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Thermodynamics of a quantum Ising system coupled to a spin bath
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We study the effect of coupling a spin-bath environment to a system which, at low energies, can be modeled
as a quantum Ising system. A field theoretic formalism incorporating both thermal and quantum fluctuations is
developed to derive results for the thermodynamic properties and response functions, both for a toy model and for
the LiHoF4 system, in which spin-8 electronic spins couple to a spin-7/2 nuclear spin bath: The phase transition
then occurs in a system of electronuclear degrees of freedom, coupled by long-range dipolar interactions. The
quantum Ising phase transition still exists, and one hybridized mode of the Ising and bath spins always goes soft
at the transition.
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I. INTRODUCTION

In both statistical physics and quantum computation, the
quantum Ising model plays a central role [1,2]. It is key
to understanding quantum phase transitions [3] (QPTs), and
describes a large variety of solid-state and atomic spin systems
[4–6], as well as many quantum computational systems [7–10].

Although the quantum Ising model has been studied exten-
sively over the years, one key unanswered question does stand
out, viz., what is the effect of a coupling to its environment?
This problem is not only of theoretical interest; it also has
large practical ramifications. Both the thermodynamics and
dynamics of a large variety of quantum Ising systems—ranging
from quantum information processing systems to magnetic,
superconducting, and atomic spin ensembles—are affected
by their environments. When one turns to systems being
devised for quantum computation, the mechanisms governing
decoherence must be understood if one is to have any hope of
making them work.

The one-dimensional quantum Ising model coupled to an
“oscillator bath” environment [11] (modeling extended degrees
of freedom like phonons or photons) has received considerable
attention [12,13], and the bath has been shown to have a
significant impact on the quantum critical behavior of the
model. We will take the view here that much of this physics is
reasonably well understood.

However, the result of coupling a “spin bath” environment
[14] (modeling spatially localized degrees of freedom like nu-
clear and paramagnetic spins, and various solid-state defects)
to a quantum Ising system is not so clear. Experiments on
LiHoF4, often considered the archetypal solid-state quantum
Ising system, have suggested [15,16] that the mode softening
expected at the QPT is suppressed by coupling to a spin-
bath environment; very recent experiments [17] have probed
transitions between electronuclear modes [18] in LiHoF4.
Spin-bath modes also cause strong decoherence [14,19–21].
In adiabatic quantum computation [7–10], suppression of the
QPT would be expected to radically change the dynamics.
Recently, it has been proposed that an ac field may be used
to control the strength of the couplings between the Ising and

bath spins [22], opening up a rich testing ground for quantum
critical behavior. Thus a lot turns on the question of how a spin
bath affects a quantum Ising system.

There are a number of ways one can approach this problem.
One is to try and set up a “theoretical minimum” toy model,
which captures all the essential physics without becoming too
complicated. Another is to look at a real experimental system,
such as the LiHoF4 system, for which extensive data exist, and
where one can reasonably hope to make accurate and testable
theoretical predictions.

In the present paper, we develop both a toy model and a
detailed model for LiHoF4, and address the physics surround-
ing the QPT for both of them. The results are thus not only
useful in understanding LiHoF4; they also give us a good under-
standing of what is essential (and what is not essential) in any
model.

We emphasize that the study here focuses on the physics of
the QPT, and thus does not deal with several other important
questions. In particular, we only develop the toy model to the
point where we can extract conclusions about the QPT—a more
detailed analysis will appear in another paper. We also restrict
the study in this paper to the case of temperature T = 0 (again,
because we are focusing on the QPT); the finite T case will
also be dealt with elsewhere.

The approach we use is fairly conventional and goes back
to old work on quantum phase transitions [23–25]: First
an auxiliary field is introduced representing order parameter
fluctuations, and then a trace is performed over all degrees of
freedom (the Ising and bath spins) apart from those associated
with the ordering field. The resulting effective scalar field
theory accounts for both quantum and thermal fluctuations
in the underlying microscopic Hamiltonian. The primary
difference between our work and previous work is that the
trace is performed over the Ising and bath spins rather than,
for example, itinerant fermions. We find that even though
a gap forms in the Ising mode spectrum, a new hybridized
mode between the Ising and bath spins appears, which fully
softens at the QPT. In many solid-state spin systems, this will
be an electronuclear mode; we discuss various experiments
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for probing this mode, including the NMR used in recent
experiments [17] on LiHoF4.

The paper is organized as follows. In Sec. II, we in-
troduce the toy model Hamiltonian, and then derive the
low-energy effective Hamiltonian for the LiHoF4 system, in
terms of known parameters coming from a more microscopic
Hamiltonian; these are the models we work with in the rest
of the paper. Once this is in done, we develop the field-
theoretic techniques required to calculate the properties of
these Hamiltonians, in Sec. III. These are then used in the
random-phase approximation (RPA) in Sec. IV to derive the
dynamic susceptibilities for the two models; in Sec. V, we go
beyond the RPA, adding the effect of quantum fluctuations
up to fourth order in the fluctuation fields; we calculate the
phase diagram and the magnetization and show that the QPT
survives the coupling to the spin bath. Finally, in Sec. VI, we
apply the results to understand experiments in several systems.
The calculation of formulas for the magnetization and the
cumulants of the partition function is lengthy and gives quite
complex expressions—these calculations are relegated to two
appendixes.

II. EFFECTIVE HAMILTONIANS

The LiHoF4 system is a lattice of Ho ions, with each
Ho surrounded by a cage of Li and F ions. The effective
Hamiltonian usually used to describe this system is defined
in terms of the net magnetic moment of the electrons of each
Ho ion and their interactions with each other and its nuclear
moment. The effect of the Li and F ions is incorporated via the
inclusion of a crystal electric field. In what follows, we give the
full details of this Hamiltonian, and then show how it can be
truncated to a much simpler model, valid at temperatures well
below 10K, in which the spin-8 Ho ions are truncated to a lattice
of two-level systems. Because the details are complicated, we
first briefly recall, as a kind of baseline, the form of the simple
“toy model” referred to in the introduction.

A. Toy model Hamiltonian

The quantum Ising model on its own is defined by one of the
simplest Hamiltonians in physics; in terms of Pauli operators
{τ j }, it is written as

Htoy
0 = −

∑
i<j

Vij τ z
i τ z

j − �0

∑
i

τ x
i , (1)

where each two-level system feels a transverse tunneling
field �0 and is coupled to its neighbors via the longitudinal
interactions Vij . The competition between these two terms
causes a QPT [3] between an ordered phase for g = |�0/V0| <

gc (where V0 = ∑
j Vij and gc ∼ O(1) in the absence of

the spin bath HSB), and a disordered phase for g > gc. In
adiabatic quantum computation and quantum annealing [7,8],
the parameters �0 and Vij are varied slowly in time.

Both “oscillator bath” modes [11] and “spin bath” modes
[14] can couple to the Ising spins. To capture the essential
effects of coupling to a spin bath, one assumes a lattice of
central Ising spins {τ j } couples locally to a set of two-level
bath spins {σ j } (so that on each lattice site j we have spin pair

states |τ j ,σ j 〉). We can write this spin-bath term as

Htoy
SB = Az

∑
i

σ z
i τ z

i + A⊥
2

∑
i

(σ+
i τ−

i + σ−
i τ+

i ), (2)

having both longitudinal and transverse interactions.
One can easily add to this spin-bath coupling a set of

couplings to harmonic oscillators, of the standard “spin-boson”
form [26], representing phonons (as well as photons, if neces-
sary). In this paper, we will ignore these bosonic bath modes,
since our primary concern is the effect of the spin bath. Thus,
our toy model will be described by the effective Hamiltonian

Htoy = Htoy
0 + Htoy

SB (3)

and in what follows we will from time to time compare its
behavior with the predictions we make for the LiHoF4 system.

B. The LiHoF4 system

We consider the classic three-dimensional quantum Ising
magnet LiHoF4. This material has subtle (and sometimes
controversial) experimental properties [27–30], many of which
clearly depend on the coupling to its spin-bath environment
[15,29,31]. It differs in four key ways from the toy model, viz.
(i) the quantum Ising spins result from truncation of spin-8
ionic spins {Jj }; (ii) the bath is now made up of nuclear spins
{Ij }, with spin-7/2, not spin-1/2; (iii) in a transverse applied
field, the hyperfine coupling actually generates a transverse
term acting directly on the bath spins, absent from our toy
model; (iv) the interspin Ho-Ho interactions are now long-
range dipolar. Clearly any one of these features might render
the toy model conclusions invalid; thus, if we are to believe
that the toy model results are in any way generic, we must
generalize the previous discussion to include all these extra
features.

