter (which is the ratio of the pen-
etration depth and the coherence length of the superconductor).
As a result, these superconductors have a very small Bc1 and
there is effectively no screening of magnetic field by Meissner
currents, i.e., ∇ × �A = Bẑ, where B is the external applied
magnetic field. We choose z as the direction perpendicular to
the orbital motion of the electrons in the 2D CuO2 planes of the
superconductor. As the magnetic field is further increased, the
number of vortices increases and their separation decreases.
There exists an upper critical magnetic field Bc2 where the
order parameter collapses resulting in a second order transition
to the normal phase. Close to Bc2, the SC order parameter
ψ is small and the free-energy density can be treated (see
Appendix A) within an effective homogeneous theory. In terms
of an average order parameter ψ , the free-energy density of the
superconductor is written as

fsc − fn = αψ |ψ |2 + βψ

2
|ψ |4, (12)

where the mass term αψ is renormalized due to magnetic field
(see Appendix A) and is given by

αψ = α′
ψ + ζB + ascT

2, (13)

with α′
ψ < 0, and ζ is a positive constant. We take a quadratic

temperature dependence of αψ as we are expanding near zero
temperature. Near the transition temperature, the temperature
dependence of αψ can be well approximated as linear in T . asc

is the measure of the tolerance of the superconducting order to
thermal suppression. The mass term αψ changes its sign when
the magnetic field reaches its upper critical value:

Bc2 = (α′
ψ + ascT

2)/ζ (14)

We can now include the form of the SC free energy in
Eq. (12) in our free-energy functional for the coupled SC and
CO system:

f [ψ,φ] = fsc − fn + αφ|φ|2 + βφ

2
|φ|4 + γ |ψ |2|φ|2, (15)

where αφ is parametrized as

αφ = α′
φ + acoT

2, (16)

where α′
φ < 0 and φ is the complex CO order parameter. As the

total charge of the CO field is zero, the CO field do not couple to
the orbital magnetic field giving no magnetic field dependence
of αφ . aco is the measure of the thermal suppression of the
CO order parameter. We neglect the temperature dependence
of βψ and βφ . The form of Eq. (15) is the same as in Eq. (1),
but in Eq. (15), ψ or φ are the effective homogeneous order
parameters and αψ is the renormalized SC mass.

1. B-T phase diagram

We now use the free-energy density in Eq. (15) to construct
the B-T phase diagram. As illustrated earlier in Sec. II A, we
can access a coexisting SC and CO phase if the repulsion
between the SC and CO fields is weak enough. In this

214501-5



CHAKRABORTY, MORICE, AND PÉPIN PHYSICAL REVIEW B 97, 214501 (2018)

regime of weak interaction between the fields (γ 2 < βψβφ),
the coexisting phase is restricted to a region in the B-T phase
diagram bounded by two lines obtained from the conditions in
Eqs. (7) and (8). The boundary line separating the SC phase
and the coexisting phase is given by

Bsc→sc+co(T ) = 1

ζ

[(
βψα′

φ

γ
− α′

ψ

)
+

(
βψaco

γ
− asc

)
T 2

]
,

(17)

and the boundary line separating the coexisting phase and the
CO phase is given by

Bsc+co→co(T ) = 1

ζ

[(
γα′

φ

βφ

− α′
ψ

)
+

(
γ aco

βφ

− asc

)
T 2

]
.

(18)

If γ 2 = βψβφ , the two lines in Eqs. (17) and (18) merge to
form a single line. If βψ = βφ = γ , this single line reduces to

Bsc→co(T ) = 1

ζ
[(α′

φ − α′
ψ ) + (aco − asc)T 2]. (19)

For the analysis of the phase diagram, we choose α′
ψ = −1,

α′
φ = −0.6, βψ = βφ = 1, ζ = 1.

In Fig. 3, we plot the B-T phase diagram corresponding to
the free energy in Eq. (15) with increasing coupling strength
between the fields for asc = aco = 1. The magnetic field lines
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FIG. 3. The applied magnetic field-temperature phase diagram in
a GL theory with competing ψ and φ orders for different strengths of
competition. At low γ , a coexisting phase with both CO and SC orders
is stable at low magnetic fields and temperatures. With increased γ ,
the fields repel each other strongly to reduce the coexisting region with
its disappearance at γ = 1. At γ = 1, the two second-order magenta
lines [given by Eqs. (17) and (18)] merge to form a first order line, as
shown in (d). The first-order magenta line has an enlarged symmetry
of O(N1 + N2) with αψ = αφ . The topology of the phase diagram
remains the same for all values of γ � 1. We have scaled the magnetic
field with B0 and temperature with Tc and used asc = aco = 1. The
first-order magenta line B = B0 in (d) is independent of temperature
primarily because we choose asc = aco = 1 [see Eq. (19)]. We also
choose βψ = βφ = 1.

(blue lines in Fig. 3) marking the transition from the SC phase to
the normal phase is given by the condition αψ = 0 in Eq. (13),
which yields B(T ) = (1/ζ )(−α′

ψ − ascT
2). At B = 0, αψ = 0

gives the transition temperature (Tc) as

Tc =
√

−α′
ψ

asc
. (20)

The transition from the CO phase to the normal state at
high magnetic field is independent of the magnetic field.
This transition (brown line in Fig. 3) is given by the con-
dition αφ = 0 in Eq. (16) and occurs at a temperature Tco

given by

Tco =
√

−α′
φ

aco
. (21)

For γ < 1 (regime of weak repulsion), the coexisting phase is
stable in a region of the phase diagram bounded by two lines
(magenta lines in Fig. 3) given by expressions in Eqs. (17) and
(18). The magenta lines meet the blue lines (characterizing
the transition from the SC phase to the normal phase) and the
brown lines (characterizing the transition from the CO phase
to the normal phase) at a multicritical point (Tco, B0), where
B0 = |α′

ψ | − |α′
φ|. If γ < |α′

φ|/|α′
ψ |, the coexisting phase is

stable even at B = 0 [Fig. 3(a)]. Increasing γ shrinks the region
of coexistence with eventual overlap of the two magenta lines
at γ = 1.

As explained in Sec. II A, the free energy has an enlarged
symmetry for γ 2 = βψβφ . For our choice of parameters
(βψ = βφ = 1) in this section, the condition for the enhanced
symmetry reduces to γ = 1. If γ = 1, there is no coexistence
of the SC and the CO phase. The transition magnetic field line
from the SC phase to the CO phase is governed by Eq. (19)
and is shown by the magenta line in Fig. 3(d). The individual
masses αψ and αφ become equal along this magenta line. For
B < B0, the mass of the SC field is smaller than the mass of
the CO field (αψ < αφ). This stabilizes only the SC phase. The
mass of the SC field increases with increasing magnetic field
and becomes equal to the mass of the CO field at B = B0. For
B > B0, the mass of the SC field becomes greater than the mass
of the CO field. Consequently, the CO phase gets stabilized for
B > B0. Therefore, when γ = 1, the transition from the SC
phase to the CO phase is decided by the individual masses of
each of the fields. If we further strengthen γ , the stable phase
is still governed by the size of the individual masses only. The
topology of the B-T phase diagram remains same for all γ � 1.
The effect of the competition between the fields is visible only
for T < Tco. The transitions from the SC to the normal phase
and from the CO phase to the normal phase are independent
of the coupling strength. So, the brown lines and the blue lines
in Fig. 3 are at the same place for all γ . Tco and Tc are the
temperatures where the individual masses (αψ and αφ) vanish
and are not connected to each other in general.

The transitions from the SC phase or the CO phase to
the normal state are second-order transitions for all γ as the
order parameters ψ or φ vanish continuously at the transition
lines. In contrast, the nature of the transition lines Bsc→sc+co

or Bsc+co→co for γ < 1 in Figs. 3(a)–3(c) and the transition
line Bsc→co in Fig. 3(d) are completely different. Transition
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FIG. 4. The norm of the order parameters ψ and φ are plotted
using the expressions in Eq. (4) for the GL free energy in Eq. (15).
They are shown as a function of B/B0 at T = 0.2Tc for γ = 0.7 (a)
and γ � 1 (b). Both ψ and φ behave as a continuous function for γ <

1, indicating that the transitions from the SC phase to the coexisting
phase to the CO phase are all second order in nature. The coexistence
region ceases to exist for γ � 1. At B = B0, ψ , φ and consequently
f experience discontinuous changes marking a first-order transition
as shown in (b).

lines from the SC phase to the coexisting phase and from
the coexisting phase to the CO phase correspond to second-
order transitions. But the transition from the SC phase to the
CO phase is a first order transition for γ � 1 as the order
parameters experience a discontinuous jump at B = B0. We
show the profile of the order parameters ψ and φ as a function
of magnetic field in Fig. 4 for γ < 1 (a) and γ � 1 (b). The
first-order transition from the SC to the CO has not been
reported in experiments [50,58].

2. Different temperature dependence of the individual masses

The first order transition line demarcating the SC phase
and the CO phase is flat with temperature independent B0 in
Fig. 3(d). Looking at this, we might get tempted to interpret
it as the temperature independence of the transition field in
experiments. This feature is, however, not true in general and
is applicable only for asc = aco. From Eq. (19), we can see
that Bsc→co = B0 is independent of T if asc = aco. In Fig. 5,
we explore the phase diagram with asc �= aco. In the presence
of the coexistence, Bsc→sc+co in Eq. (17) is independent of
temperature only if aco = γ asc/βψ . For γ � 1, the first order
line is only temperature independent if asc = aco. While we
have taken a quadratic temperature dependence of αψ and αφ

in Eqs. (13) and (16), it can be seen from Eqs. (17) and (19)
that a different temperature dependence will not modify the
conclusions on the flatness of Bsc→sc+co or Bsc→co. It should
be noted that in a phenomenological mean field treatment, asc

and aco are only parameters which determine the temperature
dependence of the individual masses. Thus, the flatness of the
transition of the SC phase to the CO phase can be achieved in
a GL theory by extreme fine tuning of the parameters and is
not a generic feature.

