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We present a comprehensive study of the magnetization dynamics and phase evolution in the chiral helimagnet
Cr1/3NbS2, which realizes a chiral soliton lattice (CSL). The magnetic field dependence of the ac magnetic response
is analyzed for the first five harmonic components, Mnω(H ) (n = 1–5), using a phase sensitive measurement
over a frequency range, f = 11–10 000 Hz. At a critical field, the modulated CSL continuously evolves from
a helicity-rich to a ferromagnetic domain-rich structure, where the crossover is revealed by the onset of an
anomalous nonlinear magnetic response that coincides with extremely slow dynamics. The behavior is indicative
of the formation of a spatially coherent array of large ferromagnetic domains, which relax on macroscopic time
scales. The frequency dependence of the ac magnetic loss displays an asymmetric distribution of relaxation
times across the highly nonlinear CSL regime, which shift to shorter time scales with increasing temperature.
We experimentally resolve the tricritical point at TTCP in a temperature regime above the ferromagnetic Curie
temperature which separates the linear and nonlinear magnetic regimes of the CSL at the phase transition.
A comprehensive phase diagram is constructed which summarizes the features of the field and temperature
dependence of the magnetic crossovers and phase transitions in Cr1/3NbS2.

DOI: 10.1103/PhysRevB.97.214438

I. INTRODUCTION

The spatially modulated magnetic states that arise in non-
centrosymmetric magnetic materials with strong spin-orbit
coupling have gained significant interest due to the stability
and high degree of tunability of their symmetry-protected
spin textures [1–6]. In Cr1/3NbS2, the chiral helimagnetic
(CHM) structure, with period L(0) = 48 nm, propagates over a
remarkably large spatial range. This is due to the close coupling
of the localized magnetic moments with the underlying crystal
lattice via the Dzyaloshinskii-Moriya interaction [7,8] and
the high uniaxial anisotropy which fixes the spin helix along
the crystallographic c axis [9–11]. The layered structure of
Cr1/3NbS2 consists of 2H-type planar NbS2 with Cr atoms
intercalated between planes and belongs to the hexagonal
space group P 6322, which lacks inversion symmetry [12]. The
localized moments of the Cr3+ ions (S = 3/2) are oriented
in the ab plane and exhibit strong single-ion anisotropy
[13,14]. Under a magnetic field applied perpendicularly to
the chiral axis, the harmonic spiral structure continuously
crosses over into a nonlinear chiral soliton lattice (CSL),
as illustrated in Fig. 1(a) [15,16]. According to a quasi-1D
model [6,17], the CSL can be described as a periodic chain
of ferromagnetic domains separated by 360° domain walls,
called solitons [15,18]. The physical realization of the CSL
in Cr1/3NbS2 was first observed by Togawa and coworkers
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via a Lorentz microscopy experiment [16]. In recent years,
a number of studies have uncovered fundamental properties
of the symmetry-broken magnetic state. The sliding motion
of the highly coherent CSL structure in the presence of an
ac magnetic field has been theoretically shown to amplify
the physically observable spin motive force, which is in
direct proportion to the number of solitons along the spin
chain [19,20]. Several studies which followed have shown the
effects of confinement on both its collective dynamics [21]
and of the topologically protected CSL, in which the number
of solitons can be discretely controlled [22–24]. Thus, as a
candidate for spintronics applications, a clear understanding
of the magnetic field dependence of the ac magnetic response
of the CSL is essential in controlling spins and spin transport
for magnetoelectronic devices.

The chiral magnetic phase is characterized by a robust
spin coherence in which both the amplitude and phase of
the order parameter display long-range order [17]. In the
presence of a magnetic field, the modulated CSL is stabilized
due to the competition between field-induced commensuration
and the chirality protected helical ground state. A schematic
diagram displayed in Fig. 1(b) presents a simple model of
the evolution of the spin uniformity or coherence (ξ ) as
a function of magnetic field, H [25]. At H = 0, the spin
coherence of the CHM phase is theoretically infinite due to
the uniformity of the structure over the entire crystal. As H is
increased, ξ abruptly disappears, marking the crossover into
a distorted helicoid state. In this helicity-rich regime of the
CSL, the growth of ξ is minimal in a field range, 0 < H
< HC,1. At a crossover field, HC,1, ξ increases more rapidly
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FIG. 1. Evolution of the spatially modulated chiral spin structure in Cr1/3NbS2 with applied magnetic field. (a) The CHM structure
continuously evolves into a CSL. The period of the helical ground state is L(0) = 48 nm. The CSL period, L(H), continuously grows with
applied magnetic field H, perpendicular to the c axis. The forced ferromagnetic (IC-C) transition occurs at magnetic fields above HFFM. (b)
The change in spin coherence or uniformity of the magnetic structure as a function of magnetic field, ξ (H), as described in the text. The CHM
is coherent over the entire crystal at H = 0 Oe. In the CSL regime, the spin uniformity corresponds to ferromagnetic domain (commensurate)
component of the magnetic structure. (c) Schematic H-T phase diagram. The green line at H = 0 Oe represents the pure CHM state where
ξ (0) = ∞. The PM-CHM transition occurs at T0. The CSL is divided into two regimes by a crossover boundary at HC,1 (blue line) which
separates the linear and HNL CSL. The chiral phase boundary extends past the Curie temperature, TC and terminates at T0. A precursor region
of strong correlations is marked by T ∗. The tricritical point, TTCP, separates a second-order HNL CSL-FFM transition with a first-order linear
CSL-PM transition.

as the periodic ferromagnetic domains of the CSL grow and
eventually diverge at the incommensurate to commensurate
(IC-C) phase transition into the forced ferromagnetic (FFM)
phase at HC,2. The long-range coherence exhibited in the
incommensurate CSL leads to special consequences such as
collective dynamics, the character of which depends on the
excitation frequency [6,17,25]. For example, in the microwave
range, phononlike modes or sliding dynamics of the CSL may
occur at on- or off-resonance frequencies, respectively [17].

