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Phase transition in SU(N) × U(1) gauge theory with many fundamental bosons
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Here we study the renormalization group flow of SU (N ) × U (1) gauge theory with M-fundamental bosons
in 4 − ε dimension by calculating the beta functions. We found a new stable fixed point in the zero mass plane
for M > Mcrit by expanding up to O(ε). This indicates a second-order phase transition. We also calculated the
critical exponents in both ε expansion and also in the large-M expansion.
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I. INTRODUCTION

Phase transitions in gauge theories are very interesting
because gauge theories appear as effective theories in many
physical problems. Historically, in particle physics, gauge
theories have been studied in detail because of their potential
application to phenomenology. More recently, there are several
examples of emergent gauge degrees of freedom in condensed
matter physics [1–7]. Phase transitions in those theories hold
very rich physics. We will be concerned solely with continuous
gauge symmetries.

The simplest example of a phase transition in a continuous
gauge theory is in U (1) gauge theory with a single boson. This
is the Ginzburg-Landau theory of superconductor-insulator
transition [8]. Fluctuations around mean field were first studied
by Coleman and Weinberg [9], who found that in d = 4, the
theory undergoes a first-order phase transition. This conclusion
was verified independently by Halperin, Lubensky, and Ma
(HLM) [10], who also carried out a ε expansion in d = 4 − ε

dimensions to first order in ε. They also showed d = 3 by
integrating out the gauge degrees of freedom that the transition
becomes weakly first order. Generalizing to M complex boson
fields, they found for M > Mcrit = 182.95 two more fixed
points appear, as shown in Fig. 1. It is seen that for M > Mcrit ,
there is a stable fixed point in the zero mass plane indicating a
second-order phase transition. HLM also calculated the critical
exponents for the transition in the ε expansion and in fixed
dimension d = 3 in the large-M approximation.

The case of a SU (2) gauge field coupled to M fundamental
bosons has been studied more recently by Arnold and Yaffe
[11]. They found a picture very similar to Fig. 1 in the ε

expansion. To O(ε) they found that for M > Mcrit = 359 there
are two charged fixed points. One of them is attractive in the
b − g2 plane, again indicating a second-order phase transition.
The SU (2) × U (1) case is known as the electroweak phase
transition.

It is known from several numerical studies [12–14] in lattice
gauge theory that in the case of M = 1 there exists a critical
ratio of the couplings such that for b/g2 > C there is no phase
transition at all, and for b/g2 < C the transition is first order.
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The second-order phase transition exists only if b/g2 = C.
The reason is that, for b/g2 > C, no symmetry is broken
in the SU (2) transition.

But this picture changes in a very significant way when
more than one species/flavor of boson are introduced (these
transform as higher representations under the gauge group). In
that case, as Fradkin and Shenker [15] show in lattice gauge
theory, a phase transition does occur for all the values of the
ratio of couplings. In a gauge theory with a nontrivial center,
the center survives for higher representations in unitary gauge
if the boson is in the adjoint representation. Introducing M

species of bosons leads to a global U (M) symmetry [16].
In the unitary gauge, the SU (N ) gauge symmetry breaks
down but this U (M) symmetry survives. The phase transition
corresponds to spontaneous breaking of this U (M) symmetry.

In this paper, we study SU (N ) × U (1) theory with M

flavors of bosons. Such a theory arises in a completely different
context, the study of SU (M) antiferromagnets on a square
lattice [1].

The Hamiltonian of this model is

H = J

M

∑
〈i,j〉

Ŝβ
α (i)Ŝα

β (j ), (1)

where Ŝβ
α (i) are the generators of SU (M) and 〈i,j 〉 represents

the nearest-neighbor sum on this bipartite square lattice. The
representation of the spins sitting in two sublattices (A and B)
can be described using the two integers describing the Young
tableau, nc and M . The representation of the spins is described
in Fig. 2. For the A sublattice, the number of boxes in the
column of the young tableau is N , where for the B sublattice,
the boxes in the column are M − N . The number of boxes in
every row is fixed to be nc.