The total “microscopic” Hamiltonian for LiHoF4 is given
by [32]

H =
∑

i

VC( �Ji) − gLμB

∑
i

BxJ
x
i + A

∑
i

�Ii · �Ji

− 1

2
JD

∑
i �=j

D
μν

ij J
μ

i J ν
j + 1

2
Jnn

∑
〈ij〉

�Ji · �Jj , (4)

where by “microscopic” one implies, as usual in quantum
magnetism, that the energy scale assumed is to be well below
that where one needs to get into the internal atomic physics of
individual ions. Thus VC( �Ji) is the crystal electric field energy,
Bx is an applied transverse magnetic field, D

μν

ij is a dipolar
interaction between electronic spins with JD = μ0

4π
(gLμB)2,

the antiferromagnetic exchange interaction is Jnn = 1.16 mK,
and A = 39 mK is the hyperfine interaction. We have elec-
tronic spin J = 8 and nuclear spin I = 7

2 . The Landé g factor
is gL = 5

4 , and μB = 0.6717K/T is the Bohr magneton.
The site summations in (4) are over a tetragonal Bravais

lattice with four Ho3+ ions per unit cell. The lattice spacing in
the xy plane is a = 5.175 Å and the longitudinal lattice spacing
is c = 10.75 Å. The holmium ions have fractional coordinates
(0,0, 1

2 ), (0, 1
2 , 3

4 ), ( 1
2 , 1

2 ,0), and ( 1
2 ,0, 1

4 ). We neglect quadrupole
interactions because they are small, and ignore here the nuclear
spins on the F and Li sites, since their hyperfine couplings to
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the Ho electronic spins are too weak to have an effect on the
thermodynamic properties.

We now wish to truncate this microscopic Hamiltonian (4)
down to an effective Hamiltonian in a 16-dimensional subspace
(per site). We do this by (i) determining effective spin-1/2
operators for the electronic spins by truncating the terms in
the spin-8 single-ion electronic component of the Hamiltonian
down to a 2 × 2 subspace and (ii) applying the truncation to
the hyperfine component of the full microscopic Hamiltonian
to obtain our final effective Hamiltonian. We will truncate, in
turn, the electronic and nuclear terms.

1. Truncation of the electronic terms

The single-ion Hamiltonian for the spin-8 electronic com-
ponent of the Ho ions is

H0e =VC( �J ) − gLμBBxJ
x. (5)

The crystal field Hamiltonian VC( �J ) has the form

VC( �J ) = B0
2O0

2 + B0
4O0

4 + B0
6O0

6 + B4
4 (C)O4

4 (C)

+B4
6 (C)O4

6 (C) + B4
4 (S)O4

4 (S) + B4
6 (S)O4

6 (S), (6)

where we use the standard Stevens’ operators Om
n , and for the

Bm
n we use the estimates of Rønnow et al. [16]. The eigenstates

of the crystal field are mixed and split by an applied transverse
field Bx .

Following the procedure of Chakraborty et al. [32], we now
diagonalize the electronic single-ion Hamiltonian H0e, using
a unitary rotation U , such that H0e → H̃0e = UH0eU

†, and
Jμ → J̃ μ = UJμU †. We then truncate the operators down
to the two-dimensional subspace involving the two lowest
eigenstates of H0e; the original spin operators Jμ may then
be expressed in terms of Pauli operators τμ operating on the
2 × 2 subspace in the form

Jμ = Cμ(Bx) +
∑

ν=x,y,z

Cμν(Bx)τ ν. (7)

The lower two electronic eigenstates of H0e are separated
from the rest of the electronic eigenstates by a gap of at
least 10.3K. The hyperfine interaction, and the interactions
between holmium spins, are too weak to cause significant
mixing with the higher lying eigenstates, which justifies the
truncation procedure. We apply a second rotation in order
to diagonalize the J z operator in the 2 × 2 subspace so that
J z = Czzτ

z. In terms of the two lowest eigenstates of H0e,
|α〉 and |β〉, our bases are | ↑〉 = 1√

2
[|α〉 + exp iθ |β〉] and

| ↓〉 = 1√
2
[|α〉 − exp iθ |β〉], where the phase is fixed such that

the coefficient of the lowest eigenstate |α〉 is real and positive.
In Fig. 1, we plot the nonzero matrix elements of the effective
spin half operators as a function of the transverse field.

The interactions between electronic spins must also be
truncated. Applying the truncation procedure to the electronic
spins in (4), we find Hint = − 1

2

∑
k Vkτ

z
kτ z

−k, with

Vk = C2
zz

[
JDDzz

k − Jnnγk
]
, (8)

where Dzz
k is the shape-dependent Fourier transform of the

dipolar interaction, and

γk = 2 cos

(
kzc

4

)[
cos

(
kxa

2

)
+ cos

(
kya

2

)]
(9)
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FIG. 1. The nonzero matrix elements of the effective spin-1/2
operators, J μ = Cμ(Bx) +∑

ν=x,y,z Cμν(Bx)τ ν , for the truncated
LiHoF4 Hamiltonian, as a function of the applied transverse field
Bx (in Tesla).

is the Fourier transform of the exchange interaction, incor-
porating the four nearest neighbor atoms at (± a

2 ,0, − c
4 ) and

(0, ± a
2 , c

4 ). The electronic dipole-dipole interaction is strongly
anisotropic; the physical source of this anisotropy is the
deformation of the electronic 4f orbitals due to the crystal
electric field. The antiferromagnetic exchange interaction Jnn

between nearest neighbor sites is much weaker than the dipole-
dipole interaction; we use the estimate of Rønnow et al. [16],
Jnn = 1.16 mK. In a long cylindrical sample of LiHoF4, the
strength of the dipolar interaction at zero wave vector is
JDDzz

0 = 78.9 mK, which should be compared to the exchange
energy Jnnγ0 = 4.64 mK.

In terms of the effective spin operators, the total electronic
HamiltonianHe may now be written in terms of Pauli operators
in the 2 × 2 subspace as

He ≈ −1

2
�(Bx)

∑
i

τ x
i − 1

2
JDC2

zz(Bx)
∑
i �=j

Dzz
ij τ z

i τ z
j

+ 1

2
JnnC

2
zz(Bx)

∑
〈ij〉

τ z
i τ z

j . (10)

The terms neglected in this approximation either vanish due
to symmetry considerations or they are significantly smaller
(∼1%) than the terms given in Eq. (10) (for a discussion of
these correction terms, see Tabei et al. [33]).

The Ising nature of the system is now apparent; indeed, we
can rewrite He in the toy model form (1) as

He ≈ −
∑
i<j

Vij (Bx) τ z
i τ z

j − �(Bx)
∑

i

τ x
i (11)

with the parameter Vij (Bx) given by

Vij = 1
2

[
JDDzz

ij C2
zz(Bx) − JnnδijC

2
zz(Bx)

]
(12)
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so that both the “tunneling term” �(Bx) and the Ising interac-
tion Vij (Bx) now have a very pronounced dependence on the
applied field Bx .

2. Truncation of the nuclear spin terms

We now reintroduce the nuclear spins by truncating the
hyperfine interaction, Hhyp = A

∑
i
�Ii · �Ji , down to the lowest

two electronic levels (we replace �Ji with the effective spin half
operator for the 2 × 2 subspace). This is done by applying the
same truncation procedure used above for the purely electronic
component of the Hamiltonian. Keeping only nonzero terms,
the result is then (suppressing the field dependence Bx of all
operators):

HNS =
∑

i

��n · Ii + Az

∑
i

τ z
i I z

i

+
(

A⊥
∑

i

τ+
i I−

i + A++
∑

i

τ+
i I+

i + H.c.

)
, (13)

where

��n = (ACx,ACy,0), Az = ACzz, (14)

and

A⊥ = A
Cxx + Cyy + i(Cyx − Cxy)

4
,

A++ = A
Cxx − Cyy − i(Cyx + Cxy)

4
. (15)

The effective field ��n is a result of the strong hyperfine
interaction in LiHoF4; the physical transverse field shifts the
electronic 4f orbitals, leading to a static effective field. Thus
we end up with a nuclear dynamics governed both by this static
field and by the time-varying fields coming from the electronic
spins.

We have already seen in Fig. 1 how the matrix elements of
the effective spin operators depend on the physical transverse
field Bx . In Fig. 2, we show the Bx dependence of the effective
transverse field � mixing the electronic Ising spins, along
with the Bx dependence of the parameters in the nuclear spin
Hamiltonian HNS . The longitudinal term Az dominates the
hyperfine interactions, with a substantial effective transverse
field �n directly mixing the nuclear spins. The remaining
parameters in our model are much smaller.

Combining the electronic and nuclear contributions, we find
the full effective Hamiltonian to be

Heff = He + HNS, (16)

with these two terms given by (11) and (13).
The important points to take from the low-energy effective

Hamiltonian Heff are (i) the Ising nature of the system at low
temperatures, (ii) the anisotropy of the truncated hyperfine
interaction, and (iii) the large effective transverse magnetic
field acting directly on the nuclear spins. The effective longi-
tudinal hyperfine interaction is Az ∼ 200 mK; the transverse
component A⊥ is over 10 times smaller (this anisotropy was
noted by Mennenga et al. in their specific heat measurements in
1984 [34]). The effective transverse field acting on the nuclear
spins �x

n is roughly 100 mK when the physical transverse field
Bx is between 3 and 6 T. It is this effective transverse field
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FIG. 2. The effective transverse field � (in Kelvin) mixing the
Ising spins in LiHoF4, as a function of the physical transverse field
Bx (in Tesla). The upper left inset shows the next largest parameters
in the LiHoF4 Hamiltonian: the longitudinal hyperfine coupling Az

and the effective transverse field �x
n acting directly on the nuclear

spins. The lower right inset illustrates the magnitudes of the remaining
transverse hyperfine parameters: A⊥ (uppermost line), A++ (middle
line), and the stray field �y

n, acting on the nuclear spins in the direction
transverse to the easy axis and the direction of the applied transverse
field (lower line).