On the other hand, the study of magnetization dynamics
at frequencies much lower than the microwave range, ∼0.1–
10 000 Hz, can reveal the time-dependent response on length
scales that range from the level of the magnetic superlattice
to individual moments of ferromagnetic domains. The time-
dependent magnetization due to an alternating field, Hac =

h sin(ωt), can be expanded as [26]

M(t) = M1ω sin(ωt + θ1ω) + M2ω sin(2ωt + θ2ω)

+M3ω sin(3ωt + θ3ω) + ..., (1)

where ω = 2πf,Mnω is the nth harmonic component (for
integer n = 1,2,3, . . .), and θnω is the delay in phase of each
component against Hac. M1ω represents the linear response to
Hac while the nonzero contributions of the higher harmonics
represent the degree of nonlinearity in the response of the
magnetic system, i.e., the distortion of the periodic curve from
sinusoidal behavior. Tsuruta et al. [25] investigated the domain
dynamics of the CSL across the phase boundaries separating
the paramagnetic (PM) state for frequencies f = 0.1–500 Hz
and fixed dc fields, Hdc. At small Hdc, the dynamic response
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lacked the signature magnetic loss and third-order harmonic
response (M3ω) attributed to the formation of ferromagnetic
domains. This identified the PM-linear CSL transition. Con-
versely, as Hdc was increased to a value close to HC,2, the
magnetic response exhibited large magnetic loss and M3ω as
a function of temperature on crossing into the highly coherent
ferromagnetic domain-rich CSL from the FFM phase. This
field regime of the CSL is referred to as the highly nonlinear
(HNL) CSL.

Although the results in Ref. [25] allowed the delineation of
the phase boundaries between the high-temperature disordered
state and the chiral magnetic phase below T0, it is not clear how
the dynamics change as a function of magnetic field as the CSL
continuously evolves from linear regime and across the highly
nonlinear regime. In general, the behavior of the magnetic
response of long-wavelength structures includes contributions
from spins on atomic length scales and from the macroscopic
spin structure [27–29]. These contributions have vastly dif-
ferent time scales in which the latter may not be completely
tracked by the ac measurement. Thus the observation of the
frequency dependence of the ac magnetic response may be
used to identify the onset of the collective response of a spin
structure that is coherent over large length scales.

The schematic H-T phase diagram for Cr1/3NbS2, presented
in Fig. 1(c), summarizes experimental [16,25,30] and theoret-
ical [31,32] results and depicts the phase boundaries near the
critical temperature. An isothermal line at temperatures below
the tricritical point, TTCP, tracks the continuous transformation
that coincides with the coherence model in Fig. 1(b). The IC-C
phase boundary (black line), below which the chiral magnetic
state exists, terminates at T0−the zero-field critical temperature
that marks the onset of the CHM phase. According to recent
experimental and theoretical studies, the spatially modulated
phase is stable in a region above the Curie temperature, TC
[30–32]. In this region, a tricritical point along the chiral phase
line separates the second-order HNL CSL-FFM transition from
the first-order linear CSL-PM phase transition.

In Ref. [30], we reported phase boundaries that were
carefully determined using the temperature and magnetic field
dependence of the magnetic entropy change [�SM (T ,H )] and
dc magnetization. Our results demonstrated that the chiral
magnetic phase is stable above the Curie temperature within
a precursor region (TC − T ∗) analogous to the fluctuation-
disordered regime observed in the cubic CHMs [33,34]. Al-
though the first- and second-order behaviors were demon-
strated experimentally, the location of the tricritical point
was not experimentally resolved. The ac magnetic response
reported in Ref. [25] identified a possible tricritical point
separating the linear and nonlinear regimes, however, the
results do not show refined detail in this region. As relaxation
times observed at the phase boundaries in chiral helimagnets
have been shown to decrease dramatically (over several orders
of magnitude) at temperatures close to the phase transition
[35], a wider frequency range may allow the refinement of
distinctly different magnetic regimes to locate the tricritical
point as well as detect the CSL behavior within the precursor
region, TC − T ∗.

The following study presents an analysis of the ac magnetic
response as a function of applied dc magnetic field, Mnω(H ),
which tracks the dynamic response across the spatially

modulated chiral phase into the FFM state. The measurement
is taken across a logarithmic frequency range, f = 11 −
10 000 Hz, on a single crystal sample with TC = 130.75 K [30].
We first present the field dependence of the linear ac magnetic
response in Sec. III A. Section III B follows with an analysis of
the higher harmonic components of the ac magnetic response
to clarify how the nonlinear response evolves as the chiral
magnetic phase undergoes multiple field-induced crossovers.
The study of the relaxation behavior of the HNL CSL is
presented in Sec. III C. The temperature dependence, Mnω(T ),
is presented in Sec. IV and clarifies the nature of correlations
above the magnetic ordering temperature. Finally, in Sec. V,
the phase diagram is constructed and the tricritical point is
identified where the separation between the linear and highly
nonlinear CSL regimes becomes apparent. A brief summary is
given in Sec. VI.

II. EXPERIMENTAL METHODS

The Cr1/3NbS2 single crystal was grown by a chemical
vapor transport method that has been described elsewhere
[36]. Measurements of the ac magnetic response, Mnω, were
carried out using an AC Magnetometry System (ACMS) option
for a commercial Physical Property Measurement System
(PPMS, Quantum Design). Both the temperature and field
dependence of Mnω, M ′

nω, and M ′′
nω were measured up to

the fifth harmonic for the driving field Hac = h sin(2πf t)
with amplitude, h = 5 Oe. The temperature-dependent ac
magnetic response, Mnω(T ), was measured with a series of
fixed dc fields ranging from Hdc = 0–1200 Oe, parallel to
Hac, with a linear frequency range, f = 10–10 000 Hz. The
ac magnetic response as a function of applied dc magnetic
field, Mnω(H ), was measured for a series of temperatures
in the range T = 129 − 133 K with a logarithmic frequency
scale, f = 11 − 10 000 Hz. Temperature- and field-dependent
measurements were taken using a zero field-cooled (ZFC)
protocol with Hac/dc⊥c. A warming protocol was used between
each measurement in which the sample was heated to 200 K,
well above TC, to remove history effects.

The complex ac magnetic response can be separated into
real and imaginary parts,

Mnω = M ′
nω + iM ′′

nω, (2)

where the imaginary component M ′′
nω is 90° out-of-phase with

M ′
nω and reflects the presence of hysteresis or loss in M(Hac).

III. AC MAGNETIC RESPONSE: FIELD DEPENDENCE

A. Linear response

Figures 2(a) and 2(b) show the real and imaginary com-
ponents of the linear magnetic response as a function of
applied dc magnetic field, M ′

1ω (H) and M ′′
1ω (H), measured

with f = 111 Hz for selected temperatures ranging between
T = 129–133 K. While M ′

1ω is nonzero for all fields measured,
M ′′

1ω appears only at 0 Oe and in a field range between
H = 250–570 Oe, i.e., where M ′

1ω shows a giant response. In
the context of the simple spin coherence model described in
Sec. I, the following describes the behavior of the ac magnetic
response as the magnetic system continuously transforms
from a spatially modulated chiral phase to the homogenous
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FIG. 2. Magnetic field dependence of the real and imaginary parts of the linear ac magnetic response, M1ω(H,T ), measured with an ac
magnetic field amplitude, h = 5 Oe. (a) Real and (b) imaginary parts of M1ω(H,T ) measured as a function of magnetic field at fixed temperatures
in the range T = 129–133 K. (c) Real and (d) imaginary parts of M1ω(H,T ) measured for a frequency of f = 1111 Hz.