Now, we introduce boson (Schwinger boson [17,18]) oper-
ators bαa(i) for sublattice A and b̄αa(j ) on each sublattice B

with the constraint,

b†αa(i)bαb(i) = δb
anc, no sum on i, (2a)

b̄αa†(j )b̄αb(j ) = δb
anc, no sum on j. (2b)

Now we represent the spin operator using the Schwinger
bosons. To calculate the partition function, one can use the
coherent states of these boson operators and represent the

2469-9950/2018/97(21)/214429(6) 214429-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.214429&domain=pdf&date_stamp=2018-06-25
https://doi.org/10.1103/PhysRevB.97.214429


ANKUR DAS PHYSICAL REVIEW B 97, 214429 (2018)

FIG. 1. Flow diagram in the u − e2(= α) plane for M > Mcric.
As one can see, there are four fixed points (the fixed points are also
plotted in black dots). One can see the Gaussian fixed point and the
well-known and famous Wilson-Fisher (WF) fixed point. But there are
two new charged fixed points there which are present only for M >

Mcric. One of them is a stable fixed point. There exists also a charged
fixed point which is not stable in this plane. This is what was found by
Halperin-Lubansky-Ma [10].

partition function as a path integral over the coherent states.
Then by introducing a Hubbard-Stratonovich field, one can
break the four-boson term and can introduce Lagrange multi-
plier to put constraint Eqs. (2). Now expanding these new fields
around the mean-field approximation, one can see that these
fluctuations have a gauge-field component. Using this, one can
write down the action around the mean field. After that, one
needs to integrate out the gapped fields to reach the final action.
One can then try to integrate the boson fields out to find the
coupling constant dependence on the boson number. Then a
gradient expansion of this action will lead to SU (N ) × U (1)
action with M fundamental boson. This tells us that the gauge
group of the spins on the lattice gives the boson flavor when we
expand around the mean field. Also, the representation of the
spins as defined by N gives us the gauge group of the action
around the mean field [1].

The phases SU (M) antiferromagnet are known for N = 1.
We want to check how the order of the phase transition depends
on the number of flavors for the SU (N ) × U (1). We want to
check this in two ways. First, we can try to integrate out the
gauge field, which we will do for M = 1 and N = 2 to show

FIG. 2. The representation in terms of Young tableau of SU (M)
lie group of the spins on sublattice A and B. The number of boxes in
every row is nc, where the number of boxes in the column for the A

sublattice is N and M − N for B sublattice.

that for a single flavor in fundamental representation, there is
no second-order transition, at least for N = 2. Next we want to
study the theory that arises from the SU (M) antiferromagnets.
We will study the renormalisation group (RG) flow of this
theory for arbitrary M and N and the fixed-point structure of
the theory,

S[ψ, �A, �Wa] =
∫

d3x

[∣∣(∂μ − iyAμ − igT aWa
μ

)
ψ

∣∣2

+ 1

4
FμνFμν + 1

4
GaμνGa

μν + a|ψ |2 + b

2
|ψ |4

]
.

(3)

We will study this model in the ε = 4 − d expansion in
O(ε). It is known in the U (1) case, a higher order analysis in ε

can change the RG flow of the theory qualitatively [11,19,20].
The RG beta functions are not convergent for ε = 1. These beta
functions can be asymptotic in nature for ε = 1; this has not yet
been proved [20]. If the beta functions are asymptotic, then one
can perform an analytic continuation of the beta functions (e.g.,
by the method of Padé approximation and Borel resummation).
Using these methods, it has been found that a stable fixed point
does exist for ε = 1 and the critical value of M is modified.
For M = 1, it has been seen that some flow can still escape to
the negative ψ4 coupling [19]. So there is a possibility that for
all values of M there can be second-order phase transition.

The first-order transition for ε = 1 in ε expansion has
also been studied before using renormalized thermodynamic
quantities [21,22].

The U (1) theory has also been studied by expanding at ε =
d − 2 up to order O(ε) and it has been found that the transition
is second order and a stable fixed point exists for all M [23].
Thus first-order ε = 4 − d expansion may not be valid for all
values of M .