�x
n, rather than the transverse hyperfine interaction A⊥, that is

mainly responsible for the mixing of the nuclear spin states.
Finally, let us note again in what way this effective Ising

Hamiltonian for LiHoF4 is different from the toy model. The
main differences are (a) the involvement of spin-7/2 bath spins,
instead of spin-1/2 two-level systems; (b) the existence of extra
fields acting on these bath spins, which gives them their own
dynamics, independent of that given to them by the electronic
spins; and (c) the long-range dipolar interactions between the
electronic spins. Perhaps needless to say, the field dependence
of the various parameters inHeff is now nontrivial and different
from that in the toy model.

In what follows, we now wish to understand the behavior
of the phase diagram of this system, and where appropriate,
compare it with that of the toy model.

III. THE PARTITION FUNCTION

In this section, we describe the main techniques used to
derive results in this paper. To incorporate fluctuations we use a
well-established technique for setting up a field-theoretical de-
scription of the system, separating off fluctuations from mean
field terms in the partition function. A cumulant expansion is
used to obtain the final form of the effective Hamiltonian for
the fluctuations.

A. Field-theoretic form for the partition function

The starting point for our field-theoretic formulation will
be a mean field theory (MFT). This takes the usual form: We
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divide the Hamiltonian according to

H = HMF + Hf l, (17)

whereHMF is the mean field term, and we write the fluctuation
term as

Hf l(τ ) = − 1

2

∑
i �=j

Uij δSz
i (τ )δSz

j (τ ), (18)

where the Sz
i = τ z

i /2 are electronic spin operators and δSz
j =

(Sz
j − 〈Sz〉0) are fluctuations about the mean polarization 〈Sz〉0

determined byHMF , leaving the MF interactionU0〈Sz〉0
∑

i S
z
i

acting on individual sites. The fluctuation theory is developed
in terms of the spin operators Sj , rather than the Pauli matrices,
to avoid confusion between the Pauli matrices and imaginary
time indices and to allow for easy generalization to larger spins
S > 1/2.

It is well known that fluctuations can cause MFT-RPA
results to fail near any phase transition [3,35]. Thus, if we really
want to understand the QPT, we must include these and the
interactions between them. This requires an expansion of the
free energy in powers of these fluctuations. To do this we write
the quantum partition function in the Matsubara representation;
it is then given by

Z = ZMF

〈
Tτ exp

[
−
∫ β

0
dτHf l(τ )

]〉
0

, (19)

where ZMF = Tr[e−βHMF ], and 〈Tτ . . . 〉0 is an imaginary time-
ordered thermal average taken with respect to HMF . The
imaginary time dependence of the quantum operators follows
from O(τ ) = eτHMF Oe−τHMF .

We decouple the interaction between the Ising spins using
the Hubbard-Stratonovitch transformation [24,36–38]. Intro-
ducing an auxiliary scalar field φi(τ ) at each site, the partition
function becomes

Z = ZMF

∫
Dφ exp

(
− 1

2β

∫ β

0
dτ
∑

i

φ2
i

)

×
˝
Tτ exp

⎛⎝− 1

β

∫ β

0
dτ
∑
i �=j

φi

√
βUij δS

z
j

⎞⎠˛
0

, (20)

where the intergration measure isDφ = ∏
i dφi(τ )/

√
2π . The

imaginary time dependence of the auxiliary fields φi (τ ) and the
spin operators δSz

j (τ ) are suppressed for brevity.
It is advantageous at this point to establish a relationship

between the auxiliary fields φi(τ ) and the connected longitu-
dinal imaginary time-ordered correlation function or Green’s
function Gij (τ − τ ′) = −〈Tτ δSz

i (τ )δSz
j (τ ′)〉. We add a site-

and time-dependent longitudinal field to the fluctuating part of
the Hamiltonian

βH̃f l(τ ) = − βHf l(τ ) +
∑

i

hi(τ ) δSz
i (τ ) (21)

and proceed with the Hubbard-Stratonovich transformation as
in (20). Next, we shift the auxiliary fields (written here in mo-
mentum space), φk(τ ) → φk(τ ) − hk(τ )/

√
βU−k, to transfer

the dependence of the partition function on the longitudinal

field to the Gaussian prefactor [39]. The result is

Z

ZMF

=
∫

Dφ exp

(
− 1

2β

∫ β

0
dτ
∑

k

∣∣∣∣φk − hk√
βU−k

∣∣∣∣2)

×
〈
Tτ exp

(
− 1

β

∫ β

0
dτ
∑

k

φ−k

√
βUk δSz

k

〉
0

. (22)

With the partition function written in this form, we are free
to take a functional derivative in order to determine the
fluctuations about the MF magnetization〈

δSz
k(τ )

〉 = − δ ln Z

δhk(τ )

∣∣∣∣
h=0

= 1√
βUk

〈φk(τ )〉φ, (23)

with the average on the left 〈· · · 〉 taken with respect to the Ising
and bath spin Hamiltonian, and the average on the right 〈· · · 〉φ
taken with respect to the partition function for the auxiliary
fields Zφ = Z/ZMF . The cumulant Green’s function, de-
fined by Gc

ij (τ − τ ′) = Gij (τ − τ ′) + 〈δSz
i (τ )〉〈δSz

j (τ ′)〉, fol-
lows from

Gc
k(τ − τ ′) = − δ ln Z

δh−k(τ )δhk(τ ′)

∣∣∣∣
h=0

. (24)

Performing the derivatives and transforming to Matsubara
frequency space (ωr = 2πr/β)

Gc
k(iωr ) =

∫ β

0
dτeiωr τ

1

N

∑
ij

eik·(ri−rj )Gc
ij (τ ) (25)

we find that

Gc
k(iωr ) = − 1

Uk
[〈|φk(iωr )|2〉φ − 1], (26)

with the φk(iωr ) defined by

φk(iωr ) = 1

β

∫ β

0
eiωr τ

1√
N

∑
j

eik·rj φj (τ ). (27)

Note that φk(iωr ) = φ∗
−k(−iωr ) meaning the functional inte-

gral for the auxiliary field partition function double counts each
degree of freedom.

We have established a general relationship between the
correlations of the auxiliary field φ, and the correlations of
the Ising spin operators in the underlying Hamiltonian. To
proceed, we must perform the thermal average 〈· · · 〉0 in the
quantum partition function (20); the general idea is to rewrite
Zφ = Z/ZMF as a functional integral of form

Zφ =
∫

Dφe−βHeff [φ] (28)

over an effective Hamiltonian Heff [φ]. This one does using a
cumulant expansion.

B. Cumulant expansion

To carry out a cumulant expansion of the partition function,
we define the cumulants Mn in the usual way [40], as

Mn(x) = 〈xn〉 −
∑

n1+...+nk=n

Mn1Mn2 . . . Mnk
. (29)
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Then, for Z = 〈Tτ exp(
∫ β

0 dτf (τ ))〉0, we have

ln Z =
∑

n

1

n!

∫ β

0
dτ1 . . .

∫ β

0
dτnMn(Tτf (τ1) . . . f (τn)).

(30)

For the auxiliary field partition function Zφ = Z/ZMF , this
becomes

Zφ =
∫

Dφ exp

(
− 1

2β

∫ β

0
dτ
∑

k

|φk(τ )|2
)

× Tτ

[
exp

( ∞∑
n=1

(−1)n

n!βn

n∏
i=1

∫ β

0
dτi 〈Mn(V (τ ))〉0

)]
,

(31)

where Mn is now the nth cumulant of V (τ ) = βHf l(τ ). In
calculating the cumulants, we extract the auxiliary fields from
the Mn to write everything in terms cumulants of the spin
operators; thus, e.g., for M2 we have

〈M2(V (τ ))〉0 = Tτ

[∑
k,k′

φ−k(τ1)φ−k′(τ2)β
√

UkUk′

× 〈
M2

(
δSz

k(τ1)δSz
k′ (τ2)

)〉
0

]
. (32)

When an average is performed over a cumulant of a set
of statistically independent operators (for example, the Sz

j

at different sites are independent with respect to the proba-
bility distribution determined by the MF Hamiltonian), the
cumulant of products of the Fourier-transformed operators
Sz

k = 1√
N

∑
j eik·rj Sz

j reduce as follows:〈
Mn

(
δSz

k1
(τ1)δSz

k2
(τ2) . . . δSz

kn
(τn)

)〉
0

= 1

N
n−2

2

〈Mn(Sz(τ1)Sz(τ2) . . . Sz(τn))〉0δ
∑n

i=1 ki ,0. (33)

The cumulant on the right-hand side contains spins at a single
site at multiple imaginary time indices. This reduction leads to a
significant simplification in the effective Hamiltonian Heff [φ],
which we can now write as

Heff [φ] = 1

β

∞∑
n=1

⎡⎣∑
{ri ,ki }

un({ki},{iωri
})

n!

n∏
i=1

φki
(iωri

)

⎤⎦ ,

(34)

where the functions un({ki},{iωri
}) are coupling constants in

the effective Hamiltonian between the fields φk(iωr ).
We can calculate expressions for these interaction functions:

Making use of the reduction (33) and comparing (34) to (31),
we have

u2 =
[
δiωr1 ,−iωr2

−
√

Uk1Uk2

β
M2(−iωr1 , − iωr2 )

]
δk1,−k2 ,

(35)

for the term quadratic in the auxiliary fields and

un = (−1)n+1

N
n
2 −1

[
n∏

i=1

(βU−ki
)

1
2

]
1

βn
Mn({−iωri

})δ∑ki ,0 (36)

for the higher order terms. The couplings {un} between n-
tuplets of fluctuation fields contain energy- and momentum-
conserving δ functions.