FFM state. At H = 0 Oe, M ′
1ω displays a maximum, which is

accompanied by a large M ′′
1ω due the essentially infinite spin

coherence of the CHM structure, which is spatially uniform
over the entire crystal. As magnetic field is increased in steps
of 10 Oe,M ′

1ω drops to a relatively constant value.M ′′
1ω abruptly

goes to zero and marks the crossover into the linear CSL. In this
regime, long-range spin coherence disappears, extending over
a broad field range from ∼ H = 30–250 Oe for T = 129 K. At
a critical field, the spin system crosses over into a HNL CSL
in which both M ′

1ω and M ′′
1ω show an exponential-like increase

that evolves into a broad peak with sharp anomalies. Above
a critical magnetic field, M ′

1ω drops to a minimum and loss
disappears marking the IC-C phase transition into the FFM
phase.

Figures 2(c) and 2(d) show the H-T surface plots of
M ′

1ω(H,T) and M ′′
1ω(H,T) for f = 1111 Hz. The double anoma-

lies of the HNL CSL are apparent as dark red ridges. The
large linear response and accompanying magnetic loss of the
HNL CSL extend past the Curie temperature, TC = 130.75 K
measured for this system [30], into a region marked by strong
chiral correlations, in agreement with results in [30–32]. For
temperatures above ∼131.5 K, the magnetic loss vanishes.
Here, M ′

1ω remains as a single broad peak [see also Figs. 2(a)
and 2(b)] and extends to T0 ∼ 132.25 K, which marks the
disappearance of the chiral magnetic phase. This feature
without magnetic loss emerges on the boundary between the
linear CSL and PM states [25]. The H-T surface plots mirror the
phase diagram shown in Fig. 1(c). Namely, the HNL CSL-FFM
transition and linear CSL-PM transitions meet in the region
TC − T0.

While the behavior of the domain dynamics elucidated the
HNL CSL-FFM and linear CSL-PM phase boundaries as a
function of temperature in Ref. [25], the nature of the field-
dependent crossover from the helicity-dominated linear regime
of the chiral phase into the highly coherent ferromagnetic
domain-rich nonlinear regime of the CSL is still unclear. To un-
derstand the evolution of the spatially modulated chiral phase,
the study begins with a comparison of the static (differential)
and dynamic susceptibilities. Figure 3 compares the differen-
tial susceptibility, dM/dH, shown by the black curve, and the
ac susceptibility, M ′

1ω/h, shown by the green curve, for T =
129 K at the lowest frequency (longest time scale) measured in
this study, f = 11 Hz. dM/dH, derived from dc magnetization
versus magnetic field measurements, shows a single peak at a
characteristic field,HdM/dH

peak. As the susceptibility reaches its
maximum, in a field regime where the coherent FM domains
dominate the magnetic structure, the dynamic susceptibility
deviates from the behavior of dM/dH, splitting into two
anomalies of lesser magnitude. The location of HdM/dH

peak lies
exactly at the position of the minimum between the two peaks
in M ′

1ω/h. A closer inspection indicates that the deviation
between the dc and ac susceptibilities becomes prominent
near H = 250 Oe and coincides with the onset of nonzero
magnetic loss, shown by the orange curve. Clearly, the dynamic
susceptibility at 11 Hz, which has a time window of ∼ 90 ms,
does not track the susceptibility measured in the static limit.
The dynamic response is instead suppressed in magnitude and
is accompanied by an increase in magnetic loss.

The discrepancy in the magnetic field dependence of
the susceptibility has been observed in many systems with
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FIG. 3. Comparison of the magnetic field dependence of the dc
differential susceptibility, dM/dH, the ac susceptibility, M ′

1ω/h =
χ ′

1ω, at f = 11 Hz (right axis), and ac magnetic loss, M ′′
1ω/h = χ ′′

1ω,
at f = 11 and 111 Hz (left axis). The dashed lines mark the field
regime of the deviation between the dc and ac susceptibilities and
the corresponding onset and destruction of ac magnetic loss. The
maximum in dM/dH vs H, defined as HdM/dH

peak, is dependent on
measurement temperature and occurs at H ∼ 500 Oe at T = 129 K.

long-wavelength magnetic structures, e.g., CHM and SkL
phases [4,29,37]. The difference in magnitude has been linked
to (1) a slow field-driven process, such as the reorientation
of large helical domains, that may only be fully observed
in the zero-frequency limit, and (2) phase coexistence and
strong dissipation accompanying a first-order transition [29].
As the field-driven crossover in Cr1/3NbS2 is a continuous
process [16], the dynamic behavior shown here is charac-
teristic of long-wavelength magnetic structures that relax on
macroscopic time scales [27]. Indeed, the suppression of the
susceptibility is enhanced with higher frequency and will be
explored further in Sec. III C. In the following section, we will
examine the variation of the nonlinear response in the field
regime marked by slowing dynamics to identify the onset of
collective dynamics of a coherent macroscopic spin state.

B. Nonlinear response

We begin with a brief review of nonlinear ac magnetic
response in magnetic systems. The relative magnitudes of
higher harmonic components represent the distortion of the
time-dependent magnetization from typical sinusoidal be-
havior in response to an ac driving field, Hac = h sin(ωt).
Mito and coworkers have rigorously studied the nonlinear
response of chiral magnetic materials [38–41], mainly as
a tool to study magnetic domain dynamics: the dynamical
magnetization M(Hac) with large M3ω and magnetic loss is
modelled using the nonlinear spring (Duffing) equation to
describe the displacement of domain walls from equilibrium
[40]. In light of the description of the collective dynamics
of the chiral soliton lattice in relation to a modified Duffing
oscillator model [20], Tsuruta et al. applied this technique to
Cr1/3NbS2 to elucidate the dynamics across different regimes
of the CSL with increasing temperature [25]. Beyond domain

dynamics, early studies of higher-order susceptibilities yielded
descriptions of the phase transitions in canonical systems,
i.e., FM, antiferromagnet, and spin glass [42,43]. The third
harmonic identifies the nature of the magnetic ordering at the
phase transition. It is linked to the breaking of spatial-reversal
symmetry and yields information about the spin environment
[38,39]. Additionally, the even harmonics are dependent on the
presence of a symmetry-breaking internal field and are com-
monly utilized as an unambiguous detection of spontaneous
magnetization [44–46]. Thus the analysis of the nonlinear ac
magnetic response can be a powerful tool to understand the
fundamental phenomena across various magnetic regimes.