C. Renormalization group approach

Cuprates are considered to be short coherence length su-
perconductors and thus have a large Ginzburg region where
the mean field theory described above is supposed to fail
[93]. The fluctuations near the critical lines can be captured
in a renormalization group (RG) treatment. Within an RG
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FIG. 5. The B-T phase diagrams for the GL free energy in
Eq. (15) with asc �= aco. The flat magenta line in Fig. 3(d) is
reminiscent of the fact that we take asc = aco in Eq. (19). The slope of
first order transition lines (magenta) in (c, d) depend crucially on the
values of asc (parameter deciding the temperature dependence of αψ )
and aco (parameter deciding the temperature dependence of αφ). The
first order lines are flat if the temperature dependence of the masses
of both the fields are exactly same. The second order transition lines
(γ < 1) are shown in (a) and (b). The transition from the SC phase to
the coexisting phase is flat only if aco = γ asc. This figure reiterates
the fact that the flat transition to the CO phase seen in experiments
are not generic to a competing order GL theory.

treatment, the bare parameters (αψ , αφ , βψ , βφ , and γ ) in
Eq. (1) get renormalized to effective parameters (α̃ψ , α̃φ , β̃ψ ,
β̃φ , and γ̃ ). The RG analysis of the free energy in Eq. (1) is
already carried out in Ref. [94] and we do not replicate the
same. However, we summarize the results in the following
paragraph.

The RG technique is based on integrating out the fast mo-
mentum fluctuations iteratively to write the effective free en-
ergy, which captures the slow momentum or long wavelength
fluctuations. During the process of the iteration, the parameters
get modified recursively following trajectories governed by
the RG equations. The RG equations have fixed points (FP),
which correspond to the scale invariant parameters. These FP
can describe a phase or a phase transition depending on their
stability. The RG equations corresponding to Eq. (1) have six
FP:

(1) Trivial FP: α∗
ψ = 0, α∗

φ = 0, γ ∗ = 0,
(2) Gaussian-Heisenberg FP: β∗

ψ = 0, β∗
φ �= 0, γ ∗ = 0,

(3) Heisenberg-Gaussian FP: β∗
ψ �= 0, β∗

φ = 0, γ ∗ = 0,
(4) Heisenberg-Heisenberg FP: β∗

ψ �= 0, β∗
φ �= 0, γ ∗ = 0,

(5) First-order FP: β∗
ψ = β∗

φ = γ ∗, α∗
ψ = α∗

φ ,
(6) Second-order FP: β∗

ψ �= β∗
φ �= γ ∗, α∗

ψ �= α∗
φ .

The first four FP give γ ∗ = 0 where the SC order and the
CO are decoupled. They represent the transition from the SC
phase to the normal state and the transition from the CO phase
to the normal state. The fifth FP corresponds to the situation
of the enhanced symmetry of O(N1 + N2) where the effective
free-energy landscape looks similar to Figs. 2(e) and 2(i). This
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FP describes the first-order transition from the SC phase to
the CO phase. The sixth FP satisfies the mean field criterion
for coexistence (γ ∗2 < β∗

ψβ∗
φ) and represent the free-energy

landscape similar to Figs. 2(c) and 2(g). The bare parameters
depend on the applied magnetic field (B) and temperature
(T ). The transition lines in the B-T phase diagram can be
determined by studying the stability of the FP. The stability
of the FP depends crucially on the values of N1, N2, N1 + N2

and the dimension of the system. There are several analytical
and numerical studies of the stability of these FP in three
dimensions [95–98]. But the stability of the FP in the case
of two dimensions [99–102] is more complex and is still an
open question. So, it is difficult to pinpoint whether the B-T
phase diagram obtained in a competing order formalism can
include a coexisting phase or not.

Moreover, in 2D, the amplitude fluctuations play no role in
deciding the critical behavior. Instead, the thermal phase fluctu-
ations, captured by the renormalizations of the gradient terms,
are important in deciding the phase boundaries [101,103]. The
RG approach discussed in the preceding paragraph treats only
the amplitude renormalizations and does not take care of the
renormalizations of the gradient terms. Hence, the temperature
dependence in the B-T phase diagrams found from the analysis
of Eq. (1) is not expected to give the correct trends in two spatial
dimensions.

In this section, we described the GL theory of the competing
superconducting and charge orders in the presence of a mag-
netic field. We constructed the B-T phase diagram for different
strengths of the competition and discussed the possibility of
explaining the experimentally observed features. As evident
from Fig. 3, strengthening the competition between the SC
and the CO fields disfavors any coexisting phase in the phase
diagram. Bsc→sc+co for γ 2 < βψβφ and Bsc→co for γ 2 � βψβφ

are flat only if the temperature dependencies of αψ and αφ

are extremely fine tuned (Fig. 5). Further, the similarity of
the Tc at zero field and Tco at high field cannot be estab-
lished in this picture [see Eqs. (20) and (21)]. These features
make us believe that the B-T phase diagram of underdoped
cuprates is hard to explain within a GL theory of competing
orders.

We neglected the effects of vortex-induced inhomogeneities
in the GL analysis of this section. However, due to the
suppressed SC order parameter near the vortex core, a local
CO can be present near the cores even for γ 2 � βψβφ . The
long-range coherence between these isolated CO regions might
be established by including either an interlayer coupling or
vortex-vortex interactions [60]. Thus, there is also a possibility
of a coexistence phase with a strong interaction between the
SC and the CO. The temperature dependence of Bsc→sc+co in
this case is more involved and is not a part of the discussion in
this paper.

In Sec. II A, we could identify a parameter regime where
the free energy shows an enlarged O(N1 + N2) symmetry. The
enlarged symmetry puts a constraint [Eq. (9)] on the SC and
the CO fields if the two orders are energetically degenerate.
We now turn our discussion to an emergent SU(2) theory
where the strongly competing SC order and the CO are nearly
degenerate in energy. In the next section, we will first introduce
this SU(2) theory and then construct the B-T phase diagram
using a renormalization group treatment.

III. SU(2) SYMMETRY BETWEEN CO AND SC:
NONLINEAR SIGMA MODEL

Underdoped cuprates [81,104] are often described by a
two-dimensional spin-fermion model [105–107]. This model
features the pseudogap phase [81] characterizing an emergent
SU(2) symmetry connecting a d-wave superconductor and
a quadrupole density wave. This quadrupole density wave
corresponds to charge density modulations [77,87,108,109] in
the 2D CuO2 plane. The wave vector ( �Q) of this CO is typically
incommensurate and is taken to be momentum dependent [87].
�Q can therefore correspond to both a unidirectional stripelike

charge order and a bidirectional checkerboard charge order
[87,109]. In this section, we focus on the SU(2) symmetry
between the SC and the 2D CO, without going into the details
of the directionality of the CO. This theory though has broader
applicability in describing the symmetry of the CO. We expect
that the presence of an interlayer coupling between the 2D
CuO2 planes will magnify the intensity of a specific component
of �Q in x-ray scattering experiments [89].

Within this formalism, we can define a composite SU(2)
order parameter, uSU(2) = u	SU(2) [81], where u is

u =
(

φ ψ

−ψ∗ φ∗

)
. (22)

The matrixu is parametrized by two complex order parameters:
the d-wave SC order parameter (ψ) and the d-wave CO
order parameter (φ). u is a unitary matrix imposing a strong
constraint on each of its components:

|φ|2 + |ψ |2 = 1. (23)

Thus, u2
SU(2) = 	2

SU(2). The composite order parameter can be
thought of as a pseudospin in four dimensions with two SC
components and two CO components. 	2

SU(2) sets the length of
this pseudospin. The length of this pseudospin can be described
by a Ginzburg-Landau mean field theory. It goes to zero at
a high mean field temperature, which we characterize as the
pseudogap temperature (T ∗) [81]. T ∗ controls the high energy
physics of the problem. Below T ∗, Eq. (23) describes a three-
dimensional hypersphere S3 in a four-dimensional space. The
transverse fluctuations of the composite order parameter on
this hypersphere are described by an O(4) nonlinear sigma
model (NLSM) [81]:

F

T
= 1

t0

∫
tr[∇u†∇u + κ0τ3u

†τ3u]dR, (24)

where κ0 = (α′
φ − α′

ψ )/2 is the difference of the zero tem-
perature masses of the SC and CO fields, t0 = 2T/ρ0

s is the
scaled temperature, ρ0

s being the stiffness associated with
spatial variation of the composite order parameter u, τ3 is the
third Pauli spin matrix in the space of the matrix u, tr is the
trace over the space of u and the integration is over the two
dimensional real space coordinates. ρ0

s is proportional to T ∗
[81]. The free-energy functional in Eq. (24) has two primary
contributions:

(1) The first term tr[∇u†∇u] can be written in terms of
the fields as 2(|∇ψ |2 + |∇φ|2). This term describes the spatial
fluctuations of ψ and φ. If the mass of the SC field (α′

ψ ) is same
as the mass of the CO field (α′

φ), i.e., κ0 = 0, the SC and CO
ground states are energetically degenerate resulting in an exact

214501-8



PHASE DIAGRAM OF THE UNDERDOPED CUPRATES AT … PHYSICAL REVIEW B 97, 214501 (2018)

SU(2) symmetry. There is then no energy cost associated with
the rotation of the pseudo-spin in the four dimensional space
of the composite order parameter u. With κ0 = 0, the two-
dimensional NLSM in Eq. (24) at finite t produces divergent
fluctuations [81,93] destroying any long-range order in ψ

or φ.
(2) The second term tr[κ0τ3u

†τ3u] can be written in terms
of the fields as 2κ0(|φ|2 − |ψ |2). This term breaks the degen-
eracy between the SC and CO ground states. If κ0 > 0, the
pseudospin prefers the easy plane in the SC space characterized
by a gapless Goldstone mode. If κ0 < 0, the pseudospin prefers
the easy plane in the CO space characterized by another gapless
Goldstone mode. κ0 introduces an anisotropy between the
SC and CO easy planes. Thus, κ0 defines the energy cost to
rotate the pseudospin from one easy plane to the other and
introduces a gap in the excitations of the pseudospin. This
gap is small compared to the pseudogap energy scale (T ∗)
and the fluctuations governed by the first term in Eq. (24)
are still important indicating an approximate SU(2) symmetry.
This approximate SU(2) symmetry ensures that the constraint
in Eq. (23) is valid for all temperatures below T ∗. Since the
anisotropy term in Eq. (24) is quadratic in fields, we refer to
its effect as quadratic symmetry breaking.