The beta functions can be calculated in several ways. One of
them is functional renormalization group (FRG). The effective
action 
 is defined as the Legendre transform of W [J ] =
ln Z[J ] = ln

∫
Dϕe−S[ϕ]+∫

Jϕ (this is a schematic variable
representation, ϕ means all fields involved in the theory):


[φ] = sup
J

(∫
Jϕ − W [J ]

)
. (4)

This gives

0 = δ

δJ

(∫
Jφ − W [J ]

)
⇒ φ

= δW [J ]

δJ
= 1

Z[J ]

δZ[J ]

δJ
= 〈ϕ〉J .

Thus φ corresponds to the expectation value of the ϕ and
also δ
[φ]

δφ
= J , meaning that 
[φ] governs the dynamics of the

field expectation values taking into account all the fluctuations.
Parallel to this definition, we can define an infrared (IR)

regulated functional

eWk [J ] =
∫ 

Dϕe−S[ϕ]−�Sk [ϕ]+∫
Jϕ, (5)

where

�Sk[ϕ] = 1

2

∫
ddq

(2π )d
ϕ(−q)Rk(q)ϕ(q). (6)
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Rk is known as the regulating function. The interpolating
effective action is defined as


k[φ] = supJ

(∫
Jϕ − Wk[J ]

)
− �Sk[φ]. (7)

It should satisfy Rk→0 = 0, which in turn implies 
k→0 =

. Lets use a notation 


(n)
k [φ] = δn
k[φ]

δφ...δφ
. Now by defining

t = ln k


, one can show by taking derivative,

∂t
k[φ] = 1
2T r

[
∂tRk

(



(2)
k [φ] + Rk

)−1]
. (8)

This is the RG flow equation. Now we want to study a gauge
model. Here we have three different fields: the scalar field,
the U (1) gauge field, and the SU (N ) field. The generating
functional for this case will be

eWk [J,La
μ,Kμ;Āμ,B̄a

μ]

=
∫

DϕDaμDba
μ exp −

{
S
[
ϕ,aμ,ba

μ; Āμ,B̄a
μ

]
+�Sk

[
ϕ,aμ,ba

μ; Āμ,B̄a
μ

] + (GF )U (1) + (GF )SU (N)

−
∫ (

J ∗ϕ + Jϕ∗ + Kμaμ + Laμba
μ

)}
, (9)

where (GF ) means a gauge fixing term. For the non-Abelian
case, this will contain a contribution from the ghost fields [24].
And by �Sk , we mean sum of all the contributions from scalar
field �Ss

k , U (1) gauge part �S
U (1)
k , and SU (N ) gauge part

�S
SU (N)
k . Now one can define the 
k similarly as before. From

all this, similar to the previous case, one can write down the
flow equation as

∂t
k[ψ,Aμ,Ba
μ; Āμ,B̄a

μ] = 1
2 STr[(
(2) + Rk)−1(∂tRk)]. (10)

Here I have used two notations, one is that field depen-
dencies on the right hand side (RHS) have been suppressed.
Second, the meaning of STr (supertrace) is that the ghost fields
contribute with a negative sign [24]. Now this equation will be
gauge invariant if the background gauge field transforms the
same way the as the dynamical gauge field. This forms the basis
for the functional renormalization analysis for gauge theories
[24–32].

FRG is a very special method as these flow equations are
nonperturbative. However, one can reproduce the perturbative
results to a given order of ε from the full FRG equations for
Landau-Ginzburg theory of superconductors [26]. The critical
exponents of the superconductor-insulator phase transition are
also different in these two methods (FRG and ε-expansion) and
also the qualitative behavior of the flows changes significantly.
FRG shows that the stable fixed point exists for all values of M

[25,30], which is not seen in ε-expansion [10]. This suggests
that the type-II superconductor with sufficiently strong scalar
coupling will have a second-order phase transition. Recently,
it has been found that FRG approach can find corrections to
scaling in the critical theory of deconfined criticality, which
agrees well with some quantum Monte Carlo studies [27].