The first five harmonics of the ac magnetic response as
a function of magnetic field, Mnω(H), at f = 111 Hz are
compared in Figs. 4(a)–4(f), where the black curves represent
the measurement at T = 129 K. The first column, Figs. 4(a)–
4(c), compares the large response of the higher-order odd
harmonic components, M3ω(H) and M5ω(H), to the magnetic
loss M ′′

1ω(H). In Figs. 4(e) and 4(f), the large responses of
the even harmonic components, M2ω and M4ω, are displayed
and show a complex modulation across the highly nonlinear
regime. As a reference between even and odd harmonics M ′

1ω

is displayed in Fig. 4(d).
M2ω − M5ω capture the disappearance of spin uniformity

which is predicted to occur as the CHM structure crosses over
into the CSL. At H = 0 Oe, the magnetic response of the CHM
structure displays a contribution from all higher harmonics,
M2ω − M5ω, and abruptly drops at small H. The minimum,
which extends for a relatively wide field range, rapidly rises at
a characteristic field, HC,1.

As shown by the black dashed lines through Figs. 4(a)–
4(c), M3ω(H) and M5ω(H) display virtually the same field
dependence as M ′′

1ω(H). The onset of M ′′
1ω is accompanied by

a rise in M3ω, and appearance of M5ω, and is followed by
an exponential-like increase to sharp double anomalies. Thus
the onset of slowing dynamics, indicated by M ′′

1ω (Fig. 3),
corresponds to a prominent nonlinear response which, in the
picture of magnetic domain dynamics, is associated with the
growth of the FM domain component of the CSL. The third
harmonic response as a function of field, M3ω(H), for f =
25–10 000 Hz is shown in Fig. 5 for T = 129 K. As frequency
is varied, the regime of large M3ω remains rigid as a function of
magnetic field and shows no shift of the sharp double anomaly
(Fig. 5). M3ω displays the characteristic dip in magnitude that
was observed in M ′

1ω(H) and M ′′
1ω(H), which corresponds to

peak in the static susceptibility, HdM/dH
peak.

While the highly nonlinear regime of the CSL was previ-
ously characterized [25] with respect to the large M3ω, the large
magnitude of the higher harmonics from M2ω to M5ω reinforces
that the time-dependent magnetization is highly distorted in re-
sponse to the sinusoidal driving field. The relative magnitudes
of the higher harmonics to M1ω further demonstrate the high
nonlinearity in the system. Specifically, the ratio of M3ω/M1ω,
called the Klirr factor, is used as a measure of the nonlinearity
and was reported previously as approximately 10% in this
system [25]. The measurements reported herein demonstrate a
large Klirr factor of up to 15%. It is also worth noting that M5ω

is in the range of 16% of M3ω. Depending on the measurement
frequency, the peak magnitude of M2ω is comparable to M3ω,
as seen in Fig. 4(e) where M2ω(H) measured at T = 130.75 K
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FIG. 4. Magnetic field dependence of the linear and nonlinear components of the ac magnetic response for selected temperatures, Mnω(H, T),
at f = 111 Hz. The magnitude of all harmonic components are highly dependent on frequency and hence do not display maximum magnitude
simultaneously. (a) The magnitude of the ac magnetic loss, M ′′

1ω(H). The large absolute magnitudes of (b) the third, M3ω, and (c) fifth, M5ω,
harmonic response show a remarkably similar field dependence to the ac magnetic loss term. (d) M ′

1ω. The even harmonics (e) M2ω and (f) M4ω,
have sizeable contributions to the total magnetic response and closely follow the inflection points of M ′′

1ω.

reaches a magnitude of ∼1.3 (emu/mol). Consequently, the
even order terms of (1) contribute a considerable distortion
to the time-dependent magnetization and, similarly to M3ω

and M5ω, reflect the collective response of the coherent FM
domains of the HNL CSL.

The magnetic field dependence of the second harmonic
magnetic response M2ω(H) is shown in Fig. 6(a) for T =
130.5 K. As observed in the odd order ac magnetic responses,
M2ω displays a complex field dependence across the HNL
CSL, which is further demonstrated by the real and imagi-
nary components (M ′

2ω and M ′′
2ω) shown in the inset. Both

the in-phase and out-of-phase components contribute almost
equally to the total M2ω, which signifies significant energy
loss associated with the changes in internal field. Due to the
presence of spontaneous magnetization in a system, there exists
an asymmetry in the magnetization with respect to the direction
of the applied magnetic field in an ac measurement [44,45].
Furthermore, sharp anomalies in M2ω should accompany
sudden changes in internal field [44,45]. The M2ω response is

largest upon entering and exiting the highly nonlinear regime as
field increases, where on entry a sharp positive to negative sign
change occurs and on exit, small positive values sharply switch
to negative moving into the FFM phase. The sign changes
in M ′

2ω and M ′′
2ω across the highly nonlinear regime can be

observed for all temperatures measured up to T ∼ 131.5 K,
as can be seen in the M ′

2ω(H,T ) surface plot in Fig. 6(b).
M2ω(H) displays sudden changes associated with the onset of
the rich ferromagnetic domain component of the HNL CSL.
This may be associated with a precipitous increase in ferro-
magnetic domain size, which based on static magnetization
measurements, thereafter rapidly increases with magnetic field
[47]. To our knowledge, the magnitude of M2ω is usually not
a significant contribution to the total measured ac magnetic
response, and therefore the results have not been formally
displayed in previous studies of the nonlinear response of chiral
magnets [25,40].

The field dependence of M2ω − M5ω clearly portrays the
evolution of the CSL from one regime to another: the linear
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FIG. 5. The third harmonic of the ac magnetic response as a
function of magnetic field, M3ω(H), for f = 25–10 000 Hz measured
at T = 129 K.

CSL, which displays a predominantly in-phase linear response
to an ac magnetic field, and the HNL CSL, which includes
large nonlinear contributions and large magnetic loss to the
total response. The attenuation in magnitude of M1ω − M5ω

at HdM/dH
peak is a signature of the excessive slowing of

FIG. 6. Magnetic field dependence of the second harmonic of
the ac magnetic response measured with f = 111 Hz. (a) M2ω(H )
measured at 130.5 K. (Inset) Real and imaginary components of
M2ω(H ). (b) Surface plot of M ′

2ω(H,T ).

the dynamics across the highly nonlinear CSL as the FM
domains continuously grow with increasing H [25]. To further
understand the relaxation behavior across the highly nonlinear
regime, we analyze the frequency dependence in the following
section.