The energy difference between the two ground states can
be further enhanced if the exact SU(2) symmetry is broken by
the biquadratic terms in the free energy of the composite order
parameter. The contribution from the biquadratic symmetry
breaking in the free energy is given by (in analogy with the GL
analysis):

Fbq

T
= 1

t0

∫
z0{(tr[τ3u

†τ3u])2 − 1}dR (25)

where z0 = (β − γ )/4 with γ being the coupling strength
between the two orders and β being the strength of the self
interaction of both the fields. Expressing u in terms of ψ and
φ, Eq. (25) is given as −4z0|ψ |2|φ|2. If γ = β, Fbq = 0 and
the biquadratic terms do not contribute to the free energy.
For γ < β, the gap in the excitations of the pseudospin is
modified by the strength of the biquadratic symmetry breaking
(z0). In the parameter regime −z0 < κ0 < z0, the total free
energy (F + Fbq) accommodates a coexisting phase with both
the SC and the CO being stable. The pseudospin prefers an
intermediate direction making a finite angle with both the
SC easy plane and the CO easy plane. However, if γ > β,
the repulsion between the fields is large and there exists no
coexistence and the situation is similar to the case when Fbq =
0. We will assume that z0 is small such that the approximate
SU(2) symmetry is still valid for T < T ∗.

A. Renormalization group treatment of the classical NLSM

As discussed Sec. II C, the thermal fluctuations play a
significant role in deciding the critical phenomenon in two
spatial dimensions. We perform a renormalization group cal-
culation to take care of these critical fluctuations described
by the NLSM. In this section, we will not consider any
time-dependent fluctuations nor the fluctuations in the modulus
of the order parameters. Although, we will discuss the effects
of time-dependent fluctuations in Sec. III B. Here, we will
look at two cases of weak SU(2) symmetry breaking: (a) only

quadratic symmetry breaking (κ0 �= 0 and z0 = 0), where the
free energy will be given by Eq. (24), (b) both quadratic and
biquadratic symmetry breaking (κ0 �= 0 and z0 �= 0), where the
total free energy is given by F + Fbq [F obtained from Eq. (24)
and Fbq obtained from Eq. (25)].

First, we consider the case with only quadratic symmetry
breaking (z0 = 0). We treat the fluctuations around the mean
field phase of the classical NLSM in Eq. (24) using the renor-
malization group approach. We integrate out the fast varying
components of the free energy in Eq. (24) and write an effective
slow varying counterpart with effective coupling constant t and
anisotropy parameter κ . Within one loop approximation, the
RG flow equations (for details see Appendix B) for the effective
parameters are given by

dt

dl
= t2

2π
, (26)

d
[

ln
(

κ
t

)]
dl

= − t

π
+ 2, (27)

where l is the running logarithm variable of the RG. The
solutions of Eqs. (26) and (27) determine the flow of the
renormalized parameters of the free energy. At l = 0, t =
t0, and κ = κ0, where t0 and κ0 are the bare values of the
parameters. There is an ultraviolet momentum cutoff, � which
corresponds to the inverse of the minimum length of the
theory. Additionally, there is an infrared cutoff E

1/2
g where Eg

corresponds to the gap in the excitation spectrum. The RG flow
of Eqs. (26) and (27) stops at l = ln(�/E

1/2
g ). The solutions

of the effective parameters are

t = t0

[
1 − t0

2π
ln

(
�

E
1/2
g

)]−1

, (28)

κ = κ0

(
�

E
1/2
g

)2[
1 − t0

2π
ln

(
�

E
1/2
g

)]
. (29)

The divergence of the effective coupling constant t in Eq. (28)
can be seen as an evidence of a transition from an ordered
phase to a disordered phase. Along with the divergence of t ,
the effective anisotropy κ also goes to zero. The system thus
goes to a mixture of fluctuating SC and CO with no long-range
order, which is characterized as the pseudogap phase.

If κ0 > 0, only the SC phase is stable. In this phase, we
study the fluctuations around the corresponding mean field
solution of u. In the absence of external magnetic field,
the gap in the excitations of the pseudospin corresponds to
the difference of the masses of the SC and CO fields. So,
Eg = 2κ0. The transition temperature from the SC phase to
the pseudogap phase, i.e., the temperature where the effective
coupling constant t diverges is given by

Tc = 2πρ0
s

ln
(

�2

2κ0

) . (30)

At this temperature, the anisotropy κ also goes to zero. The
pseudogap temperature (T ∗) is controlled by ρ0

s and thus can
be significantly higher than Tc.
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In the presence of an external magnetic field, the gap in
the excitation spectrum Eg or the energy required to break the
long-range SC coherence is replaced by

Esc
g = 2κ0 − ζB, (31)

where ζ is a constant. In the presence of magnetic field,
the SC order parameter becomes inhomogeneous below a
length scale which is given by the coherence length (ξ ) of
the superconductor. Hence, the minimum length of this effec-
tive homogeneous RG analysis is constrained by ξ and thus
the upper momentum cutoff is given by � = ξ−1. In a cuprate
superconductor, ξ is quite small compared to the penetration
depth. The transition magnetic field (Bsc) where t diverges is
given by

Bsc = B0

{
1 − 1

2ξ 2κ0
exp

(
−2πρ0

s

T

)}
, (32)

where the SC phase is stabilized for B < B0 and B0 =
(2κ0)/ζ . If the ground state is the CO phase, we have to
consider the fluctuations of the nonlinear sigma model around
the mean-field solution u = I. RG equations and solutions are
equivalent to the case when the ground state is the SC phase,
but Eg is now replaced by

Eco
g = −2κ0 + ζB. (33)

The transition magnetic field (Bco) is thus given by

Bco = B0

{
1 + 1

2ξ 2κ0
exp

(
−2πρ0

s

T

)}
, (34)

where the CO phase is stabilized for B > B0.
It is important to note that Bco(T = 0) = Bsc(T = 0) =

B0. B0 is the zero temperature upper critical field for the
superconductor in the presence of strong competition with
the CO phase. At T = 0, the ground state of the system is
the SC phase for B < B0 and the ground state is the CO
phase for B > B0. Thus, there is no coexisting phase in the
B-T phase diagram if only the quadratic symmetry is broken
(κ0 �= 0,z0 = 0). In terms of the composite order parameter,
the pseudospin flops from a direction aligned in the SC easy
plane to a direction aligned in the CO easy plane at B = B0.
The thermal fluctuations are absent at T = 0. Thus, we expect
the mean field solutions for the transition fields should give
the same result as the solutions obtained in Eqs. (32) and (34)
at T = 0. The value of the transition field, B0, is found to
be same within a mean field picture if we use the constraint
|ψ |2 + |φ|2 = 1 with weak quadratic symmetry breaking (κ0),
as shown in Eq. (C4) of the Appendix C. In this section, we
choose the same range of the masses α′

ψ and α′
φ as in Sec. II B

to have a correct comparison with the GL theory.
We now discuss the temperature dependencies of Bsc in

Eq. (32) and Bco in Eq. (34). First, we note that Bsc falls and
Bco increases with increase in temperature. The rate of change
of Bsc and Bco with T is exactly the same as the two orders are
strongly constrained by the SU(2) symmetry. The corrections
to the T = 0 value of Bco vanish exponentially fast as T → 0.
Therefore, Bco (and Bsc) does not differ from B0 and remains
flat for small T (T 
 ρ0

s ). In comparison to this unique result
obtained in SU(2) theory, the flatness is specific to fined tuned

mass parameters in a GL mean field theory (Sec. II B), which
ignores the thermal phase fluctuations.

If T ∼ ρ0
s , the exponential terms in Eqs. (32) and (34) are

no longer small. In this regime of temperatures, the increase of
Bco is regulated by the coefficient (2κ0ξ

2)−1 of the exponential
term. Since both κ0 and ξ are small, there is a steep rise in Bco

for T ∼ ρ0
s . As a result, at high magnetic fields, the temperature

corresponding to the transition from the CO phase to the
pseudogap phase is fairly insensitive to the magnetic fields.
We name this transition temperature as Tco, where Bco = 2B0.
We obtain Tco using Eq. (34) and compare it with Tc obtained
from Eq. (30):

Tco = 2πρ0
s

ln
(

1
2ξ 2κ0

) = Tc. (35)

Tco and Tc are the temperatures where the thermal fluctuations
renormalize the difference of the masses (and not the individual
masses) to zero. So, within this SU(2) formalism, we expect
Tco = Tc [obtained in Eq. (35)] as the orders are destroyed
by the thermal phase fluctuations. In contrast, Tco and Tc in a
GL theory are the temperatures where the amplitudes of the
CO order parameter and the SC order parameter go to zero
respectively. The vanishing amplitudes are reflected by the
vanishing masses (αψ and αφ) and are not connected to each
other.