The phase transition in SU (M) magnets (Heisenberg
model) has been studied numerically before. Kawashima and
Tanabe [33] found evidence of emergent U (1) symmetry of
the ground-state space of the SU (M) Heisenberg model with
the fundamental representation. Beach et al. [34] developed

a quantum Monte Carlo algorithm to simulate this model
for continuous M in total singlet basis and found a phase
transition between Neél and VBC columnar phase occurring at
Mc = 4.57(5). They also identified the phase transition to be
second order with critical exponents, z = 1 andβ/ν = 0.81(3).

II. EFFECT OF GAUGE FLUCTUATIONS

First, we will try to integrate out the gauge field to see
what happens for M = 1(in the unitary gauge) to the action
defined as

S[ψ, �A, �Wa] =
∫

d3x

[∣∣(∂μ − iyAμ − igT aWa
μ

)
ψ

∣∣2

+ 1

4
FμνFμν + 1

4
GaμνGa

μν + a|ψ |2 + b

2
|ψ |4

]
,

(11)

where

Fμν = ∂μAν − ∂νAμ, (12)

Ga
μν = ∂μWa

ν − ∂νW
a
μ + gfabcW

b
μWc

ν , (13)

and as usual,

a = a′(T − Tc)

Tc

. (14)

This, in the pure U (1) case, leads to a weak first-order phase
transition as the gauge field around mean-field approximation
of the order parameter picks up a mass (in other words, this
will give us Meissner effect with a penetration depth defined
by the mass) [10].

The ψ field has N components. Now, the minimum of this
action is when all the fluctuations of fields are zero and |ψ | =
const. This value of the constant is well known, i.e.,

|ψ | = ±
√

−a

b
. (15)

Now for N = 2, one can choose a gauge to make, ψ1 = 0 and
ψ2 = √−a/b.

Now the question comes of the Ginzburg criteria.
Now we can expand the ψ field around the mean-field
point, i.e., ψ1(x) = ψ1R(x) + iψ1I (x) and ψ2 = √−a/b +
ψ2R(x) + iψ2I (x). Then, by putting this back into the action,
we get that only the ψ2R(x) field becomes massive with
mass 2|a|. Then one can calculate the partition function.
The calculation of the partition function can be done in the
momentum space much more easily. But the partition function
is not good enough as it’s not measurable. So one needs
to calculate some physical quantities for the analysis. The
expectation is that the correction term to the physical quantity
from the fluctuation of the fields must be smaller than the value
calculated from the mean-field approximation. That leads to the
condition known as the Ginzburg criteria. This calculation is
exactly similar to the U (1) case. In our case, we can calculate
the average energy or the specific heat. This result gives exactly
same relation as the U (1) case,

T − Tc

Tc

<
1

32π2

b2T 2
c

a′ . (16)
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In the case of superconductor theory, we actually know the
microscopic theory (BCS theory) and from there one can
exactly find these coefficients a,b in terms of microscopic
parameters [8]. This ensures that the Ginzburg criteria is met
and we can actually use constant mean-field solution. In our
case, we don’t know the microscopic parameter values but for
now, we will assume that the ψ(order parameter) fluctuation
is very small and we can use the mean-field value of the field.

Next, we need to consider the case where we choose a
specific gauge and want to calculate the effect of the gauge-field
fluctuations. Again we will do it for N = 2. We choose the
gauge such that ψ1 = 0 and ψ2 = v. For N = 2 the generators
are

T a = 1
2σa. (17)

We find that the mass matrix of the fields is not diagonalized.
After the mass matrix diagonalization, we find that there will
be three gauge fields with mass and one massless gauge field
but interacting with each other. The massive fields are W 1

μ,W 2
μ

with mass square, m2
1 = m2

2 = (1/2)g2v2 and Zμ with mass
square, m2

Z = v2(g2 + 4y2)/2. We will also have a massless
field Bμ. The definition of Bμ and Zμ is

Bμ = sin θWAμ + cos θWW 3
μZμ = cos θWAμ − sin θWW 3

μ,

(18)

where sin θW = g/
√

g2 + 4y2 and cos θW = 2y/
√

g2 + 4y2.
As mentioned before we want to calculate

exp(−S(ψ)/T ) =
∫

DBDZDWi exp[−S[ψ, �A, �Wa]/T ].