C. Frequency dependence

The frequency dependence of M ′
1ω(H) and M ′′

1ω(H)
[Figs. 7(a) and 7(b)] further illustrates the effect of a decreasing
time window as the magnitude of M ′

1ω decreases with fre-
quency. To investigate the effect of frequency in more detail, a
quantitative analysis of the frequency dependence of the linear
susceptibility, χ = M1ω/h, is possible from the Cole-Cole
modification [48] of the Debye model,

χ (ω) = χ (∞) + χ (0) − χ (∞)

1 + (iωτ0)1−α
, (3)

which introduces the parameter α to account for a distribu-
tion of relaxation times: α = 1 corresponds to an infinitely
broad distribution and α = 0 accounts for a single relaxation
process. The Cole-Cole model assumes a distribution of
relaxation times which is symmetric about τ0 = 1/(2πf0),
the characteristic or average relaxation time, on a logarithmic
scale. Here, χ (0) and χ (∞) are the isothermal and adiabatic
susceptibilities, which correspond to spin-lattice and spin-spin
interactions, respectively. χ (ω) can be decomposed into in-
and out-of-phase components,

χ ′(ω) = χ (∞) + (χ (0) − χ (∞))[1 + (ωτ0)1−α sin(πα/2)]

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α) ,

(4)

χ ′′(ω) = (χ (0) − χ (∞))(ωτ0)1−α cos(πα/2)

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α) . (5)

Thus from fits of (4) and (5) to the frequency dependence of
the real and imaginary components of the linear susceptibility,
the above parameters can be extracted to analyze the change
in the dynamics as a magnetic phase evolves with temperature
and magnetic field.

Figures 7(c) and 7(d) plot the real and imaginary com-
ponents of χ1ω, respectively, as a function of frequency at
H = 490 Oe, which corresponds to HdM/dH

peak at T = 129 K.
χ ′′

1ω displays an asymmetry about its peak which corresponds
to the characteristic frequency f0 or, equivalently, the average
relaxation time, τ0 [Fig. 7(d)]. Additionally, χ ′′

1ω approaches
an apparent nonzero value in the isothermal limit, χ (ω → 0).
The solid lines in Figs. 7(c) and 7(d) demonstrate how the
model deviates from the measured χ ′

1ω and χ ′′
1ω, where separate

fits were performed on either side of the peak at τ0. To
account for the low-frequency behavior of χ ′′

1ω, following a
similar procedure reported in [49], an additional frequency-
independent term, χ ′

0
′, was added to the right hand side of (5).

Figure 8(a) plots the evolution of τ0 with temperature for
selected fields within the HNL CSL regime. For each magnetic
field, an acceleration of the dynamics is observed as the char-
acteristic time drops with an increase in temperature, varying
from ∼ 10−3–10−5 s approaching T = 131.5 K. However, as
H is increased and the FM domain component of the HNL CSL
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FIG. 7. Frequency dependence of the linear ac magnetic response at T = 129 K. (a) Real and (b) imaginary parts of the linear ac magnetic
response, M ′

1ω (H) and M ′′
1ω (H), measured as a function of magnetic field. In- and out-of-phase linear susceptibility (c) χ ′

1ω = M ′
1ωh and (d)

χ ′′
1ω = M ′′

1ωh as a function of frequency for the magnetic field corresponding to the dip in M ′
1ω (H) and M ′′

1ω (H) at HdM/d
peak
H marked by a

blue asterisk in (b). The green line represents a fit of (4) and (5) to the low-frequency side of the inflection point in χ ′
1ω and the peak in χ ′′

1ω,
respectively, which correspond to τ0 = 1/(2πf0). The blue lines represent fits on the high-temperature side of τ0.

grows, a general slowing trend is observed between curves,
most noticeably as magnetic field increases past HdM/dH

peak.
As demonstrated by the fits to χ ′

1ω in Fig. 7(c), the asymme-
try is less pronounced with respect to the inflection point at τ0.
However, at the lowest frequencies, χ ′

1ω deviates significantly
from the expected sigmoidal dispersion. In this regime, the
susceptibility displays an almost linear increase in magnitude
as frequency varies from 39–11 Hz. Thus, as the measurement
window approaches macroscopic time scales, an additional
dynamic process is captured by both the real and imaginary
components of the susceptibility. Figure 8(b) shows the trend in
the constant term χ ′′

0 , which gradually drops with temperature
to a value close to zero at T = 131.5 K. The drop in χ ′′

0 may
indicate that the gradual loss of a competing dynamic process
which disappears above the tricritical point.

Anomalous relaxation phenomena with respect to the Cole-
Cole model has been observed in other magnetic systems
with spatially modulated structures such as the cubic chiral
helimagnets and a cycloidal magnet, GaV4S8 [37,49,50]. In
each of these systems, the behavior of the deviation varies. The
frequency dependence of χ ′′

1ω in Fe1−xCoxSi displays a similar
profile to the data presented in this study and is attributed to the
coexistence of multiple phases due to chemical doping [50].
In Ref. [49], it was reported for Cu2OSeO3 that the behavior
of χ ′′

1ω implied a symmetric distribution of relaxation times,

yet a frequency-independent component, χ ′′
0 , was added to

the model for the full frequency range. In GaV4S8, separate
fits of the Cole-Cole model to χ ′

1ω and χ ′′
1ω failed to produce

the same parameter set [37]. Unlike in Cr1/3NbS2, where the
anomalous behavior is representative of the dynamics of a pure
magnetic phase, the behavior in these systems is observed on
phase boundaries between modulated phases. Nevertheless, the
relaxation phenomena in each of these systems are complicated
by the slow dynamics of magnetic structures on large length
scales.

The acceleration of the dynamics with increasing temper-
ature is also clear in the frequency dependence of the real
and imaginary components of the third harmonic response,
M ′

3ω and M ′′
3ω, Figs. 9(a)–9(d). As previously discussed in

Sec. III B, the field range of the large M3ω signal is relatively
rigid as frequency is varied. However, the character of M ′

3ω

and M ′′
3ω varies significantly with frequency across the HNL

CSL. In Fig. 9(a), M ′
3ω starts off as a large negative value

that gradually reduces in magnitude with increasing frequency.
For f ∼ 111 − 155 Hz, M ′

3ω exhibits a negative to positive
crossover. Above 155 Hz, M ′

3ω increases to a positive peak.
The gradual evolution of the sign change in M ′

3ω is typically
attributed to the ac measurement probing the response of
spin interactions and other degrees of freedom at different
time, and hence, spatial scales [39,43,46]. The variation in
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FIG. 8. Dynamic parameters as a function of temperature (a)
τ0, the characteristic time, and (b) χ ′′

0 , frequency-independent term,
extracted from fits of Eq. (5) to the low-frequency side of χ ′′

1ω. The
corresponding magnetic fields are marked by asterisks in Fig. 7(b).

the characteristic frequency dependence described above is
summarized in Figs. 9(b)–9(d), where the location of the
inflection point of the negative (blue) to positive (red) crossover
in M ′

3ω (H,T) shifts to higher temperatures with increasing
frequency.