We will now analyze the case where both quadratic (κ0 �=
0) and biquadratic (z0 �= 0) symmetries are broken. For the
simplicity of our calculation, we will make two assumptions
based on the smallness of z0 (z0 
 κ0). First, the parameter z0

does not get renormalized during the RG process. Second, we
will ignore the effect of z0 on the renormalization of κ0. We
will only consider the renormalization of the parameters t0 and
κ0. The RG flow equations will remain the same as in Eqs. (26)
and (27). But the presence of Fbq [Eq. (25)] in the total free
energy affects the gap in the excitation spectrum Eg . Due to the
constraint in the fields, the mass terms corresponding to each
field are modified by z0 (also see the Appendix C). If z0 < 0
(recalling that 4z0 = β − γ ), the repulsion between the fields
is large. As a result, the zero temperature gap in the excitation
spectrum remains similar to the case of z0 = 0. The transition
fields Bsc and Bco are governed by Eqs. (32) and (34) with
no region of coexistence. If z0 > 0, the gaps in the excitation
spectrum will be given by

Esc
g = 2κ0 + 4z0 − ζB, Eco

g = −2κ0 + 4z0 + ζB, (36)

and the corresponding transition magnetic fields are given by

Bsc = B0
sc

{
1 − 1

ξ 2(2κ0 + 4z0)
exp

(
−2πρ0

s

T

)}
(37)

and

Bco = B0
co

{
1 + 1

ξ 2(2κ0 − 4z0)
exp

(
−2πρ0

s

T

)}
, (38)

where B0
sc = (2κ0 + 4z0)/ζ and B0

co = (2κ0 − 4z0)/ζ .
Since Bsc(T = 0) < Bco(T = 0), there is a coexisting phase

in a short range of magnetic fields for low T . B0
sc and B0

co
define the zero temperature magnetic fields corresponding to
the transitions from the SC phase to the coexisting phase and
the coexisting phase to the CO phase, respectively. The values
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of B0
sc and B0

co obtained here match their corresponding values
derived in a mean field treatment using the constraint |ψ |2 +
|φ|2 = 1 [see Eqs. (C7) and Eq. (C8) of the Appendix C].
From Eqs. (37) and (38), Tc (where Bsc = 0) and Tco (where
Bco = 2B0

co) are given by

Tc = 2πρ0
s

ln(ξ−2(2κ0 + 4z0)−1)
, Tco = 2πρ0

s

ln(ξ−2(2κ0 − 4z0)−1)
.

(39)

As z0 > 0, Tco < Tc. Motivated by experimental facts
[26,54,56], we assume that the region of coexistence (B0

sc −
B0

co) is small compared to the upper critical field, B0
sc. As a

result, z0 
 κ0 which implies Tco ≈ Tc. This further illustrates
the rationale behind the assumption z0 
 κ0.

1. B-T phase diagram: Flatness, coexistence, and SU(2) symmetry

We use the expressions for the transition magnetic fields,
Bsc and Bco, obtained within the RG analysis of the classical
NLSM to construct the B-T phase diagram.

In Fig. 6(a), we show the B-T phase diagram for z0 = 0
(when only quadratic symmetry is broken). We first discuss
the transition from the SC phase to the CO phase at T = 0.
The ground state of the NLSM in Eq. (24) is determined by the
value of the anisotropy (κ0) between the masses of the SC and
CO fields. An external magnetic field effectively renormalizes
the mass of the SC field and in turn renormalizes κ0 to κeff

0 =
κ0 − ζB/2. At low B, κeff

0 > 0. As a result, the ground state
is the SC phase. κeff

0 decreases with increasing B and reaches
κeff

0 = 0 at B = B0. For B > B0, κeff
0 becomes negative and

favors the CO phase as the ground state. The pseudospin flops
from a direction aligned in the SC easy plane to a direction
aligned in the CO easy plane at B = B0.

If the system favors one phase as the ground state, the
other phase remains as a metastable state with a higher
energy compared to the ground state. If we increase T , the
probability of the system seeing this metastable state increases
due to the thermal fluctuations. Within the RG technique
described above, these thermal fluctuations are captured by
renormalizing κeff

0 to κeff (note that B is an external parameter
and is not renormalized). If κeff = 0, the SC phase and the
CO phase become degenerate in energy, recovering the exact
SU(2) symmetry between the SC and the CO. This marks the
transition to a disordered phase where the system hesitates
between the SC and the CO. We characterize this disordered
phase as the pseudogap phase which has no visible long-range
order (shown as white region below T = T ∗ in Fig. 6). Bsc and
Bco in Eqs. (32) and (34) determine the transitions from the SC
phase and the CO phase to the pseudogap phase respectively.
At low T , the thermal fluctuations are weak and κeff remains
insensitive to temperature. Consequently, Bsc and Bco remain
flat up to a temperatureTmin (∝ ρ0

s ). ForT > Tmin, due to strong
thermal fluctuations, κeff gets renormalized strongly and the
line Bco rises (or Bsc falls) steeply.

We now discuss the B-T phase diagram for z0 �= 0 (when
both quadratic and biquadratic symmetries are broken), as
show in Fig. 6(b). If z0 < 0, strong repulsion between the fields
does not favor any phase with coexisting SC and CO. In this

FIG. 6. The B-T phase diagram obtained within a renormaliza-
tion group treatment of the classical nonlinear sigma model. (a)
Anisotropy (κ0) between the masses of the SC and CO fields induces
a quadratic symmetry breaking at T = 0 and B = 0. Increasing the
magnetic field destroys the SC order giving rise to the CO marked
by a pseudospin flop transition at B = B0 for T < Tmin. Bco remain
flat at low T due to suppressed thermal fluctuations and rises steeply
for T > Tmin. The thermal fluctuations drive the anisotropy to zero
on the Bco and Bsc lines. As a result, the system hesitates between the
CO phase and the SC phase with no visible long-range order marking
the pseudogap phase with SU(2) fluctuations for T < T ∗. (b) If the
coupling strength (γ ) between the SC and CO is not exactly equal to
the coefficient (β) of each biquadratic terms, the biquadratic SU(2)
symmetry is also broken (z0 �= 0). B0

sc and B0
co (the transition fields

at T = 0) are different with a region of coexistence in between for
T < Tcs for γ < β. The renormalized effective anisotropy between
the CO and the SC fields become zero at T = Tcs and the SU(2)
fluctuations are observable for Tcs < T < T ∗. If γ > β, the strong
repulsion between the fields destabilizes any coexisting phase with a
pseudospin flop transition at B = B0 and the B-T phase diagram is
exactly same as in (a). We sketch the phenomenological temperature
dependence of the vortex melting transition field Bm to distinguish
the upper critical field Bsc from the melting transition; see text for
details.
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case, the phase diagram remains the same as in Fig. 6(a) with
a pseudospin flop transition at B = B0.

The possibility of the presence of a coexisting phase
emerges with z0 > 0. At T = 0, B0 is split to B0

co and B0
sc

corresponding to κeff
0 = −z0 and κeff

0 = z0, respectively. For
B0

co < B < B0
sc, the ground state is a coexistence phase with

both the SC order and the CO. The pseudospin orients in the SC
plane forB < B0

co, changes its orientation to a direction making
an angle with both the SC and CO planes for B0

co < B < B0
sc

and then finally orients itself in the CO plane for B > B0
sc.

The two transition lines Bco and Bsc intersect at a temperature
Tcs [shown in Fig. 6(b)], where κeff = 0 with an exact SU(2)
symmetry. The system goes into the pseudogap phase for
higher temperatures (Tcs < T < T ∗).

Interestingly, the region of coexistence for T < Tcs has
both broken SU(2) symmetry and broken U(1) symmetries.
U(1) symmetry breaking corresponding to the CO field will
result into a phase with a diagonal long-range order and such
symmetry breaking for the SC field will favor superconduc-
tivity with an off-diagonal long-range order. This phase shows
supersolidity and will also show superconducting properties
like zero resistance [110]. Similar coexistence is also found in
an attractive Hubbard model [111–113], where at half filling
there is an exact SU(2) symmetry.

The local signatures of this coexisting phase can be ob-
served in the halo regions surrounding each vortex core.
The superconducting order parameter is expected to show
periodic modulations (commonly known as pair density wave
(PDW) [31,69,70,114,115]) in the vortex halo [32–34]. The
wave vector corresponding to this modulation will be equal
to the charge modulation wave vector [31,69,70,91,116,117].
Note that we do not expect the charge modulation wave
vector to be twice of the pair density modulation wave
vector [33,34,115]. This coexisting phase also has unique
signatures in the measurements of the collective modes, with
observation of two massless phasons (or Goldstone Bosons)
and two massive amplitudons (or pseudo-Goldstone Bosons).
A detailed study of these collective modes will be reported
elsewhere.

The width of the flatness of Bco and Bsc is proportional to the
stiffness ρ0

s in the NLSM. In this paper, we derive the transition
lines using the same ρ0

s for the SC order and the CO order. In
contrast, if the exact SU(2) symmetry is weakly broken in the
gradient terms of the NLSM in Eq. (24), the stiffness associated
with the SC and the CO fields will be different. If ρ0

s for the
SC field is taken smaller than the ρ0

s for the CO field, Bco

will remain flat for a larger temperature window compared
to Bsc.