(19)

For our gauge, we find that

dS

dv
= 2(vol)av + 2(vol)bv3 + (g2/4)

〈
Wi

μ

2〉
v

+ (g2/4 + y2)
〈
Z2

μ

〉
v. (20)

To calculate these averages, we have used only the leading
order of the propagator. In this case, the Wi

μ fields and Zμ

fields are both massive. Thus their propagator will be (up to
the leading order)

〈
Wi

μ(r)Wjμ(r)
〉 = (vol)

∫
d3k

(2π )3

δij δμν(δμν − kμkν/k2)

k2 + m2
i

,

(21)

〈Zμ(r)Zμ(r)〉 = (vol)
∫

d3k

(2π )3

δμν(δμν − kμkν/k2)

k2 + m2
z

. (22)

Keeping our calculation to the leading order, we can exactly
calculate these integrals just like the U (1) case [10]:

〈
Wi

μ

2〉 = 2(vol)

π2

[
 − miπ

2

]
, (23)

〈
Zμ

2
〉 = 2(vol)

π2

[
 − mZπ

2

]
, (24)

where  is some momentum UV cutoff of the momentum.

Putting all this to Eq. (20) and integrating over v we get

S

vol
=

[(
a + 3

2π2

)
v2 + b

2
v4 − 3

(
2g +

√
g2 + 4y2

)
v3

4
√

2π

]
.

(25)

This introduces a v3 term describing a weak first-order
phase transition exactly like in U (1) case [10]. From this, one
can calculate the size of the phase transition, etc.

III. BETA FUNCTIONS AND FIXED POINTS

The more general way to find β-function is to carry out RG
calculations in d = 4 − ε and for general N using dimensional
regularization. We define here for simplicity of the calculations
α1 = y2 and α2 = g2 [35–37] . Thus the beta functions are [38]

βα1 = εα1 − α2
1NM

24π2
, (26)

βα2 = εα2 − α2
2

48Nπ2
(M − 22N ), (27)

βa = a

[
2 − b(NM + 1)

8π2
+ 3α2

8π2

(
N2 − 1

2N

)
+ 3α1

8π2

]
, (28)

βb = εb − b2(NM + 4)

8π2
− 3α2

1

4π2
− 3α2

2(N3 + N2 − 4N + 2)

32π2N2

− 3α1α2

π2N
(N − 1) + 3bα1

4π2
+ 3bα2

4π2

(
N2 − 1

2N

)
. (29)

One can easily see from the structure of the β-function that
for N = 1, βα1 ,βa,βb completely decouples from the α2 and
one can check that it has the correct structure for U (1) gauge
theory with multiple scalar [10,37]. Next one can look into the
fixed point structure of this theory (see Figs. 3 and 4). There are
eight possible fixed points of these β-functions. Two of them
are the old Gaussian and the Wilson-Fisher fixed point and
fixed points where there is no SU (N ) or U (1) charge [10]. As
before, the U (1)-charged fixed points do not exist for NM <

182.952. There are four more fixed points that arise in the
theory and one of them is critical, as one is completely stable
in all direction except for the temperature (mass) direction.

FIG. 3. RG flow diagram for the N = 2 and M = 1500 where all
the attractive points exist. As we can see here, there are eight fixed
points and one attractive in all directions (other than mass). That fixed
point denotes the second-order phase transition of the system.

214429-4



PHASE TRANSITION IN SU (N ) × U (1) GAUGE … PHYSICAL REVIEW B 97, 214429 (2018)

FIG. 4. RG flow diagram for N = 2 and M = 1100 where the
attractive point does not exist and, as we can see, the flow does not
have eight fixed points anymore. The attractive doubly charged fixed
point is now gone and all flow with any nonzero initial charge flows
to negative mass, denoting a first-order phase transition.