These expressions are exact; no approximations have been
used to derive them. The Matsubara frequency dependence of
the spin cumulants Mn comes from the Fourier transform of the
spin operators, which are transformed according to Sz

k(iωr ) =∫ β

0 dτe−iωr τ Sz
k(τ ). This Fourier transform convention elimi-

nates factors of β from the expressions for the cumulants.
In what follows, it will only be necessary to work up to

quartic order in the fields. Thus, the effective Hamiltonian we
will use has the form

βHeff [φ] = 1

2

∑
r,k

(
Do

k(iωr )
)−1 |φk(iωr )|2

+ 1

3!

⎡⎣∑
{ri ,ki }

u3

3∏
i=1

φki
(iωri

)

⎤⎦
+ 1

4!

⎡⎣∑
{ri ,ki }

u4

4∏
i=1

φki
(iωri

)

⎤⎦ , (37)

where we have suppressed the momentum and frequency
dependence of the un ≡ un({ki},{iωri

}).
Retaining only the first term here, of course, yields the

Gaussian or random-phase approximation (RPA) [35], with
the free field propagator Do

k(iωr ) approximation to the full
propagator, in which we allow fluctuations about the MF
but treat these fluctuations as noninteracting. The second-
order spin cumulant is

∑
r2

M2(−iωr1 , − iωr2 ) = βg(iωr1 ),
where g(τ ) = 〈δSz(τ )δSz(0)〉0 is the MF Green’s function (see
Appendix A). One has

Do
k(iωr ) = 1

1 + g(iωr )Uk
. (38)

and we have 〈|φk(iωr )|〉φ = Do
k(iωr ). At low energies and

small momenta, the free field propagator may be expanded as
(Do

k(iωr ))−1 = r0 + α1k2 + α2k
2
z /k2 + γ (iωr )2 + · · · , where

r0, αi , and γ depend on the nature of the interaction between
spins and other details of the model in question.

To complete the theory and to determine the effective
Hamiltonian H[φ], we must also calculate the cumulants
Mn({iωri

}). These are now cumulants of spins at a single site
(at multiple imaginary time indices) determined with respect
to HMF . These calculations are straightforward; however, they
are rather lengthy, as are the final expressions. The results are
therefore given in Appendix A.

IV. RPA SUSCEPTIBILITIES, CORRELATION
FUNCTIONS, AND EIGENMODES

Before using the full fourth-order expansion in (37), we
first derive the results in the RPA; as just discussed, this is
defined by the Gaussian approximation, i.e., the first term
in (37). Thus, in this section we will derive results for the
RPA dynamic susceptibility. This will be done in the first two
subsections for the Ising spins, first for the toy model and then
for LiHoF4 (where the Ising susceptibility is just the electronic
spin susceptibility). Finally, in the last subsection, we calculate
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the “total susceptibility,” which includes contributions from the
bath spins as well.

A. Results for Ising spins

We will be interested in this subsection in the susceptibility
if the Ising spins; i.e., we are interested in

Gk(τ ) = −〈δτ z
k (τ ) δτ z

−k(0)
〉
. (39)

From (26), and the fact that at the RPA level of approxima-
tion Gc

k(iωr ) = Gk(iωr ), we see that one has

Gk(iωr ) = g(iωr )

1 + Vkg(iωr )
(40)

with g(iωr ) being the Fourier transform of the MF Green’s
function g(τ ) = 〈δτ z(τ )δτ z(0)〉0.

We wish to give results for (40) in terms of parameters in
HMF for both (i) the toy model and (ii) the LiHoF4 system.
The dynamic susceptibility of the Ising spins follows from
the analytic continuation χzz

k (ω) = −Gk(iωr → ω + iε), with
ε being a small constant later taken to zero. Thus, we have
direct access to the RPA eigenmodes (the poles of the Green’s
function), which correspond to the collective low-energy states
of the system and their corresponding spectral weights.

1. The toy model

In the case of the toy model, with a spin-1/2 Ising lattice
coupled to a set of spin-1/2 bath spins, we will start from a
Hamiltonian

H = −
∑
i<j

Vij τ
z
i τ z

j − h
∑

j

τ z
j − �0

∑
j

τ x
j

+Az

∑
j

σ z
j τ z

j + A⊥
2

∑
j

(σ+
j τ−

j + σ−
j τ+

j ), (41)

which differs in form from the Hamiltonian previously derived
for the toy model [i.e., that given in (3)] only by the addition
of a longitudinal field term h

∑
j τ z

j . Let us now rewrite this as

H = HMF −
∑
i<j

Vij δτ z
i δτ z

j , (42)

where δτ z
j = τ z

j − 〈τ z
j 〉0, and where the MF Hamiltonian

HMF = ∑
j H

j

MF , with single-site terms of form

Hj

MF = −�0τ
x
j − (h + V0〈τ z〉0)τ z

j

+Azσ
z
j τ z

j + A⊥
2

(σ+
j τ−

j + σ−
j τ+

j ). (43)

The RPA calculation of Green’s function then consists in treat-
ing the fluctuation term in (42) in a Gaussian approximation.

At this point, it is useful to introduce the eigenstates |n〉 of
the MF Hamiltonian, so that

Hj

MF |n〉 = En|n〉, (44)

and also define the quantities

cmn = 〈m|τ z|n〉0 (45)

as the MF matrix elements of the Ising spin operator.

The result for the RPA Green’s function then follows from
that for the MF Green’s function g(τ ) = 〈τ z(τ )τ z(0)〉0, which
we derive making use of the Hubbard operator formalism
[41,42] in Appendix A. The result at Matsubara frequency ωr

and inverse temperature β is

g(iωr ) = −
∑
n>m

c2
mnpmn

2Enm

E2
nm − (iωr )2

−β

⎛⎝∑
m

c2
mmpm −

[∑
m

cmmpm

]2
⎞⎠ δωr ,0, (46)

where Enm = En − Em is the difference between energy levels
ofHMF , and the pmn = pm − pn with pm = e−βEm/

∑
n e−βEn

are population factors. The second (elastic) contribution to (46)
vanishes in the paramagnetic phase, and in the limit T → 0.
The MF susceptibility of the system is given by χzz

0 = −g(0).
The longitudinal RPA Green’s function G(k,z) = g(z)/(1 +
Vkg(z)), evaluated at T = 0, is then

G(k,z)

∣∣∣∣
T =0

=
∑4

n=2 c2
1n2En1

∏
m�=n

(
E2

m1 − z2
)

Vk
∑4

n=2 c2
1n2En1

∏
m�=n

(
E2

m1 − z2
)−∏4

n=2

(
E2

n1 − z2
) .

(47)

The RPA modes of the system {Ep

k } follow from the poles
of this function. Writing the dynamic susceptibility χzz

k (ω) =
−Gk(iωr → ω + iε) as χzz

k (ω) = χ ′
k(ω) + iχ ′′

k (ω), the spec-
tral weight of the pth RPA mode A

p

k follows from χ ′′
k (ω) =∑

p A
p

kδ(ω − E
p

k ).
These results are used to produce Fig. 3, in which we

show these eigenmodes and associated spectral weights for
a strongly anisotropic hyperfine coupling with a dominant
longitudinal component, at zero temperature. The key features
here are (i) a low-energy collective mode which softens to zero
energy at the QPT, with sharply peaked spectral weight near
the QPT, and (ii) a clear effect of the QPT on the higher modes
as well.

The zero-temperature critical transverse field is determined
by the point at which the RPA susceptibility diverges at zero
wave vector and frequency, that is, when 1 − V0χ

zz
0 = 0.

Above �c, the MF susceptibility may be written

χzz
0

∣∣∣∣
T =0

= 2c2
12

E21
+ 2c2

14

E41
�0 > �c. (48)

In the high field limit �0 � Az,A⊥,V0, we may expand to
O(A3

z,⊥/�3
0,V

3
0 /�3

0) to obtain

�c = V0

4
+ V0

4

√
1 + 4

V0

(
A2

z

A⊥
− A⊥

)
. (49)

We see that as the hyperfine interaction becomes increasingly
anisotropic, with Az > A⊥, the critical transverse field be-
comes increasingly large.

Let us recall again that these calculations are done at tem-
perature T = 0. Although we will not do finite T calculations
in this paper, it is worth noting that if we carry out the same
calculation at finite T , we will find six eigenmodes, with the
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FIG. 3. (a) Energies (in units of the nearest neighbor exchange
coupling Jnn) of the zero-temperature RPA modes {Ep} of the toy
model with an anistropic hyperfine interaction, at k = 0, in three
dimensions (V0 = 6Jnn), as a function of the normalized transverse
field �0/V0. (b) Intensities of the RPA modes Az

p (arbitrary units),
with χ ′′

zz(0,ω) = ∑
p Az

pδ(ω − Ep), associated with the longitudinal
Ising spin susceptibility. The RPA modes are color coordinated with
their intensities. (c) Energy of the soft mode in the vicinity of the
quantum critical point.

additional three corresponding to transitions between excited
states; again, the QPT shows up in the low-energy hybridized
mode between the Ising and bath spins, with sharply peaked
spectral weight when � ∼ �c.