2. Role of vortex-induced inhomogeneities

In the RG treatment of the NLSM, we have considered the
order parameters in an effective homogeneous theory close
to the upper critical field, neglecting any fluctuations in the
modulus of the order parameters. In the following paragraph,
we discuss the possibility of the coexistence phase arising out
of the inhomogeneities in the modulus of the order parameters
using a simplified length scale analysis.

We consider the case with only quadratic symmetry break-
ing (z0 = 0) for simplicity. At T = 0 and for small B (Bc1 <

FIG. 7. A single vortex profile of the order parameters. The
variation of |ψ(r)| with a chosen profile (|ψ(r)| = tanh(r/ξc) where
r is the distance from the vortex center) is shown in (a). The profile
of |φ(r)| is given by the constraint. The full-width half maximum
values of |ψ(r)| and |φ(r)| are shown as Lψ and Lφ respectively
with Lψ < Lφ . The regions with appreciable values of the SC and
the CO order parameters are shown in a schematic in (b). Due to the
nonlinearity of the constraint between the two order parameters, there
exists a halo around the vortex where the two orders coexist.

B 
 B0
co), the bulk is in the SC phase and the SC order

parameter |ψ | vanishes at the core of the vortex. The SC vortex
core size (ξc) is related to the anisotropy of the NLSM as ξ 2

c ∼
1/κ0 [118,119]. The constraint in Eq. (23) is expressed in terms
of the inhomogeneous order parameters as |ψ(r)|2 + |φ(r)|2 =
1. Though the length scale of the spatial variation of |φ(r)| is
also determined by ξc, the nonlinearity of the constraint ensures
that |ψ(r)| and |φ(r)| reach their asymptotic value at different
length scales. To visualize this effect, we plot a vortex profile of
the SC order parameter |ψ(r)| = tanh(r/ξc) [118] in Fig. 7(a).
The inhomogeneous profile of the CO order parameter is
simply given by |φ(r)| =

√
1 − |ψ(r)|2. We define two length

scales Lψ and Lφ at which |ψ(r)| and |φ(r)|, respectively,
reaches the half of their maximum values. It is clear from
Fig. 7(a) that Lψ < Lφ and in a halo region (Lψ < r/ξc < Lφ)
around the vortex core [see Fig. 7(b)], the SC order coexists
with the CO. At low fields, the number of vortices is small
separated by large distances. Each vortex core supports local
CO without any long-range coherence. The distance between
the vortices decreases with increasing B and the local CO
regions start to overlap at a field B0

co ∼ 1/L2
φ where the long

coherence sets in. However, the long range SC coherence is lost
at a field B0

sc ∼ 1/L2
ψ . Since Lψ < Lφ , B0

co < B0
sc. Thus, even

with only quadratic symmetry breaking there is a possibility of
a coexistence phase at T = 0 if we include the vortex-induced
inhomogeneities [26,77,113].

In this simplified length scale analysis, both B0
co and B0

sc
are proportional to the anisotropy in the NLSM [113]. The
temperature dependence of Bco and Bsc will be governed by
the temperature dependence of the anisotropy κ0 at least at low
temperatures. So, we believe that the flatness of Bco will be
similar to the flatness obtained in Fig. 6.

3. Vortex melting

In Fig. 6, Bsc is the upper critical field, below which the
pairing gap remains finite and vortices start to appear in
the system. If these vortices arrange themselves to form a
lattice, the electric resistance goes to zero. Interestingly, the
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vortex lattice melts to form a vortex liquid due to the thermal
fluctuations at a magnetic field Bm. In cuprates, the two fields
Bsc and Bm are not the same and there exists a region in
the B-T phase diagram where the electric resistance is not
zero but the pairing gap is finite. While the vortex melting
field [120,121] is easily observed in transport experiments
[122–125], the direct detection of the upper critical field has
been challenging until recently when it was detected from
the thermal conductivity [56], specific heat [58], and spin
susceptibility [57] measurements. In our RG treatment, we
do not consider the thermal melting transition temperature.
Instead, we give an idea of the upper critical field only. In the
following paragraph, we present a phenomenological way of
sketching the Bm(T) line in the B-T phase diagram.

In a bulk three-dimensional sample, the vortices form flux
lines (where the magnetic field penetrates the sample) aligned
along the direction of the applied magnetic field. The position
of these lines will vibrate about their mean position of the vor-
tex lattice due to thermal fluctuations. We will use Lindemann
criterion [126], where melting is characterized by equating
the amplitude of this vibration to a considerable fraction of
the spacing between the vortices [127]. The vortex lines repel
each other and once there is a distortion from the equilibrium
lattice positions, they will experience a restoring force (�) per
unit length. Also, there is an energy cost to bend a segment (l)
of these vortex lines, given in terms of the line tension �. So,
the total energy cost to displace a segment of vortex line by a
small displacement δ is �δ2l + �δ2/l. The optimum length of
segment displaced, determined by minimizing this total energy
cost, is l2 = �/�. This optimal energy cost has to be equal
to the thermal energy kBT . Using this equality, we get the
displacement due to thermal vibrations as δ2 ∼ kBT /(��)1/2.
We will use estimates of the line tension and the restoring force
from the conventional GL phenomenology. They are given
as � ∼ B/(λ2) and � ∼ 1/(λ2), where λ is the penetration
depth of the superconductor. Now, the magnetic flux per
unit cell of the vortex lattice is a universal constant, so the
separation between vortices are given as dav ∼ 1/(B1/2). Using
Lindemann criterion, the displacement of the flux lines should
be proportional to the separation between the vortices, δ ∼ dav.
This gives an estimate of the melting transition magnetic
field, Bm ∼ λ−4T −2. Near Tc, λ−2 ∼ (Tc − T ). So, near Tc,
Bm ∼ (Tc − T )2. However, within a GL theory, the upper
critical field, Bc2 ∼ λ−2 ∼ (Tc − T ), and thus Bm < Bc2 for
T < Tc. In Fig. 6, we plot the melting transition line, Bm =
B0

sc(1 − T/Tc)2. At T = 0, Bm = B0
sc, which is motivated by

the experimental findings of Ref. [56].
Throughout the analysis in the preceding paragraph, we

have assumed the system to be a 3D bulk sample. In practice,
the anisotropy [121] between the directions along the 2D
CuO2 planes and the direction perpendicular to them also
plays a role in determining Bm. In a conventional supercon-
ductor along with some cuprates with lower anisotropy, the
difference between Bm and Bc2 is indistinguishable within the
experimental accuracy close to Tc. If the anisotropy is large
as in most of the cuprates, the difference is prominent and
looks similar to our sketch in Fig. 6. This simple analysis does
not take into account the features like pinning and long-range
nature of vortex-vortex interactions, which have been studied
extensively in the literature [120,121].

B. Renormalization group treatment of the quantum NLSM

In the RG treatment of the classical NLSM in Sec. III A,
we considered the spatial fluctuations of the composite order
parameter u and neglected its temporal fluctuations. Here, we
consider the quantum mechanical NLSM by treating the free
energy [92]:

F = ρ0
s

2

∫ β

0
dτ

∫
tr

[
∇u†∇u + 1

c2

∣∣∣∣∂u

∂τ

∣∣∣∣
2

+ κ0τ3u
†τ3u

]
dR,

(40)

where β = 1/T , τ is the imaginary time and we have used
the units h̄ = 1 and kB = 1. c is the velocity of the fluctuation
modes that defines the perpendicular susceptibility χ = ρ0

s /c
2.

While ρ0
s defines the length scale of the fluctuations of u, χ

defines the timescale of the corresponding fluctuations. By
rescaling R and τ , such that they are of the same dimensions
and the wave vector cutoff is unity, we get

F = 1

2g0

∫ v

0
dτ

∫
tr

[
∇u†∇u +

∣∣∣∣∂u

∂τ

∣∣∣∣
2

+ κ̄0τ3u
†τ3u

]
dR,

(41)

where g0 = c�d−1/ρs , v = cβ�, κ̄0 = κ0�
−2. If v → 0, the

quantum fluctuations are not important, i.e., the configurations
that contribute significantly to the partition function are inde-
pendent of τ and F maps to the classical NLSM in Eq. (24) with
coupling constant 2g0/v. However, v → 1 means the quantum
fluctuations can no longer be neglected.

We use the same renormalization treatment of integrating
out fast variables as in Sec. III A within a time slab thickness of
v. We impose a upper momentum cutoff � as in Sec. III A, but
do not impose any cutoff on the timescale as the quantum fluc-
tuations exist at all timescales. The RG differential equations
(see the Appendix D) are given in terms of a dimensionless
parameter t = T �d−2/ρs = g/v by

dv

dl
= −v, (42)

dt

dl
= 1

4π
vt2 coth

(v

2

)
, (43)

d
[

ln
(

κ̄
t

)]
dl

= − t

2π
v coth

(v

2

)
+ 2. (44)

The thickness of the time slab (v) renormalizes trivially by a
factor of b (v = v0b

−1), where v0 = c�/T . The classical limit
of Eq. (43) is obtained by taking v = g/t → 0. In this limit,
Eq. (43) maps to Eq. (26). Using Eqs. (42) and (43), the RG
equation for the coupling constant g in two spatial dimensions
at zero temperature (T = 0) can be obtained as

dg

dl
= −g + g2

2π
. (45)

Equation (45) has a nontrivial fixed point at g = gc = 2π . This
point describes a quantum transition from a disordered phase
to an ordered phase at zero temperature. At finite temperature,
the RG flow of Eqs. (43) and (44) stops at l = ln(�/E

1/2
g ),
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yielding the solutions

t = t0

⎛
⎝1 + t0

2π
ln

∣∣∣∣∣∣
sinh

( v0E
1/2
g

2�

)
sinh

(
v0
2

)
∣∣∣∣∣∣
⎞
⎠

−1

, (46)