This point is doubly charged. But this fixed point does not
exist for M < Mcrit . This Mcrit is different for different values
of N . For example, for N = 2, Mcrit = 1277.47. There are
two singly charged (SU (N ) charge) fixed points also. These
SU (N ) charged fixed points also have some critical value of
M as a function of N . As previously calculated for N = 2, this
critical value is 359 [11].

IV. CRITICAL EXPONENTS

The critical exponents of this phase transition can be easily
calculated in the regular way and we can see that ν → 1 and
η → 0 as M → ∞ for ε = 1. In terms of fixed point value of
the parameters (a∗ = 0,b∗,α∗

1 ,α
∗
2 ) [39],

1

ν
= 2 − b∗(N + 1)

8π2
+ 3α∗

1

8π2
+ 3α∗

2

8π2

(
N2 − 1

2N

)
, (30)

η = −
[

3α∗
1

4π2
+ 3α∗

2

8π2

(
N2 − 1

2N

)]
. (31)

As we have seen, these beta functions have a very interesting
structure of fixed points (we have M > N ). There are eight
fixed points, but not all of them exist at every value of M and
N . The M and N comes from the microscopic theory [1]. For
N = 1, the theory contains only the Abelian gauge field. The
question one needs to ask is for what values of N and M there
exist a doubly charged critical point. We can easily find out the
relation between N and Mcric. That relation is quadratic:

Mcrit = 607.765 + 174.594N + 106.058N2. (32)

The region on the N − M plane for which the theory has a
critical point is in the shaded region of Fig. 5.

The critical exponents can also be calculated in fixed
dimension (d = 3) in the large M limit, where the coupling
constants are b ∼ O(1/M),y ∼ O(1/

√
M),g ∼ O(1/

√
M).

This method is similar to what is described by Ma [40]. From
this calculation, we get for M complex fields in fundamental

FIG. 5. Shaded region on N − M plane for which the theory has
a critical point.

representation of SU (N ),

η = − 1

NM
[2.0264 + 2.1615(N2 − 1)], (33)

ν = 1 − 4.86

NM
− 4.32

NM
(N2 − 1). (34)

This result matches with the already known results for
N = 1 [10,41].

V. DISCUSSION AND CONCLUSION

From this analysis, we found that for SU (M) antiferromag-
nets, there is a temperature-driven phase transition for a very
large M compared to N (representation of the spin as defined
in the introduction). This critical value Mcrit can be calculated
for as a function of N .

The critical exponents of this second-order phase transi-
tion are calculated in both ε expansion and in the large-M
expansion. The next question is what the phases are that lie on
either side of the phase transition. But we should be careful
in attaching more deep meaning to this method, as mentioned
in the introduction, that it has been observed that higher order
corrections in ε can alter the qualitative structure of the RG
flow for more simpler gauge group U (1) [11,19]. Also, as one
expects that beta functions are probably asymptotic in nature,
thus one needs to do some analytic continuation for correct
results [20]. It might be insightful to do an RG for d = 2 + ε

dimensions expanding in order of ε, as it already gives a very
interesting result for U (1) case [23]. All this we expect to do in
the future as they have potential to give very interesting results
and correction to current understanding.

As discussed in the introduction, FRG is a nonperturbative
method which produces a qualitatively different result than the
ε-expansion for U (1)-gauge theory with many complex scalar
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fields [25–27,30]. It will be interesting to analyze our theory
using FRG in future.

It has already been discovered numerically that for M = 1
there is no electroweak phase transition at all for large value
of b/g2 [12–14]. For large M , there is a phase transition. This
phase transition corresponds to the breaking of the leftover
symmetry (U (M) flavor symmetry) [15,16]. It is known that
those phases are connected to conventional Higgs and confine-
ment phases [15]. The lattice limit of the order parameters still
remains an open question.

We analyzed this theory with no topological terms. The
critical exponents can also be calculated with a topological
term; the U (1) case has been calculated recently [41] but

SU (N ) × U (1) case still remains open. I plan to study in future
the effect of the topological term in this Lagrangian.
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