Let us also emphasize again that these MFT-RPA results for
the toy model do not yet account for “mode-mode interactions”
between fluctuations about the MF eigenstates; we do this in
the next section.

2. The LiHoF4 system

The MF part of the full truncated Hamiltonian for the
LiHoF4 system at a single site is given by

Hi
MF = −�

2
τ x
i − V0〈τ z〉0τ

z
i + ��n · �Ii + Azτ

z
i I z

i

+ (A⊥τ+
i I−

i + A++τ+
i I+

i + H.c.) (50)

in which V0 = C2
zz[JD

∑
j Dzz

ij − 4Jnn] is the k = 0 limit of
Vk, and where all the other parameters were discussed in
Sec. II B above. Again we define eigenstates |n〉 and eigenen-
ergies En for this MF Hamiltonian, but now in an enlarged
16-dimensional Hilbert space incorporating the two electronic
states and the eight nuclear states for each site.

The development of the RPA forms for the correlators then
proceeds as for the toy model. We get a longitudinal RPA spin
correlation function

G(k,z) = 〈δJ z(z)δJ z(−z)〉0 = C2
zzg(z)

1 + Vkg(z)
, (51)

with g(τ ) = −〈Tτ δτ
z(τ )δτ z(0)〉0. The RPA Green’s function

then becomes

G(k,z)

∣∣∣∣
T =0

= C2
zz

∑16
n=2 c2

1n2En1
∏

m�=n

(
E2

m1 − z2
)

Vk
∑16

n=2 c2
1n2En1

∏
m�=n

(
E2

m1 − z2
)−∏16

n=2

(
E2

n1 − z2
) ;

(52)

i.e., it has the same form as in (47) except the summations
and products are now over 16 MF energy levels (with the
matrix element cmn = 〈m|τ z|n〉0 now defined between these
states) and there is an additional prefactor C2

zz coming from
the truncation procedure.

B. Total dynamic susceptibility

In an Ising system coupled to a spin bath, the dynamic
susceptibility will contain contributions from both the Ising
spins and the bath spins. Here we give RPA results for the
total susceptibility of Ising plus bath spin systems. The total
dynamic susceptibility then has the form

χ
μν

k (t) = iθ (t)
〈[
δτ

μ

k (t) + γ δσ ν
k (t), δτ

μ

k (0) + γ δσ ν
k (0)

]〉
,

(53)

where μ and ν may equal x,y, or z, and γ is the ratio of bath
spin and Ising spin gyromagnetic ratios. In LiHoF4, we have
γ = gnμn/gLμB ≈ 1/550, and even at energies correspond-
ing to the hyperfine splitting the response is dominated by
the electronic contribution. However, one can imagine more
general scenarios in which γ is much larger, and so it is useful
to derive the results which follow.

The dynamic response functions follow from the imaginary
time correlation functions χ

μν

k (ω) = −Gμν(k,iω → ω + iε),
which we write as follows:

Gμν(k,z) = Gμν
ττ (k,z) + γ

(
Gμν

στ (k,z) + Gμν
τσ (k,z)

)
+ γ 2Gμν

σσ (k,z). (54)

In the RPA, the correlation functions are given by [43]

G
μν

ab (k,z)

∣∣∣∣
RPA

= g
μν

ab (z) − g
μz
aτ (z)Vkg

zν
τb(z)

1 + gzz
ττ (z)Vk

, (55)

where a and b may refer to either a bath spin σ or an Ising spin
τ . The g

μν

ab (z) are connected MF imaginary time correlation
functions; for example,

gμν
στ (τ ) = −〈Tτ δσ

μ(τ )δτ ν(0)〉0, (56)

with the time-ordered thermal average 〈· · · 〉0 taken with
respect to the single-site MF Hamiltonian Hi

MF .
The RPA spectrum of a system follows from the zeros of 1 +

gzz
ττ (z)Vk; the spectral weight carried by these modes depends

on the particular response function. Quite generally, we may
write the spectral weight carried by the pth RPA mode E

p

k as

A
μν

ab (k; p) =
∏

m>1

[
E2

m1 − (
E

p

k

)2][
g

μν

ab

(
E

p

k

)+ g
μν

ab

(
E

p

k

)
Vkg

zz
ττ

(
E

p

k

)− g
μz
aτ

(
E

p

k

)
Vkg

zν
τb

(
E

p

k

)]
2E

p

k

∏
s �=p

[(
E

p

k

)2 − (
Es

k

)2] , (57)
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FIG. 4. (a) Energies (in Kelvin) of the zero-temperature RPA
modes of LiHoF4 at k = 0, as a function of transverse field Bx (in
Tesla). The inset shows the electronuclear soft mode in the vicinity
of the quantum critical point. (b) Dominant spectral weights Az

p , with
χ ′′

zz(0,ω) = ∑
p Az

pδ(ω − Ep), associated with the longitudinal Ising
spin susceptibility (arbitrary units). The modes shown by dashed lines
carry negligible spectral weight.

where A
μν

ab (k; p) is the residue of the pth pole of
G

μν

ab (k,z).
If we now calculate MFT-RPA results for the total dynamic

susceptibility of LiHoF4, we find the results shown in Fig. 4.
This figure shows the low-energy collective modes of the
system and their spectral weights, as a function of transverse
field Bx (the dependence on the angle of the transverse
field B⊥ in the plane is weak). The energy of the lowest
electronuclear mode vanishes at the QPT, at the point where
the MF magnetization vanishes.

V. QUANTUM FLUCTUATIONS AND THE
PHASE DIAGRAM

We now proceed to look at one of the most interesting
questions in this field, viz., the effect of the bath spins on the
phase diagram of the system. As briefly noted in Sec. II B, this
question has been controversial; some early experiments [15]
indicated that the quantum Ising QPT was suppressed in the
LiHoF4 system by the hyperfine coupling to the Ho nuclear
spins. Although the theory of this system clearly shows the
role of electronuclear modes, it was not until very recently
that these were seen experimentally [17] using NMR. In this
section, we intend to clear this question up theoretically; in the
next section, we look at the comparison with experiment.

One can get a first look at this question by looking at a mean
field theory result; this we do immediately below. However, it
is well known that in the vicinity of any phase transition one
must go beyond any RPA to get correct results; it is at this point
that we must go to 4th order in a fluctuation expansion, using
the field theory developed above. These results are given in the
second part of this section.
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FIG. 5. Ground-state MF polarizations of the Ising and bath spins
for the toy model in three dimensions (V0 = 6Jnn, with Jnn being the
nearest neighbor exchange coupling), as a function of the normalized
transverse field �0/V0. The thick lines denote longitudinal polariza-
tions and the thin lines denote transverse polarizations. In blue, we
see the polarizations for a system with an isotropic bath (Ising and
bath spin polarizations coincide). In red, we see the electronic (solid
line) and nuclear (dashed line) polarizations for the toy model with
an anisotropic bath.

A. Mean field phase diagram

The MF phase diagram follows from a self-consistent
calculation of the longitudinal MF magnetization. Results for
the LiHoF4 system are very much the same as for the toy
model. As an illustration, Fig. 5 shows the MF results for
the polarizations of both Ising and bath spins, at temperature
T = 0, for the case of the toy model where the Ising system
is an exchange coupled ferromagnet on a simple cubic lattice
(V0 = 6Jnn). We note the following features:

(i) There is clearly a QPT at the the critical transverse field
�c = V0gc, even when there is a spin bath.

(ii) Any anisotropy in the hyperfine couplings has a marked
effect; we see that �c increases rapidly with Az/A⊥ (becoming
infinite when A⊥ → 0).

This latter result can be explained by a spin bath “blocking”
mechanism [18,44]. If A⊥ = 0, then at at T = 0, with no
mechanism for flipping the bath spins, the transverse field
at any site i is not able to mediate transitions between the
degenerate states | ⇑↓〉i and | ⇓↑〉i . The ordered bath spins
then act as a longitudinal field Az〈σ z〉0

∑
i τ

z
i , which destroys

the QPT. Switching on A⊥ restores the flipping mechanism,
as does going to finite temperatures, where thermal bath spin
fluctuations restore the phase transition.

To summarize, we see that in mean field theory the bath
spins do not destroy the QPT, although hyperfine anisotropy
profoundly affects the shape of the phase diagram. The next
step is then to see how fluctuations may change these results.

B. Fluctuation effects on the phase diagram

In this subsection, we will recalculate the phase diagram,
now incorporating fluctuation effects up to fourth order in the
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fields [cf. Eq. (37)]. To do this, we will make essential use of
the results derived in the appendices. We can summarize these
results as follows:

(i) We can calculate explicit expressions for the cumulants
which enter into our results (35) and (36) for the interaction
coefficients un appearing in the effective free energy (34), or
its truncation as far as quartic terms in (37). These cumulants,
defined as

Mn

(
Sz

1 . . . Sz
n

) = 〈
Sz

1 . . . Sz
n

〉
0 −

∑
n1+...+nk=n

Mn1Mn2 . . . Mnk
,

(58)

then have the rather complicated forms given in Eqs. (A10),
(A12), and (A14) of Appendix A.