κ = κ0

(
�

Eg

)2
⎛
⎝1 + t0

2π
ln

∣∣∣∣∣∣
sinh

( v0E
1/2
g

2�

)
sinh

(
v0
2

)
∣∣∣∣∣∣
⎞
⎠. (47)

We expect a thermal transition at finite temperature as
obtained in Sec. III A. We consider the case where both the
quadratic (κ0 �= 0) and the biquadratic (z0 �= 0) symmetries
are broken. From Eq. (36), the gap in the excitation spectrum
in the presence of external magnetic field will be given by
Esc

g = 2κ0 + 4z0 − ζB and Eco
g = −2κ0 + 4z0 + ζB in the

SC and CO phases, respectively. The transition magnetic fields
are given by

Bsc = B0
sc

[
1 − 4T 2

c2(2κ0 + 4z0)
R2

]
(48)

and

Bco = B0
co

[
1 + 4T 2

c2(2κ0 − 4z0)
R2

]
, (49)

where

R = sinh−1

{
sinh

(
c�

2T

)
exp

(
−2πρ0

s

T

)}
. (50)

For only quadratic symmetry breaking (z0 = 0) and in the case
of z0 < 0, B0

sc = B0
co = B0. In the regime g0 < gc and g0/gc <

1 − t0/(2π ), R in Eq. (50) can be written as

R = exp

(
−2πρ̃s

T

)
(51)

and gives Bsc and Bco similar to Eqs. (37) and (38) but with
upper momentum cutoff going as T/c (inverse of the thermal
de Broglie wavelength) and the stiffness is renormalized due
to quantum fluctuations at zero temperature as ρ̃s = ρ0

s (1 −
g0/gc). This regime is often referred to as renormalized
classical [92] regime of interest. We set the values of c, �,
and ρ0

s in such a way that we get the temperature dependence
of Bsc and Bco in the extreme classical regime of v0 → 0 the
same as in Fig. 6(b).

1. B-T phase diagram: Effect of quantum critical point

In Fig. 8, we show the B-T phase diagram obtained from the
quantum mechanical NLSM for z0 �= 0. We show the extreme
classical limit in Fig. 8(a) and the case with g0 close to gc in
Fig. 8(b).

As we observed in Sec. III A, the transition magnetic fields
Bsc and Bco remain independent of the temperature up to
a temperature scale Tcs in a classical NLSM. In a classical
NLSM, the temperature scales as the stiffness ρs , which
describes the length scale over which the mean field phase
of NLSM fluctuates.

We now discuss the effect of the pseudogap quantum critical
point under the SC dome. To capture the effects of this quantum
critical point, we have to incorporate also the timescale over
which the mean field phase of NLSM fluctuates. At all nonzero
temperatures, all the quantum fluctuations can be integrated

FIG. 8. The B-T phase diagram obtained within a renormaliza-
tion group treatment of the quantum mechanical nonlinear sigma
model with both the quadratic (κ0 �= 0) and the biquadratic symmetry
breaking (z0 �= 0) for (a) g0/t0 → 0 (extreme classical limit) and (b)
g0 = 0.5gc (regime closer to the quantum critical point). The width
of the region of coexistence is restricted to a smaller temperature
window in (b). At low temperatures, Bco depends on temperature in
(b) in contrast to a flat line in (a). Similar behavior of Bco is observed in
Ref. [54]. The CO transition temperature (Tco), at B = 2B0

co, becomes
smaller thanTc as we approach the quantum critical point. Note that we
have a break in the temperature axis in (a) for 1 < (T/Tc) < T ∗ and
no such break in (b). This indicates that, in the extreme classical limit,
T ∗ � Tc, but the ratio T ∗/Tc reduces significantly as one approaches
the quantum critical point. We have not sketched the Bm line in this
figure for simplicity.

out to obtain an effective classical NLSM. But this effective
classical NLSM is described in terms of a renormalized
stiffness ρ̃s , which contains the effects of quantum fluctuations
at zero temperature. Using Eqs. (49) and (51), the general
temperature dependence of Bco can be written as

Bco(T ) ∼ T 2 exp

(
−2πρ̃s

T

)
. (52)
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In the extreme classical limit, ρ̃s is finite and the temperature
dependence of Bco(T ) is governed by exp(−2πρ̃s/T ) term
giving flatness in Bco at low T . Near the pseudogap quantum
critical point, ρ̃s → 0 and Bco varies quadratically with tem-
perature at low T . This behavior is reported recently in sound
velocity measurements [54] for 0.13 � p � 0.14. The range
of temperature (Tcs) of the coexistence region also decreases as
shown in Fig. 8(b). The CO transition temperature Tco at high
magnetic field becomes sensitive to the magnetic field at which
the measurement is performed. In Fig. 8, we characterize Tco as
the temperature at which Bco = 2B0

co. If we are in the extreme
classical limit, Tco ≈ Tc as explained in Sec. III A. Once the
effect of quantum critical point is dominant as in Fig. 8(b), Tco

becomes smaller than Tc.

2. Schematic doping dependence

Finally, we turn to the discussion of the temperature-hole
doping (p) phase diagram of cuprates. In Fig. 9, we sketch
a schematic T -p phase diagram of a typical cuprate. We will
first discuss the doping evolution of the pseudogap temperature

FIG. 9. A schematic temperature (T )-hole doping (p) phase dia-
gram of a typical cuprate. Cuprates show d-wave superconductivity
arising from doping a Mott insulating antiferromagnet. The critical
temperature Tc, below which the substance behave as a d-wave
superconductor with an anisotropic pairing gap, forms a dome shape
in the T -p phase diagram. The system shows a mysterious pseudogap
phase that terminates at a temperature T ∗, which is much higher than
Tc at low doping. This T ∗ line approaches the doping axis with a
quantum critical point (pc) lying underneath the superconducting
dome. The charge order in this phase diagram show two distinct
behaviors: one which is short-range, observed in x-ray scattering
measurements at zero or low external applied magnetic fields for
T < T 0

co and the other which is long-range, inferred from NMR, sound
velocity or x-ray scattering measurements at high magnetic fields for
T < Tco. In the region 1, the classical thermal fluctuations dominate
resulting in Tco ≈ Tc, as found in Eqs. (35) and (39). Even though
T 0

co is found to be greater than Tc, Tco is restricted to a maximum of
Tc, indicating a symmetry constraint between the CO and the SC.
Close to p = pc (region 2), the quantum fluctuations play a key role
where T ∗ → 0. The region 3 signifies the low doping region where
the presence of competing magnetic phases restricts the validity of
the SU(2) theory described here.

(T ∗). We then focus on the doping dependence of the transition
temperature (Tco) of the high-field CO and contrast it with the
transition temperature (T 0

co) of the short-range CO (at zero or
low magnetic fields).

First, we recall from the discussion of the NLSM that T ∗
is proportional to the effective stiffness of the classical NLSM
in Eq. (24) [81]. Earlier in this section, we showed that the
quantum fluctuations renormalize the effective stiffness of the
classical NLSM which is given as ρ̃s = ρ0

s (1 − g0/gc) with
gc being the T = 0 quantum critical point. We believe that
gc scales with doping and is related to the pc (the pseudogap
quantum critical point under the superconducting dome). The
evolution of T ∗ with doping is governed by the nature of ρ̃s . As
we approach pc (∼0.2), the quantum fluctuations are enhanced
(g0 → gc). The effective stiffness ρ̃s → 0 implying that the
pseudogap temperature T ∗ → 0.

We now contrast the behavior of Tco and T 0
co. In this

paper, we focus on the long-range CO transition temperature
Tco inferred from NMR, sound velocity or x-ray scattering
measurements at high magnetic fields. In the pseudogap phase
of Figs. 6 and 8, the system hesitates between the SC and
the CO with no visible long-range order. But the pseudogap
phase can accommodate a short-range CO for Tc < T < T ∗.
X-ray scattering measurements manifest the short-range CO
at zero or low magnetic fields for T < T 0

co. T 0
co is found to be

greater than Tc and smaller than T ∗. Remarkably, the doping
dependence of T 0

co do not follow T ∗. The doping dependence
of T 0

co is not the subject of this paper, but the readers may
consult Ref. [128] which explains the difference in the doping
dependence of T 0

co and T ∗ in terms of topological defects in the
SU(2) theory. Coming back to the discussion of Tco, the RG
of classical NLSM gives Tco ≈ Tc as shown in Eqs. (35) and
(39). We argue that this equality is valid in the region 1 (near
p = p0 ∼ 0.12) in the T -p phase diagram (Fig. 9) where the
quantum fluctuations are not important. In region 2, the effect
of quantum fluctuations becomes significant. Consequently,
both T ∗ and Tco approach zero. In this regime, Bco varies
quadratically with T (Fig. 8) and Tco becomes sensitive to the
magnetic field at which the measurement is performed. If Tco

is measured at the same B for all dopings, the ratio Tco/Tc for
p ∼ 0.12 will be close to unity, whereas Tco/Tc for p ∼ 0.2
will be lower (as shown schematically in Fig. 9).

The low doping region (region 3 in Fig. 9) encounters sev-
eral other competing phases like spin density wave, which are
beyond the scope of this paper. But these competing magnetic
phases are expected to suppress the CO making Tco small.

The value of B0
co and B0

sc also depend on doping. Their
doping dependence is connected to the parameters that describe
the quadratic symmetry breaking (κ0) and biquadratic symme-
try breaking (z0). Given the experimental evidence [54] that
B0

co/B
0
sc is nearly independent of doping in the range 0.09 �

p � 0.14, we can conclude that the biquadratic symmetry
breaking parameter z0 (decided by the interaction strength of
the SC and the CO fields) is insensitive to doping in this range.