The decrease in time scale at progressively higher tem-
peratures has been observed in magnetic systems with long-
wavelength structures and suggests the thermal activation of
relaxation processes [35,37]. However, the behavior may not
always be explained in terms of a simple Arrhenius model,
f0 = Aexp(–Ea/kBT ), which can lead to unphysically large
energy barriers [49]. Figure 10 plots the extracted parameters
as ln f0 versus 1/T. The inset illustrates the acceleration of the
dynamics as the peak in χ ′′

1ω versus f shifts to higher values of
f0 as temperature increases toward the phase transition at T ∼
131.5 K. The behavior of spin relaxation clearly falls outside
of a simple thermal activation scheme in which a linear trend
in ln f0 versus 1/T would be expected. However, the data show
a clear trend in the dynamic response, which speeds up on
approaching the tricritical point. The frequency regime used in
this work allows access to shorter time scales than in previous
studies, which may aid in refining the destruction of the highly
nonlinear regime to identify the tricritical point.

FIG. 9. The third harmonic of the ac magnetic response as a
function of temperature and magnetic field. (a) Frequency depen-
dence of real component of M3ω(H ) for f = 25–10 000 Hz. (Inset)
M ′′

3ω. (b)–(d) Surface plots of the real part M ′
3ω (H, T) for various

frequencies.
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FIG. 10. Temperature dependence of the characteristic frequency,
f0, corresponding to the magnetic fields marked in Fig. 7(b). (Inset)
χ ′′

1ω vs f for temperatures ranging from T = 129–131.5 K. The peak
in χ ′′

1ω at f0 shifts to higher frequency as temperature increases, as
indicated by the black arrow, toward the tricritical point.

IV. AC MAGNETIC RESPONSE: TEMPERATURE
DEPENDENCE

To gain a comprehensive portrait of the phase diagram,
we explore the behavior of the even and odd higher har-
monic responses with temperature across several magnetic
field regimes. As demonstrated in Sec. III C, the dynamic
phenomena close to the phase transition gradually approach
shorter time scales. Therefore a particular emphasis is placed
on measurements at the higher end of the frequency spectrum
to clarify the phase evolution within the precursor region,
TC − T ∗.

Figure 11 shows the temperature dependence ofM1ω − M5ω

of the CHM phase at 0 Oe and f = 10,000 Hz. The familiar

FIG. 11. Linear and nonlinear magnetic response of the unpo-
larized CHM state as a function of temperature at H = 0 Oe and
f = 10 000 Hz. The kink point at T0 ∼ 132.25 K marks the PM-CHM
phase transition. Nonzero values of M2ω − M5ω appear at T ∗ = 133 K
and correspond with the inflection point in M1ω that marks the onset
of chiral correlations in the fluctuation-disordered precursor region.

sharp kink in M1ω corresponds to the phase transition into
the CHM phase from the PM state [10,30,51,52] at T0 ∼
132.25 K. The inflection point, which is noted in other chiral
helimagnets to mark a fluctuation-disordered precursor region
[33,34], occurs at T ∗ = 133 K and is in close agreement
with our M vs T results reported in Ref. [30]. The inflection
point at T* coincides with the onset of strong M2ω and M3ω,
which supports the predictions of chiral correlations in the
precursor region and suggests an increasing coherence of
fluctuations as the phase transition is approached. In fact, a
large zero-field M3ω(T) has been demonstrated to detect the
effects of crystalline chirality on magnetic correlations above
the transition temperature [38].

The temperature dependence of Mnω at fixed dc fields
is presented in Figs. 12(a)–12(d). Figures 12(a) and 12(b)
show the temperature dependence of the real and imaginary
components of the linear magnetic response, M ′

1ω(T) and
M ′′

1ω(T), measured in this study at f = 100 Hz and with dc
field, Hdc = 50–1200 Oe. The two field-dependent anoma-
lies in M ′

1ω(T) at high and low temperature, respectively,
are consistent with results reported by Tsuruta et al. [25].
Namely, for Hdc > 400 Oe, a shallow peak emerges in M ′

1ω

at high temperature, T = Tm (>TC), that is not accompanied
by loss. A similar feature has been observed above TC in
ac magnetic measurements of the cubic chiral helimagnets
and is associated with the transition from the paramagnetic
into the field-polarized (FP) state [29,33]. It has already been
demonstrated that strong ferromagnetic correlations exist well
above TC in Cr1/3NbS2 [30] and in other CHMs [34,53]. Thus
the transition at Tm indicates the temperature regime in which
the FM correlations become strongly interacting. In this case,
under an applied magnetic field, M2ω(T) should be present.
The second harmonic magnetic response displayed in the inset
supports this picture, where the peak in M2ω(T) coincides with
the peak at Tm in M ′

1ω(T) measured at 1200 Oe. Tm shifts to
higher temperature as magnetic field is increased and Zeeman
energy stabilizes FM correlations at higher temperature.

For Hdc � 400 Oe, the low-temperature peak in M ′
1ω(T)

is accompanied by a significant response in M ′′
1ω(T) which,

as established in Ref. [25], reflects the energy loss of the
ferromagnetic domains of the HNL CSL against the time-
dependent field. Similar to the behavior of M ′

1ω(H) reported in
Sec. III A, the center of the broad peak exhibits a small dip in
magnitude and coincides with the center of the highly nonlinear
regime of the CSL at HdM/dH

peak. The abrupt disappearance
of magnetic loss as temperature is increased, occurs at phase
the boundary between the HNL CSL and FFM phase. The
low-temperature peak in M ′

1ω(T) becomes suppressed at lower
temperatures as the dynamic processes of the HNL CSL slow
significantly moving away from the tricritical temperature.
Specifically, at Hdc = 800 Oe, the M ′

1ω(T) maximum is com-
pletely suppressed, yet the domain dynamics are still apparent
from the nonzero M ′′

1ω(T) down to T ∼ 115 K in Fig. 12(b). The
same behavior is observed in Ref. [25], where it was noted that
the anomaly in M ′

1ω(T) measured at f = 1 Hz is temporarily
enhanced and then suppressed at lower temperature. In the
present study, the measurement of M ′

1ω(T) for f = 100 Hz
accesses time scales that are faster by 2 orders of magnitude.
Hence the regime of maximum response occurs at temperatures
closer to the phase transition.
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FIG. 12. Temperature dependence of the ac magnetic response measured with an ac field amplitude, h = 5 Oe. (a) Real and (b) imaginary
parts of M1ω(T ) measured as a function of temperature with fixed dc fields in the range Hdc = 50–1200 Oe and f = 111 Hz. Tm marks the
PM–FP transition, which shifts to higher temperature with increasing magnetic field. The inset shows M2ω which demonstrates the onset of strong
FM correlations at Tm. (c) M2ω and (d) M3ω as a function of temperature for fixed dc fields in the range Hdc = 50–400 Oe at f = 10 000 Hz.