(ii) We can then calculate an expression for the Ising spin
magnetization 〈Sz〉, again at T = 0, in terms of the cumulants.
This is done perturbatively, as an expansion in powers of 1/zc,
where zc is the coordination number of the lattice involved.
The key result is that the leading correction to the MF results
is from the third-order cumulant, and is given by

〈Sz〉1 = −Do
k=0(0)

2Nβ2

∑
r,k

Tk(iωr ) M3(0,iωr, − iωr ), (59)

where Do
k=0(0) is the zero frequency and wave-vector compo-

nent of the free field propagator. We have written the explicit
expression for M3(iωr1 ,iωr2 ,iωr3 ) in terms of Bose-Matsubara
frequencies ωrj

= 2πrj/β in Eq. (A12) of Appendix A; and
Tk(iωr ) = VkDo

k(iωr ) is the renormalized RPA interaction
between the Ising spins.

In the perturbative expansion, each free momentum sum-
mation in the resulting perturbation series leads to a factor of
z−1
c . This “high-density” approximation was originally used

by Brout to study random ferromagnetic systems [45]. For the
spin-1/2 quantum Ising model, with no spin bath, the results are
equivalent to those of Stinchcombe [43,46,47] (derived here in
a new way), and the 1/zc expansion is explained in this work. In
the ordered phase, explicit calculation of M3 gives corrections
to the MF phase diagram of order 1/zc, determined by (23). The
mode-mode coupling coming from u4 gives small corrections
to this, as they are of order 1/z3

c . Explicit expressions for
the leading-order magnetization corrections in the quantum
(T = 0) regime are given in terms of parameters in HMF in
Appendix B.

The basic structure of the results can be understood with
reference to Fig. 6. In this figure, all reference to the energy
and momentum dependence of the field φ(k,iωr ) and of the
coefficients un({ki ,iωri

}) is omitted; and the quantity βHeff is
then shown assuming a fourth-order truncation, as in Eq. (37).
Two key points emerge from the calculations:

(a) In the quantum regime (T = 0), the calculations of
M2,M3, and M4 show that both the u2 and the u4 terms are
always positive, i.e., repulsive. Thus, if u3 = 0, we simply have
an effective potential which increases for large fluctuations.
Quartic fluctuations do not then destabilize the QPT; in fact,
they do the opposite.

(b) The third-order fluctuation coefficient u3 is only nonzero
in the ordered phase. This is in accordance with the Z2

symmetry of the microscopic models. It means that in this

u2 , u4 > 0

u3 < 0

φ

βHeff

FIG. 6. Schematic plot of the quantity βHeff (φ); this can be taken
as the value of the functional βH[φ] of the field φ, taken for some
set of fixed values of the arguments of φ(k,iωr ). The coefficients
u2,u4 > 0, in line with the calculated results, and we assume that
u3 < 0. The sign of u3 depends on the broken Z2 symmetry of the
underlying Hamiltonian.

phase, two minima are developed, the lowest of which is at a
finite value of the field.

The accuracy of the high-density approximation may be
tested in one dimension by comparison with exact results. The
exact and MF results for the zero-temperature longitudinal
magnetization of the transverse field Ising chain

H = −Jnn

∑
i

τ z
i τ z

i+1 − �0

∑
i

τ x
i (60)

are given by [48]

〈τ z〉 = [1 − (�0/Jnn)2]1/8,

〈τ z〉|MF = [1 − (�0/2Jnn)2]1/2. (61)

The effects of fluctuations about the MF are quite substantial
in one dimension. We see that MF theory overestimates the
critical transverse field by a factor of 2, as well as predicting
the critical exponent β = 1/2 rather than the exact value
of β = 1/8. In Fig. 7, we compare the exact result for the
longitudinal spin polarization of the transverse Ising chain to
the MF result and the result of order 1/zc in the high-density
approximation. The 1/zc result is clearly an improvement
over MF theory; however, it falls well short of the exact
solution. We expect this to be a worst-case scenario for two
reasons: (i) Corrections due to fluctuations become smaller in
higher dimensions and (ii) the high-density approximation is
rather poor when zc = 2. In the dipole-dipole coupled LiHoF4

crystal, the shape-dependent effective coordination number is
determined by the zero wave-vector component of the dipole
wave sum Dzz

0 . In a long cylindrical sample of LiHoF4, using
the transverse lattice spacing a = 5.175 Å as reference, we
have JD/a3 ≈ 7 mK and Dzz

0 a3 ≈ 11.3, giving an effective
coordination number of zeff

c ≈ 11.3.
In Fig. 8, we show the effect of quantum fluctuations on the

longitudinal Ising spin polarization for both the “bare” quan-
tum Ising model H0 of Eq. (1) and the toy model with added
spin bath. Both calculations are done on a three-dimensional
simple cubic lattice. We see that in the models considered
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FIG. 7. Longitudinal spin polarization of the transverse field Ising
chain (V0 = 2Jnn). We compare the exact solution with the solution
obtained in MF theory and the leading-order correction to MF theory
obtained in the high-density approximation.

here, the spin bath has a substantial quantitative impact on the
phase diagram. However, it does not fundamentally change the
quantum critical behavior; we still have a QPT.

In this figure, we also show the effect of introducing long-
range dipolar interactions between the Ising spins, as occurs
in the LiHoF4 system. The effect of quantum fluctuations is

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Δ0/V0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 τ
z  

Mean Field

Exchange

Dipolar

FIG. 8. Ground-state longitudinal spin polarization 〈τ z〉 of the
quantum Ising model H0 in Eq. (1) (blue), and the toy model
H = H0 + HSB of Eq. (2) (red) with Az = Jnn and A⊥ = 0.1Jnn, as
a function of the normalized transverse field �0/V0. The MF results
(solid line) are for a simple cubic lattice with V0 = 6Jnn. The leading-
order corrections to the MF results are calculated using an expansion
in the inverse coordination number 1/zc for both an exchange coupled
system Vk = 2Jnn[cos (kx) + cos (ky) + cos (kz)] (dot-dashed line),
and a dipolar coupled system Vk = 6JD + 6JD(1 − 3k2

z /k2) (dashed
line). For the sake of the comparison, we take Jnn = JD . The lattice
spacing is taken to be equal to unity.

now quite striking. This is because for any given spin, the
dipole interaction favors antialignment of all other spins in
the transverse plane, leading to a large enhancement of the
quantum fluctuations.

We can now summarize the results of the theory employed
here. We have seen that when we include a spin bath in the
problem, we can still model the thermodynamic properties
using a scalar field theory. In mean field theory, the QPT is not
affected by the spin bath, although the critical modes revealed
in an RPA analysis now have an “electronuclear” character, as
shown in the spectral weight of the different modes. When we
include critical fluctuations, the QPT is not suppressed, with
or without a spin bath, although there are corrections to the
MFT phase diagram—corrections which are much stronger
when the interactions between Ising spins are dipolar. Finally,
we see that there is no fundamental difference between the
results for the toy model and for the LiHoF4 system, although
obviously there will be quantitative differences. From this
point of view, we see that the toy model captures the essential
behavior of much more complex systems.

With all these remarks in mind, it is time to look at the
comparison with experiments.

VI. EXPERIMENTS

Clearly, one would like to know how generally applicable
the results derived above are and how one might test for them
experimentally. In what follows, we do not attempt any kind
of complete analysis but just indicate our main conclusions.

Let us begin with LiHoF4. We consider the total susceptibil-
ity (electronic and nuclear) χμν = −G

μν
ee − γ (Gμν

en + G
μν
ne ) −

γ 2G
μν
nn , as discussed in Sec. IV B. In LiHoF4, the nuclear

contributions are suppressed by factors of γ = gnμn/gLμB ≈
1/550. The physical transverse spin operators Jμ are linear
combinations of the effective spin operators τμ, and the
corresponding correlation functions are then combinations
of the correlation functions of the effective spin operators.
Consider as an example J y = Cy + Cyyτ

y + Cyxτ
x . The as-

sociated correlation function G
yy
ee (k,τ ) = 〈δJ y

k (τ )δJ y

−k(0)〉 is
given by

Gyy
ee (k,τ ) = C2

yyG
yy
ττ (k,τ ) + C2

yxG
xx
ττ (k,τ )

+CyyCyx

(
Gxy

ττ (k,τ ) + Gyx
ττ (k,τ )

)
, (62)

with the Gμν
ττ given in (55). Unlike the toy model, LiHoF4 has

correlations between the x,y, and z components of the effective
spin operators, mediated by the crystal electric field.

In Fig. 9, we depict the total zero-temperature spectral
weight of the RPA modes of LiHoF4 expected from the
χyy(k,ω) response. We see that there is very little absorption
due to the low-energy modes, with the soft mode dominating
any absorption that does occur; the χxx(k,ω) response is
similar. At the QPT, the weight of the soft mode seen in χxx and
χyy vanishes, and only the higher lying crystal field excitations
are able to absorb energy; however, the soft mode should be
visible at the QPT in χzz(k,ω), as illustrated in Fig. 4.

In very recent work [17], NMR was used to observe the
absorption of the low-energy electronuclear modes in LiHoF4.
In these experiments, the transverse susceptibility χyy(k,ω)
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FIG. 9. Zero-temperature intensities Ay
p (arbitrary units), with

χ ′′
yy(0,ω) = ∑

n Ay
pδ(ω − Ep), of the k = 0 RPA modes {Ep} of

LiHoF4 associated with the transverse susceptibility, as a function
of transverse field Bx (in Tesla). (a) Intensities of the electronuclear
modes corresponding to the lowest lying crystal field excitation
(E8 − E15). (b) The inset shows the intensity of the soft mode (red).
The intensities of all other modes (yellow) are negligible.

was measured. On the basis of the theory given here, one can
make two remarks:

(a) As noted above, the spectral weight of the soft mode in
χyy(k,ω) should vanish near the QPT; thus, to see this mode,
measurements should focus on χzz(k,ω).