IV. CONCLUSION AND DISCUSSIONS

In this paper, we compared the competing order GL formal-
ism and the SU(2) theory in the endeavor to explain the B-T
phase diagram of the underdoped cuprates.

214501-15



CHAKRABORTY, MORICE, AND PÉPIN PHYSICAL REVIEW B 97, 214501 (2018)

We addressed the GL theory of the competing SC and CO
using an effective homogeneous picture with a renormalized
mass of the SC field close to the upper critical magnetic field.
The strength of the repulsive interaction between the two fields
decides the fate of the coexistence region in the phase diagram.
A strong interaction disfavors any coexistence region. In the
absence of the coexisting phase, the field corresponding to the
transition from the CO phase to the SC phase is found to be
temperature independent only if the temperature dependence
of both the mass parameters are exactly same. We demonstrated
that there is an enhanced symmetry between the SC and the
CO for a range of GL parameters.

In comparison, the SU(2) theory treats the SC and the CO as
two components of a composite order parameter where each
of them are nearly degenerate in energy. The length of this
composite order parameter remains fixed for all temperatures
below the pseudogap temperature. This imposes a constraint on
the SC and the CO reflecting the competition between the two.
The degeneracy in the energy of the two orders is lifted by weak
symmetry breaking parameters, which decide the low energy
features of their competition. We showed that the presence of
a uniform coexisting phase is possible only if this symmetry is
broken also due to the biquadratic terms in the free energy.

In the following, we briefly highlight the features of the
B-T phase diagram that distinguishes the SU(2) theory from
the competing order GL formalism:

(1) The most striking feature of the B-T phase diagram that
supports the SU(2) theory is the flatness of Bco in the doping
range 0.11 � p � 0.13. We show that the difference in the
masses of the two orders stabilizes the SC or the CO depending
on the magnetic field. The transition magnetic field Bco is
exponentially suppressed (remains flat) at low temperatures
due to weak thermal fluctuations. At high temperatures, the
thermal fluctuations destroy any long-range order marking the
pseudogap phase. In contrast, the flat Bco can only be achieved
by extreme fine tuning of the mass parameters in the GL theory
of competing orders.

(2) Second demarcating feature is the similarity of Tc

and Tco in the doping range 0.11 � p � 0.13. In an SU(2)
theory, Tc and Tco are the temperatures that characterize the
transition from the SC and the CO phase to the pseudogap
phase respectively. Both these transitions are governed by the
same energy scale (difference of the zero temperature masses)
and are thus described by similar temperatures. On the contrary,
Tc and Tco in a GL theory are the temperatures where the mass
of the SC and the CO fields go to zero respectively. Hence,
there is no generic relation between Tc and Tco in a GL theory.

In this paper, we discussed only the long-range CO and did
not focus on how the long-range coherence sets in. Possible
explanations for the long-range CO coherence in the SU(2)
theory are very similar to the ones given in a GL theory. The
constraint in the SU(2) theory will induce a finite charge order
near the vortices [77] with emerging pseudospin skyrmions
[128]. At low fields, these vortices are separated far from each
other and the orientation of the pseudospin is fully random. If
the magnetic field is increased, the vortices start to overlap and
the pseudospin orientations all align in the same direction giv-
ing the long-range CO. Similar transition from the short-range
CO to the long-range CO can also be explained by considering
an interlayer coupling [89]. The presence of the interlayer

coupling is also expected to change the dimensionality [90]
of the CO from 2D to 3D and as a consequence, can have
important consequences in its directionality.

Our analysis in this paper is based on the experimental
observations of the B-T phase diagram of YBCO. There are
limited availability of similar phase diagrams in other families
of the cuprates. We believe that the pseudogap temperature
(the largest energy scale of the problem) is not specific to the
parameters like quadratic or biquadratic terms in the non linear
sigma model [81] and is quite generic [129] to all cuprates.
But the low temperature phases can indeed be very specific
to different cuprates. Further investigations on the role of
inhomogeneities within the SU(2) theory can enlighten us with
the origin of pseudogap in different cuprates.
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APPENDIX A: EFFECTIVE FREE-ENERGY DENSITY
OF A SUPERCONDUCTOR IN THE PRESENCE

OF A MAGNETIC FIELD

In this Appendix, we derive an effective homogeneous
free-energy density of a type-II superconductor [120,127,130].
Type-II superconductors possess two critical magnetic fields
Bc1 (lower critical field) and Bc2 (upper critical field). For
B < Bc1, the superconductor expels magnetic field completely
and it is said to be in Meissner state. Once Bc1 < B < Bc2,
magnetic flux lines penetrate the sample at different locations
in the sample creating vortices and the state is often termed
as mixed state. If the magnetic field is further increased such
that B > Bc2, the superconductivity is completely lost and
the magnetic field can penetrate through the whole sample.
Cuprates are well known to be extremely type-II with very
small Bc1. Close to Bc2, the superconducting order parameter
ψ is small and can very well be described by a GL free energy.
The free-energy functional in the presence of magnetic field is
written as [127,130]

Fsc − Fn =
∫

α′
ψ |ψ |2 + βψ

2
|ψ |4 + λ

2

∣∣∣∣∣
(

∇
i

− 2e �A
c

)
ψ

∣∣∣∣∣
2

dR,

(A1)

where �A is the vector potential corresponding to the magnetic
field. We minimize this free energy, which yields the GL
equation:

α′
ψψ + βψ |ψ |2ψ + λ

2

(
∇
i

− 2e �A
c

)2

ψ = 0. (A2)

Since the order parameter is small, we can neglect the cubic
term in Eq. (A2). This leads to an eigen-value equation,

λ

2

(
∇
i

− 2e �A
c

)2

ψ = −α′
ψψ. (A3)
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If we consider the gauge �A = (0,Bx,0) and an ansatz ψ(x) =
eikyyeikzzd(x), Eq. (A3) gives

−∂2d

∂x2
+

(
2πB

φ0

)2

(x − x0)2d = (
E − k2

z

)
d, (A4)

where x0 = kyφ0/(2πB) and φ0 = hc/(2e) is the flux quan-
tum. Equation (A4) is similar to the Schrödinger equation of a
charged particle in a magnetic field and the eigen-values of the
equation are given by En = (n + 1/2)(2eBλ) for kz = 0 in the
units h̄ = c = 1. Near B = Bc2, n = 0, and putting Eq. (A4)
back in Eq. (A1), we get

Fsc − Fn =
∫

αψ |ψ |2 + βψ

2
|ψ |4dR, (A5)

where αψ = α′
ψ + 2eλB. So, for B ≈ Bc2, the free energy can

be written as if the order parameter is effectively homogeneous
and the magnetic field just renormalizes the effective mass.
The solution of Eq. (A4) for ψ is highly degenerate in kx . But,
away from Bc2, the nonlinear term in the GL equation cannot
be neglected and eigenvalue equation in Eq. (A3) is no longer
valid. Including the quartic term, it can be shown energetically
that the vortices form a periodic array called Abrikosov vortex
state. With the Abrikosov vortex solutions for ψ , we can write
the free-energy density as

fsc − fn = αψ |ψ̄ |2 + β̃ψ

2
|ψ̄ |4, (A6)

where f = F/(
∫

dR),
∫ |ψ |2dR = |ψ̄ |2 ∫

dR and β̃ψ =
βAβψ . βA is a parameter dependent on the geometry of the
vortex lattice [120,121] and is found to be minimum for a
triangular one with its value βA = 1.16.

APPENDIX B: RG EQUATIONS FOR
THE CLASSICAL NLSM

We detail the derivation of the RG flow equations for the
effective coupling constant (t) and the effective anisotropy
parameter κ of the NLSM in Eq. (24). Using standard tech-
niques of RG, we integrate out the fast varying components
of the free energy in Eq. (24) and write an effective slow
varying counterpart within one-loop order. In deriving the RG
equations, we will treat u as an SU(N) matrix for the sake
of generality and finally analyze our results with N = 2. We
decompose u as u = u0ũ, where u0 and ũ are the fast varying
and the slow varying parts of u, respectively. Substituting this
in Eq. (24), we get

F

T
= Fnm

s + Fm
s + Ff + Fnm

int + Fm
int, (B1)

where the superscript “nm” refers to terms arising from the
gradient term in Eq. (24) and “m” refers to the terms arising
from the nongradient term, the subscript “s” refers to the slow
parts, “f” refers to the fast parts, and “int” refers to the terms
which act as interaction between the slow and the fast parts.
Individual components in Eq. (B1) are given by

Fnm
s = 1

t

∫
tr[∇ũ†∇ũ]dR, (B2)

Fm
s = 1

t

∫
tr[κτ3ũ

†τ3ũ]dR, (B3)

Ff = 1

t

∫
tr[∇u

†
0∇u0]dR, (B4)

Fnm
int = 2

t

∫
tr[u†

0∇u0ũ∇ũ†]dR, (B5)

Fm
int = κ

t

∫
tr[u†

0τ3u0ũτ3ũ
† − τ3]dR. (B6)

The fast components in Eq. (B1) integrate out and do not
contribute to the effective low-energy free energy. However,
we treat the interaction components as perturbations over
the slow parts, in turn renormalizing them. We choose a
suitable parametrization for the matrix u0 = ew with w =
i
∑

a=1,N2−1 πaT
a , where T a are the generators of SU(N)

algebra and πa are the coefficients on the basis of T a . Using
this parametrization, Eq. (B5) becomes