Figures 12(c) and 12(d) demonstrate the temperature de-
pendence of M2ω and M3ω for low magnetic fields, H = 50,
200, and 400 Oe, measured at f = 10 000 Hz. A double peak
in M2ω gradually develops with successively higher fields up
to 400 Oe, where the anomaly is accompanied by a large
M3ω of the HNL CSL. The M2ω response at 50 and 200
Oe, which lack a giant M3ω and a magnetic loss signature in
Fig. 12(b) represents the PM-linear CSL transition. Hence the
transition from PM-linear CSL displays a nontrivial change
in internal field with a similar character to the transition into
the HNL CSL. The nonzero M2ω signal indicates the presence
of small field-polarized regions in an otherwise helicity-rich
structure. It is likely due to the gradual formation of short-range
ferromagnetic regions with increasing magnetic field, which
agrees with the theoretical picture in which the spatial period
of the CSL continuously grows as H increases.

V. PHASE DIAGRAM AND TRICRITICAL POINT

In this section, a comprehensive phase diagram is con-
structed to summarize the features of the field and tem-
perature dependence of the crossovers and phase transi-
tions in Cr1/3NbS2. First, the details of the determina-
tion of the critical values are presented in Fig. 13. Fig-
ure 13(a) directly compares the field dependence of the
first derivatives of the linear and higher order magnetic
responses,dM ′

1ω/dH, dM3ω/dH ,dM2ω/dH for the measure-
ment at T = 129 K. The magnetic responses all display sharp
changes in slope across the highly nonlinear regime of the CSL.
The collapse in the spin coherence of the CHM state with an
increase of magnetic field from H = 0 Oe is observed in all

measurements, after which the change in slope is minimal over
a broad field range. Both dM ′

1ω/dH and dM3ω/dH display a
gradual increase near H = 300 Oe. This coincides with the
apparent onset of the frequency dependence in M1ω and M3ω

as well as the deviation between the static and dynamic suscep-
tibilities and appearance of magnetic loss (Fig. 3). Above 400
Oe, rapid jumps in slope occur in M1ω, M3ω, and M2ω, which
we define as the crossover field, HC,1. In the field regime above
HC,1, the CSL is characterized by the onset of an anomalous
M3ω response, which coincides with extremely slow dynamics
associated with the collective response of spatially coherent
FM domains. This behavior falls off at HC,2, the critical field
for the IC-C transition into the FFM phase.

The determination of the critical temperature Tm, which
separates the paramagnetic and field-polarized state is shown
in Fig. 13(b). As demonstrated in Fig. 12(a), Tm shifts to
higher temperature with increasing magnetic field. M ′

1ω(T)
for f = 10 000 Hz measured in the vicinity of the tricritical
point are displayed for fixed dc fields ranging from Hdc =
400–550 Oe. Unique Tm values were extracted from a peak fit
of each curve, as demonstrated in the inset. The disappearance
of Tm indicates the location of the tricritical temperature, below
which the continuous transformation of the chiral helix into the
ferromagnetic state is achieved via a crossover into a highly
nonlinear CSL.

Figures 14(a)–14(f) display the surface plots of
M ′

1ω–M ′
5ω(H,T ) and M ′′

1ω(H,T) measured at f = 10 000 Hz,
for which the regime of maximum ac magnetic response
runs from TC to TTCP. Critical field and temperature values
determined from anomalies in Mnω are superimposed. In
Fig. 14(a), M ′

1ω demonstrates the extent of the chiral magnetic
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FIG. 13. Determination of the critical values of field and tem-
perature. (a) First derivative of M ′

1ω, M3ω, and M2ω as a function
of magnetic field. HC,1 is defined where the onset of rapid changes
of slope in the linear and nonlinear magnetic response coincide.
HC,1, represents the crossover field for the onset of the HNL CSL.
HC,2 defines the critical field for the FFM transition. dM3ω/dH

and dM2ω/dH are multiplied by a factor of 10. (b) Magnetic field
dependence of M1ω(T ) for Hdc = 400–550 Oe measured for f =
10 000 Hz. As magnetic field decreases, the peak at Tm shifts to lower
temperature and disappears at the tricritical point. (Inset) Example
of Lorentzian peak fit used to determine an accurate value of Tm.
Standard error obtained from fits of each data set range between ±
0.012–0.045 K.

phase down to T0, the zero-field critical temperature of
the PM-CHM transition. The chiral phase extends past the
ferromagnetic Curie temperature calculated for this system
[30] into a precursor region, TC − T ∗. In all plots of Mnω, a
strong response is observed near H = 0 Oe, reinforcing the
conclusion of Tsuruta et al. [25] that the CHM phase exists as a
singularity in the absence of applied magnetic field. The large
response is present up to T ∗ = 133 K as defined in Sec. IV,
which may signify chiral correlations in a precursor regime
analogous to the fluctuation-disordered region observed in the
cubic chiral helimagnets [33,34].

The critical fields, HC,2, at which M ′
1ω and M ′′

1ω fall off
are marked by open black symbols below TTCP and in red for
T > TTCP. A simple power law fit to the IC-C phase line is
given byHC,2 ∝ (T − T0)0.258±0.031 withT0 = 132.3 ± 0.05 K
(solid black line). HC,1 and HdM/dH

peak are tracked by dashed

lines extrapolated to H = 0 Oe using a similar power law
to HC,2. The PM-FP line is given by the location of Tm,
determined from peak fits of M ′

1ω (T, Hdc) (green squares)
as demonstrated in Fig. 13(b). Tm values obtained from M ′

1ω

(T, H) reformulated from field-dependent data (hollow pink
squares) are in good agreement with temperature-dependent
data, which demonstrates negligible hysteresis across the field-
polarized transition. The intersection of the PM-FP phase
line with HC,2 at TTCP = 131.35 K defines the tricritical point
that separates the HNL CSL-FFM and the linear CSL-PM
transitions.

Figure 14(b) labels the magnetic phases and mirrors the
schematic phase diagram presented in Fig. 1(c) in Sec. I.
The temperature and field dependence of each harmonic,
Figs. 14(b)–14(f), illuminates the destruction of the HNL CSL
above the tricritical temperature, as the dynamic signatures
of the periodic array of ferromagnetic domains disappear.
Small M2ω and M3ω values exist above TTCP at the PM-linear
CSL transition. As already demonstrated in the temperature
dependence section, M2ω points to the change in internal field
due to the gradual formation of short-range FM regions as
a precursor to the crossover into the HNL CSL regime. In
general, the presence of nonzero M3ω accompanying M1ω

is expected at a phase transition [26]. However, it lacks the
large magnetic response due to the formation of large FM
domains which are spatially coherent over large length scales.
The phase diagram calculated from dynamical measurements
distinguishes the linear and HNL CSL regimes and reinforces
the existence of the tricritical point that has been theoretically
predicted [31,32].