(b) Although our results are not directly comparable with
experiment, which are performed at finite T , our results include
fluctuations about the MF. Note that the fits given by Kovacevic
et al. [17] are to MF theory; they do not include quantum
fluctuations, and the soft mode at the phase transition is not
apparent.

There are other three-dimensional quantum Ising systems
that can be analyzed in the same way as we have done here.
Examples are the molecular magnetic system Fe8 [21,49], and
a number of Mn-based molecular magnets [50–52]. We will
look at these systems elsewhere.

One can also look at lower dimensional systems, where
the 1/zc expansion converges more slowly; nevertheless we
still expect that our main results should at least give some
guidance as to what to expect. A physical realization of a one-
dimensional quantum Ising system, albeit with weak, frustrated
antiferromagnetic couplings between chains, is CoNb2O6

[53–55]. The low-energy modes have been probed via NMR
[54], and the results are used to identify scaling regimes
predicted in the 1990s [3]. The energy spectrum of CoNb2O6,
measured via neutron scattering [53], is gapped at zero wave
vector near the critical point, a fact attributed to the weak
interchain couplings that cause the system to order at some
k �= 0.

However, we emphasize that, in line with all the results
derived in this paper, hyperfine interactions will certainly
lead to low-energy electronuclear modes, which will need
to be included in any theory of the low-energy spectrum.

Given the current experimental energy resolution of neutron
scattering, the low-energy electronuclear soft mode may be
indistinguishable from elastic scattering.

VII. DISCUSSION

We find that quantum Ising systems coupled to a spin
bath, with hybridized modes between the Ising and bath spin
variables, must still have a QPT. This is true even when we
take account of quantum fluctuations around the MFT results
and for high-spin bath variables. Nor does an independent
dynamics for the bath variables (coming from, e.g., the extra
field �n(Bx) in the LiHoF4 system) change the result. Although
long-range dipolar interactions strongly enhance fluctuations
around the MFT-RPA results, they also do not destroy the QPT.

It is then worth asking under what circumstances—if any—
can the spin bath destroy the QPT? One clear case occurs
when the bath spins are frozen. In our results, we have
assumed thermodynamic equilibrium—but at low T , bath spin
relaxation times to equilibrium can be much slower than the
Ising spin dynamics (this is particularly clear when the bath
spins are nuclear spins; in this case we know from NMR
measurements that relaxation times can become very long).
In this case, the bath will act as a random static potential on
the Ising spins, giving more complex effects. In interpreting
any experiment where the system is swept through the QPT at
a finite rate, due attention will have to be paid to this point.

In this paper, we have only studied the behavior at tem-
perature T = 0. For a proper comparison with experiments on
systems like LiHoF4, one needs finite-T results; these will be
given in another paper. The purpose of the present paper has
been to introduce the main methods, show how they are used,
and resolve one key question, viz., how the spin bath influences
the QPT that is found in the standard quantum Ising system.
In the course of this work, we have found that our toy model
actually is a very good guide to the behavior in much more
complicated systems like LiHoF4. For this reason, it is worth
studying in its own right—this will be done in more detail
elsewhere.
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APPENDIX A: SPIN CUMULANTS

In the field theoretic formalism introduced in Sec. III, cu-
mulants of the longitudinal spin operator Mn(Sz(τ1) . . . Sz(τn))
taken with respect to the MF Hamiltonian HMF at different
imaginary time indices {τn} play a central role. These cu-
mulants may easily be calculated in terms of parameters in
HMF ; however, the results are quite lengthy. The complexity
of the expressions for the spin cumulants is the primary factor
limiting the utility of the effective field formalism. In this
appendix, we present explicit expressions for the cumulants
of up to four spins.

In order to calculate the cumulants, we make use of single-
site Hubbard operators Xmn = |m〉〈n|, where |m〉 are the
eigenstates of the single-site MF HamiltonianHj

MF [41,42]; as
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in the main text, we define matrix elements cmn = 〈m|Sz|n〉0

between these states.
In terms of the Hubbard operators, the single-site MF

Hamiltonian is given by Hj

MF = ∑
n EnXnn and the longitu-

dinal spin operator is given by

Sz =
∑

n

cnnXnn +
∑
m�=n

cmnXmn. (A1)

For a single spin, we find

M1(Sz) = 〈Sz〉0 =
∑

n

cnnpn, (A2)

where pn = e−βEn/ZMF gives the population of the nth eigen-
state, and the MF partition function is ZMF = ∑

n e−βEn .
Defining Sz

i ≡ Sz(τi) and Xi
mn ≡ Xmn(τi), where the imag-

inary time dependence of the operators is given by O(τ ) =
eτHMF Oe−τHMF , we find the two spin cumulant M2(Sz

1S
z
2) =

〈Sz
1S

z
2〉0 − 〈Sz

1〉0〈Sz
2〉0 to be

M2
(
TτS

z
1S

z
2

)
=
∑
m,n

cmmcnn

〈
TτX

1
mmX2

nn

〉
0

+
∑

P {1,2}

∑
n>m

c2
mn

〈
TτX

1
mnX

2
nm

〉
0 −

[∑
m

cmmpm

]2

, (A3)

where P {i} denotes the set of all permutations. The imaginary
time-ordered products of the Hubbard operators are

−〈TτXnm(τ ′)Xmn(τ )〉 = pmnK
0
mn(τ ′ − τ ), (A4)

with pmn = pm − pn being thermal factors, and (in Matsubara
frequency space)

K0
mn(iωr ) =

∫ β

0
dτK0

mn(τ )eiωr τ = 1

Emn − iωr

, (A5)

where Emn = Em − En is the energy difference between the
mth and nth MF eigenstate.

To find the cumulants of three or more spins, we employ a
general reduction scheme [42] for the Hubbard operators

〈TτO(τ1) . . . Xmn(τ ) · · · O(τi)〉0

= K0
mn(τ1 − τ )〈Tτ [O(τ1),Xmn(τ1)] . . . O(τi)〉0

+K0
mn(τ2 − τ )〈TτO(τ1)[O(τ2),Xmn(τ2)] . . . O(τi)〉0

+ · · · + K0
mn(τi − τ )〈TτO(τ1) . . . [O(τi),Xmn(τi)]〉0,

(A6)

where O(τ ) = Xpq(τ ) denotes an arbitrary Hubbard operator,
and K0

mn(τ ′ − τ ) is given in (A5). The nth spin cumulant may
be written as

Mn

(
Sz

1 . . . Sz
n

) = 〈
Sz

1 . . . Sz
n

〉
0 −

∑
n1+...+nk=n

Mn1Mn2 . . . Mnk
,

(A7)

so at each order the only new term that needs to be computed
is the n spin correlation function 〈Sz

1 . . . Sz
n〉0. In the quantum

(T = 0) regime, terms in the n spin correlation function cancel
with all the lower order cumulants, leading to a significant
simplification. Here, we simply give the final results in the

limit T → 0 since they are necessary for the evaluation of the
fluctuation corrections contained in Sec. V. In order to present
the results, we define the following functions

Kpq
mn(iωr ; iωs) ≡ K0

mn(iωr )K0
pq(iωs),

rsKpq
mn(iωr ; iωs ; iωq) ≡ K0

mn(iωr )K0
pq(iωs)K

0
rs(iωq), (A8)

which simply represent chains of propagators between MF
eigenstates. For brevity, we make use of the notation
f (iωr1 . . . iωrn

) = f (r1 . . . rn) in the functions used below, in
discussing third-order and higher cumulants.

1. Second-order cumulant

Contracting the Hubbard operators and transforming to
Matsubara frequency space

M2(iωr1 ,iωr2 ) =
2∏

i=1

∫ β

0
dτie

iωri
τi M2(TτS1S2), (A9)

we find the second-order cumulant to be given by

M2(iωr1 ,iωr2 )

= β
∑
n>m

2c2
mnpmnEnm

E2
nm − (iωr1 )2

δωr1 +ωr2 ,0

+β2

⎛⎝∑
m

c2
mmpm −

[∑
m

cmmpm

]2
⎞⎠ 2∏

i=1

δωri
,0, (A10)

The second term in (A10) vanishes in the zero-temperature
limit and in the disordered phase of the system.

The connected MF longitudinal imaginary time corre-
lation function g(τ ) = −〈δSz(τ )δSz(0)〉0 follows from the
two-spin cumulant via a frequency summation g(iωr1 ) =
−β−1∑

r2
M2(ωr1 ,ωr2 ). Performing the frequency summation,

we find

g(iωr ) = −
∑
n>m

c2
mnpmn

2Enm

E2
nm − (iωr )2

−β

⎛⎝∑
m

c2
mmpm −

[∑
m

cmmpm

]2
⎞⎠ δωr ,0. (A11)

which we use in the discussion of RPA correlators in the main
text.