Fnm
int = 2

t

∫
tr[φμ(∇ww − w∇w)]dR, (B7)

with φμ = ũ∇ũ†. Integrating over the fast variables, the con-
tribution of the perturbation due to the Fm

int up to one-loop order
is − ln(1 + 1/2〈(Fnm

int )2〉w) � −1/2〈(Fnm
int )2〉w. In momentum

space,

〈(
Fnm

int

)2〉
w

�
∫

p

∫
q

〈tr[Aq,pwq+pw−p]tr[Aq ′,p′wq ′+p′w−p′]〉w,

(B8)

where Ap,q = −2ipμφμ,−q/t and we use the notations∫
p

≡
∫ �

�/b

ddp

(2π )d
and

∫
q

≡
∫ �/b

0

ddq

(2π )d
, (B9)

where � is the upper momentum cutoff and 1/b is the width
of high momentum shell integrated out in every RG step and
d is the spatial dimension. Considering the SU(N) algebra of
w, we obtain the following identity:

pμpμ′ 〈tr[φμ,qwp+qw−p]tr[φμ′,q ′wp′+q ′w−p′ ]〉w
= N

4
GpGp+qpμpμ′ tr[φμ,qφμ′,−q], (B10)

where Gp = t/p2 is the propagator of the fast fields πa

assuming κ to be small. Substituting this identity in Eq. (B8),
we get

〈(
Fnm

int

)2〉
w

� −N

t2

∫
p

pμpνG
2
p

∫
q

tr[φμ,qφν,−q]

= −NI

∫
q

tr[φμ,qφμ,−q], (B11)

where I = ∫
p

1
p2 is the one-loop integral. Rescaling the slow

fields, we can rewrite Eq. (B11) as〈(
Fnm

int

)2〉
w

= −NIbd−2Fnm
s . (B12)

The integral I is given by

I = �d

(2π )d

∫ �

�/b

dppd−3. (B13)
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It diverges for d = 2. We do an ε expansion around d = 2 + ε

and get the integral as

I = 1

2π
ln b. (B14)

Using Eq. (B12), the renormalized parameter t̃ follows a
recursion relation and can be written as

1

t̃
=

{
1

t
− N

4π
ln b

}
bε. (B15)

Taking the continuum limit and expressing b = el where l

is small length rescaling in momentum, the RG differential
equation for the parameter t becomes

dt

dl
= −εt + N

4π
t2. (B16)

Now, we consider the perturbation term Fm
int and expand with

u0 = ew. The only nonzero contribution up to order w2 comes
from the terms

u
†
0τ3u0ũτ3ũ

† − τ3 = −wτ3wũτ3ũ
† + w2τ3ũτ3ũ

†. (B17)

Contribution from the first term in the right-hand side of
Eq. (B17) to the slow component is

−〈tr[wτ3wũτ3ũ
†]〉w =

∑
a,b

〈tr[πaπbT
aτ3T

bũτ3ũ
†]〉w

=
∑
a,b

〈πaπb〉wtr[T aτ3T
bũτ3ũ

†]

=
∑

a

〈πaπa〉wtr[T aτ3T
aũτ3ũ

†]

= −
∑

a

〈πaπa〉w 1

N
tr[τ3ũτ3ũ

†], (B18)

using the trace identity
∑

a tr[AT aA′T a] = tr[A]tr[A′] −
(1/N )tr[AA′], where A and A′ are matrices of same dimension
as SU(N) matrices T a . Similarly, the contribution from the
second term in the right-hand side of Eq. (B17) is

〈tr[w2τ3ũτ3ũ
†]〉w =

{
N − 1

N

}
tr[τ3ũτ3ũ

†]. (B19)

Summing Eqs. (B18) and (B19), the whole contribution from
the Fm

int is given in the momentum space as

〈
Fm

int

〉
w

= κ

t
N

∫
p

Gp

∫
q

tr[τ3ũτ3ũ
†]

= κNI

∫
q

tr[τ3ũτ3ũ
†]

= κ
N

2π
b2+εFm

s . (B20)

The corresponding recursion relation is given by

κ̃

t̃
=

{
κ

t
− N

2π
κ ln b

}
b2+ε . (B21)

Again taking the continuum limit, the RG differential equation
for κ/t is given by

d
[

ln
(

κ
t

)]
dl

= − N

2π
t + 2 + ε. (B22)

In d = 2 and for N = 2, we have the RG equations from
Eqs. (B16) and (B22) for effective coupling constant t and
effective anisotropy κ as

dt

dl
= 1

2π
t2, (B23)

d
[

ln
(

κ
t

)]
dl

= − 1

π
t + 2. (B24)

APPENDIX C: CRITICAL MAGNETIC FIELDS AT T = 0
WITH WEAK SU(2) SYMMETRY BREAKING

In this Appendix, we deriveT = 0 transition magnetic fields
within a mean field picture for both quadratic and biquadratic
symmetry breaking. The enhanced SU(2) symmetry between
the SC and the CO is only true exactly if α′

φ = α′
ψ and γ 2 =

βψβφ . But as explained in Sec. III, the constraint between the
two orders is valid for all temperatures T < T ∗. If we have a
weak symmetry breaking in either the quadratic terms or in the
biquadratic terms, the constraint is still valid for temperatures
below T ∗. To obtain the transition magnetic fields for different
phases at T = 0 but with the constraint imposed on the order
parameters, we write down the GL free-energy density from
Eq. (15) as

f [ψ,φ] = (α′
ψ + ζB)|ψ |2 + α′

φ|φ|2 + βψ

2
|ψ |4

+ βφ

2
|φ|4 + γ |ψ |2|φ|2, (C1)

where α′
ψ < 0, α′

φ < 0, |α′
ψ | > |α′

φ| and βψ = βφ = β.
We first consider the quadratic symmetry breaking where

γ = β, |α′
φ| �= |α′

ψ | and small difference of the masses, 2κ0 =
α′

φ − α′
ψ . Using the constraint |ψ |2 + |φ|2 = 1, the free-

energy density in Eq. (C1) can be written in terms of the ψ

field only as

f [ψ] = (−2κ0 + ζB)|ψ |2 + γ

2
= msc

eff|ψ |2 + γ

2
, (C2)

and in terms of the φ field only as

f [φ] = (2κ0 − ζB)|φ|2 + γ

2
= mco

eff|φ|2 + γ

2
, (C3)

where the effective mass of the SC field is msc
eff = −2κ0 + ζB

and the CO field is mco
eff = 2κ0 − ζB. The transition field B0

is given by

B0 = 2κ0

ζ
. (C4)

If B < B0, then msc
eff < 0 and mco

eff > 0, which makes only the
SC phase stable. However, if B > B0, then msc

eff > 0 and mco
eff <

0,which makes only the CO phase stable. There is a pseudospin
flop first order transition at B = B0, where the direction of the
pseudospin flops from being in the SC easy plane to the CO
easy plane. Thus, there cannot be any coexisting phase in the
case of only quadratic symmetry breaking.

Now, let us consider the case with both quadratic and
biquadratic symmetry breaking with γ �= β and α′

φ �= α′
ψ . If

the quadratic symmetry breaking (2κ0 = α′
φ − α′

ψ ) and the
biquadratic symmetry breaking (4z0 = β − γ ) are weak com-
pared to the pseudogap energy scale, the constraint between
the SC and the CO still holds. Applying the constraint, we can
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write the free-energy density in Eq. (C1) in terms of ψ field
only as

f [ψ] = (−2κ0 − 4z0 + ζB)|ψ |2 + 4z0|ψ |4
= msc

eff|ψ |2 + 4z0|ψ |4, (C5)

and in terms of φ field only as

f [φ] = (2κ0 − 4z0 − ζB)|φ|2 + 4z0|φ|4
= mco

eff|φ|2 + 4z0|φ|4, (C6)

where the effective masses of the SC field and the CO field
have contributions from the biquadratic symmetry breaking
and are given by msc

eff = −2κ0 − 4z0 + ζB and mco
eff = 2κ0 −

4z0 − ζB. If z0 < 0 (γ > β), then there is always a first-order
pseudospin flop transition at B = B0 with no coexisting phase.
If z0 > 0 (γ < β), then only the SC phase is stable forB < B0

co,
where B0

co is given by

B0
co = (2κ0 − 4z0)

ζ
, (C7)

and only the CO phase is stable phase for B > B0
sc, where B0

sc

B0
sc = (2κ0 + 4z0)

ζ
. (C8)

In the range of fields B0
co < B < B0

sc, both orders coexist.

APPENDIX D: RG EQUATIONS FOR QUANTUM NLSM

Renormalization group analysis of the free-energy func-
tional in Eq. (41) is exactly similar to the one carried out in
Appendix B with a different one-loop integral I . In terms of the
Matsubara frequencies (ωn = 2πn/v, with n = 0,±1,±2,..),
the one-loop integral I in Eq. (B13) is now replaced by

I =
∞∑

n=−∞

∫
p

1

p2 + ω2
n

= v�d

2(2π )d

∫ 1

1/b

dppd−2 coth
(v

2
p
)

� v�d

2(2π )d
coth

(v

2

) ∫ 1

1/b

dppd−3 � v

4π
coth

(v

2

)
ln b.

(D1)

The thickness of the time slab v flows trivially with l. We
write the equations in terms of a dimensionless parameter t =
T �d−2/ρs , which in the classical limit of v → 0 maps to the
coupling constant t in the classical NLSM. The RG differential
equations for v, t , and κ̄ in d = 2 and for N = 2 are

dv

dl
= −v, (D2)

dt

dl
= 1

4π
vt2 coth

(v

2

)
, (D3)

d
[

ln
(

κ̄
t

)]
dl

= − t

2π
v coth

(v

2

)
+ 2. (D4)
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