While the phase diagram based on the field dependence
of Mnω presented here focuses on a temperature regime close
to the phase transition, the measurement window detects the
signature magnetic loss of the FM domains for temperatures
down to at least T = 110 K, as demonstrated in Sec. IV.
The dynamic behavior studied within the frequency range
f = 11–10 000 Hz reinforces the results of Tsuruta et al. [25],
measured at frequencies as low as 0.1 Hz. In the present
study, Tm shifts from T = 131.35–135 K over fields H =
0.3–0.8 HC,0, whereHC,0 refers to the critical field extrapolated
to absolute zero. In Ref. [25], the phase line also shifts with
applied field, over a range of ∼5 K as dc magnetic field
varies from an estimated H ∼ 0.4–0.9 HC,0. The frequency
range employed herein refines details of the phase diagram
at high temperatures, where the dynamics are significantly
accelerated.

The broad field range of the linear CSL regime (ranging
between 0 < H < HC,1 = 410 Oe at T = 129 K) is testament
to the competition between the symmetry-protected chirality
of the magnetic state and the external magnetic field, which
forces commensuration. This implies that the Zeeman energy
must reach a critical value before the system crosses over
into a ferromagnetic-domain dominated state, after which the
growth of the commensurate regions presumably becomes
more rapid with increasing magnetic field. The consequences
of this competition are also seen in previous studies of the
dc magnetization, which displays a linear growth at low field
followed by a rapid nonlinear increase before reaching satura-
tion [25,30,36]. Furthermore, as temperature is increased, the
field regime becomes smaller as thermal disorder destabilizes
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FIG. 14. H-T phase diagram determined from the linear and nonlinear components of the ac magnetic response plotted onto (a) M ′
1ω(H,T ),

(b) M ′
1ω(H,T ), [(c) and (d)] M ′

nω(H,T ) for (n = 2 − 5) at f = 10 000 Hz, where Mnω(H,T ) refers to the field dependence at fixed temperature.
In (a), the critical temperatures are labeled: T ∗ = 133 K, T0 = 132.3 K, TTCP = 131.35 K (red dashed line), and TC = 130.75 K (black dashed
line). Field-dependent anomalies, marked by open symbols, in M ′′

1ω (diamonds), M2ω (circles), and M3ω (squares) locate the low field increase
at HC,1 (blue), dip in magnitude at HdM/dH

peak (blue), and high-field destruction at HC,2 (black) of the magnetic loss and higher harmonics
corresponding to the HNL CSL. Equivalent temperature-dependent anomalies from Mnω(T ,Hdc) measurements are marked by closed symbols.
The IC-C phase line is given by the fall off of M ′

1ω(H) (stars). Above TTCP, the red symbols mark the lower and upper bounds of the anomaly across
the linear CSL-PM phase transition. The magnetic loss and nonlinear response abruptly fall off at TTCP = 131.35 K given by the intersection of
the PM-FP line defined by Tm (green/pink squares) and the IC-C phase line determined from the power law fit of HC,2 (solid black line).

the competition. Figure 14(c) displays a line at low field that
represents the deviation from linearity of the dc magnetization
as a function of magnetic field curves, which was suggested
as a possible crossover boundary between the linear CSL
and HNL CSL in Ref. [25]. The measurements reported
herein demonstrate that the system requires higher applied
magnetic fields to exhibit the large nonlinearity in the magnetic
response.

The initial growth of the magnetic loss, as seen in Fig. 3, is
quite slow and precedes the onset of the enormous magnetic
response by a relatively large field interval, �H ∼ 250–410 Oe.
This behavior points to a gradual formation of commensurate
regions, which agrees with the theoretical picture of a modu-
lated CSL that evolves continuously from a simple chiral helix.
At HC,1, our measurement detects a rather sharp increase in the
magnetic response and magnetic loss [Fig. 13(a)] as the system
crosses over into the HNL CSL. However, it is important to
emphasize that the theoretical description of the field-induced
evolution from a simple spin helix into a modulated HNL CSL
is a completely continuous process. The dynamic magnetic
response presented in this report sensitively detects changes
in the magnetic structure [54]. According to early neutron
diffraction studies of the soliton lattice by Izyumov and
Laptev [55], the scattering amplitudes representing the first-
order (harmonically modulated) component and the zero-order
(ferromagnetic) component cross at a magnetic field below

the critical field for the IC-C transition (H < HC,2) [54]. At
the crossing point, the physics of the ferromagnetic domains
may begin to dominate the dynamic response [54], leading to
anomalously large magnetic loss and nonlinear ac magnetic
response.

VI. SUMMARY

We investigated the magnetic field-driven crossovers of the
incommensurate chiral magnetic structures in the monoaxial
helimagnet Cr1/3NbS2 via the magnetic field and temperature
dependence of the ac magnetic response. As magnetic field is
increased perpendicularly to the chiral spin helix, the growth
of the spatial period of the commensurate domains of the CSL
is initially slow. However, at a crossover field, HC,1, the FM
domain component dominates the spin structure and marks
the crossover into a highly nonlinear CSL. The anomalous ac
magnetic response observed above HC,1 sensitively detects this
change in magnetic structure, which coincides with the onset
of extremely slow dynamics.

The deviation in the static and dynamic susceptibilities of
the HNL CSL is characteristic of a large magnetic structure
that relaxes on macroscopic time scales. An investigation of the
frequency dependence of the susceptibility demonstrates that
the dynamic response in the highly nonlinear regime of the CSL
exhibits an asymmetric distribution of relaxation times. The
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dispersion and loss in the linear ac susceptibility indicate the
presence of a competing dynamic process, which is gradually
lost as the dynamics speed up with increasing temperature.

A thorough investigation of the M2ω component of the
nonlinear response has been presented for the first time. M2ω

probes the changes in internal field in both the HNL CSL and
the linear CSL and exhibits signatures of spontaneous mag-
netization in both structures. This suggests a gradual increase
in the spatial period of commensurate regions throughout the
CSL, and agrees with the theoretical picture of simple chiral
helix which continuously transforms into a homogenous FFM
phase via a CSL.

Each harmonic, M1ω − M5ω, illuminates the destruction
of the HNL CSL above the tricritical point. Based on the
power law dependence of the IC-C phase line, HC,2, and the
determination of the paramagnetic to field-polarized transition,
Tm, the tricritical point at TTCP = 131.35 K is experimentally

resolved which separates the HNL CSL-FFM transition and
the linear CSL-PM transition.
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