2. Third-order cumulant

In the low-temperature limit, the third-order spin cumulant
is found from Eqs. (A7) and (A8) to be

lim
T →0

M3(r1,r2,r3)

=
∑
n>1

(c11 − cnn)|c1n|2A0
n(r1,r2,r3)

+
∑
n>1

p>n

Re[c1ncnpcp1]A0
np(r1,r2,r3), (A12)
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where we use the abbreviated notation described above for the
the Matsubara frequencies and where

A0
n(r1,r2,r3) = β

∑
P {ωri

}
K1n

n1 (ωr1 ; ωr2 )δ∑ωri
,0,

A0
np(r1,r2,r3) = 2β

∑
P {ωri

}

Ep1En1 − (iωr1 )(iωr2 )[
E2

p1 − (iωr1 )2
][

E2
n1 − (iωr2 )2

]
× δ∑ωri

,0, (A13)

in which as before we have defined pmn = pm − pn, with
pn = Z−1

MF e−βEn . The notation
∑

P {ωri
} indicates a sum is to

be performed over every permutation of the Matsubara fre-
quencies. This result for the three-spin cumulant is necessary
for calculating the leading-order corrections to the mean field
magnetization in the high-density approximation.

3. Fourth-order cumulant

In the low-temperature limit, the same techniques give the
fourth-order cumulant as

lim
T →0

M4({iωri
})

=
∑
m�=n

c2
mm|cmn|2B1 +

∑
n>m

cmmcnn|cmn|2B2 +
∑
n>m

|cmn|4B3

+
∑

m�=n�=p

cmmcmncnpcpmB4 +
∑

p>n>m

|cmn|2|cmp|2B5

+
∑
m

∑
n>m

∑
p>m

p �=n

∑
q>m

q �=n,p

cmncnpcpqcqmB6, (A14)

where the coefficients B1–B6 are defined in terms of the
functions in (A8) as

B1 = βpmn

∑
P {ωri

}

nmKmn
mn (r1; r1 + r2; r3)δ∑ωri

,0,

B2 = −2βpmn

∑
P {ωri

}

mnKmn
nm (r1; r2 + r3; r2)δ∑ωri

,0,

B3 = βpmn

∑
P {ωri

}

mnKnm
nm (r1; r2; r3)δ∑ωri

,0,

B4 =
∑

P {ωri
}
β
(
pmn

mnKmn
np (r1; r2; r2 + r3)

+pmp
pmKmp

np (r1; r1 + r2; r3)
)
δ∑

ωri
,0,

B5 = β
∑

P {ωri
}

[
pmp

mpKpm
nm (r1; r2; r3)δ∑ωri

,0

+pmn
mnKpm

nm (r1; r2; r3)δ∑ωri
,0 −

−pnp
npKpm

nm (r1; r2; r1 + r3)δ∑ωri
,0
]
,

B6 = β
∑

P {ωri
}

[
pmq

mqKnp
nm(r1; r2 + r3; r2)δ∑ωri

,0

+pqp

(
qpKmp

nm (r1; r2 + r3; r2)

− qpKpn
nm(r1; r2; r3)

)
δ∑ωri

,0

+pqn
qnKpn

nm(r1; r2; r2 + r3)δ∑ωri
,0
]
. (A15)

Note that these results are quite general: In the main body
of the paper, we have used them for the toy model and for
the LiHoF4 system. The four-spin cumulant appears in the
quartic term u4 of the auxiliary field theory. We require its
zero-frequency and wave-vector limit in order to determine
the stability of the theory.

APPENDIX B: MAGNETIZATION CORRECTIONS

Here we express the leading-order correction to the MF
magnetization (see Secs. III and V)〈

δSz
k(τ )

〉 = 1√
βUk

〈φk(τ )〉φ (B1)

in terms of parameters inHMF . The average on the right 〈· · · 〉φ
is determined with respect to the effective Hamiltonian for the
auxiliary field Heff [φ] given in (37). We perform perturbation
theory in the mode-mode interactions between the auxiliary
field fluctuations. As discussed in Sec. V B, this leads to an
expansion in the inverse coordination number 1/zc, with the
leading-order correction to the MF magnetization involving a
single power of u3. Writing 〈δSz

k(τ )〉 = 〈Sz
k(τ )〉1 + 〈Sz

k(τ )〉2 +
· · · and transforming to Matsubara frequency space [Sz

k(τ ) =
β−1∑

r e−iωr τ Sz
k(iωr )], we find〈

Sz
k(iωr )

〉
1 = −1√

βVk

∑
{ri ,ki }

u3

3!

〈
φr

kφ
r1
k1

φ
r2
k2

φ
r3
k3

〉
φ
, (B2)

where we define φr
k ≡ φk(iωr ) for brevity. This correction is

of order 1/zc in the high-density approximation, with the next
contribution involving both u3 and u4 being of order 1/z3

c .
Contracting the fields and making use of the explicit expression
for u3 given in (36), we find〈

Sz
k(iωr )

〉
1 = −Do

k(iωr )

2β2
√

N

∑
r ′,k′

Tk′(iωr ′)M3(r,r ′, − r ′), (B3)

with M3(r1,r2,r3) ≡ M3(iωr1 ,iωr2 ,iωr3 ), the third-order cu-
mulant, given in Appendix A. Note that a factor of 1/2
has been introduced into (B3) to account for the fact that
the integration over the fields double counts each degree of
freedom. The renormalized interaction between the spins, or
T matrix, is defined by Tk(iωr ) = VkDo

k(iωr ). Quite generally,
contractions of the field operators in the perturbation expansion
lead to a renormalization of the powers of the interaction
appearing in the {un}. Put another way, magnetic fluctuations
renormalize the bare interaction between spins.

The static correction to the magnetization for a spin at
a single site follows from 〈Sz〉1 = 〈Sz

k=0(iωr = 0)〉1/
√

N ; it
follows that

〈Sz〉1 = − R0

2Nβ2

∑
r,k

Tk(iωr ) M3(0,iωr , − iωr ), (B4)

where R0 = Do
k=0(0) is the zero-frequency and wave-vector

component of the free field propagator. We restrict our attention
to the quantum (T = 0) limit, in which case the T matrix is

Tk(iωr )

∣∣∣∣
T =0

= Vk

∏
n>1

[
E2

n1 − (iωr )2
]∏

p

[(
E

p

k

)2 − (iωr )2
] , (B5)
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where the Enm are energy differences between MF eigenstates
and the E

p

k are the energies of the RPA modes of the system.
At zero temperature, R0 is simply the ratio

R0

∣∣∣∣
T =0

=
∏

n>1 E2
n1∏

p

(
E

p

k=0

)2 . (B6)

Combining terms and incorporating (A12) and (A13), we
find the leading-order quantum correction to the MF magneti-
zation to be

〈Sz〉1 = R0

2N

∑
k

Vk

⎡⎣∑
n>1

(c11 − cnn)|c1n|2χn

+
∑

p>n�=1

Re[c1ncnpcp1]χnp

⎤⎦ , (B7)

where the cmn are the MF matrix elements of the longitudinal
spin operator, and

χn = − 2

β

∑
r

3E2
n1 − (iωr )2

E2
n1 − (iωr )2

∏
m�=n,1

[
E2

m1 − (iωr )2
]∏

p

[(
E

p

k

)2 − (iωr )2
]
,

χnp = 4

β

∑
r

1∏
l

(
El

k

)2 − (iωr )2

{
En1

Ep1

∏
m�=n,1

[
E2

m1 − (iωr )2
]

+ Ep1

En1

∏
m�=p,1

[
E2

m1 − (iωr )2
]+ [

Ep1En1 + (iωr )2
]

×
∏

m�=n,p,1

[
E2

m1 − (iωr )2
]}

. (B8)

To find the magnetization corrections given in the main text,
we need to perform the frequency summations in χn and χnp.

For χn, the result is

χn|En �=E
p

k
= −2

{
En1

∏
m�=n,1

(
E2

m1 − E2
n1

)∏
p

[(
E

p

k

)2 − E2
n1

] coth

(
βEn1

2

)

+
∑

p

3E2
n1 − (

E
p

k

)2

E2
n1 − (

E
p

k

)2

∏
m�=n,1 E2

m1 − (
E

p

k

)2

2E
p

k

∏
q �=p

(
E

q

k

)2 − (
E

p

k

)2

× coth

(
βE

p

k

2

)}
, (B9)

provided that none of the differences between MF energy levels
are degenerate with the energies of the RPA modes; if a MF
level is degenerate with an RPA mode, we simply shift the MF
energy level by a small amount to avoid dealing with a higher
order pole. The χnp term yields

χnp =
∑

l

2

El
k

∏
q �=l

(
E

q

k

)2 − (
El

k

)2

{
En1

Ep1

∏
m�=n,1

[
E2

m1−
(
El

k

)2]
+ Ep1

En1

∏
m�=p,1

[
E2

m1 − (
El

k

)2]
+ [Ep1En1 − (

El
k

)2] ∏
m�=n,p,1

[
E2

m1 − (
El

k

)2]}

× coth

(
βEl

k

2

)
. (B10)

In the zero-temperature limit, coth ( βEl
k

2 ) is simply equal to
one. In the case of a spin-1/2 transverse Ising system without a
spin bath (a two-level system with a single RPA mode), all the
fluctuation results reduce to those of Stinchcombe [43,46,47],
which we have derived here in a different way. Equations (B7),
(B9), and (B10), are used to obtain the results presented in
Sec. V.
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