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Weak magnetic anisotropy in GdRh2Si2 studied by magnetic resonance
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The antiferromagnetically (AFM) ordered state of GdRh2Si2 which consists of AFM-stacked ferromagnetic
layers is investigated by magnetic resonance spectroscopy. The almost isotropic Gd3+ paramagnetic resonance
becomes anisotropic in the AFM ordered region below 107 K. The emerging internal anisotropic exchange fields
are still small enough to allow an investigation of their magnetization dynamics using a standard microwave-
frequency magnetic resonance technique. We could characterize this anisotropy of the excitation at 9 and 34 GHz
and found that the material can serve as an interesting illustration of what happens with the dynamics of the
order parameter as the anisotropy restrictions become very soft. We have worked out in detail how the magnetic
resonance shifts due to a characteristic property of the system, namely, the retardation of the magnetization when
the sample is rotated in an external field. To describe the weak in-plane anisotropic behavior, we derived an AFM
resonance condition in closed analytical formulas.
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I. INTRODUCTION

GdRh2Si2 belongs to the silicides with tetragonal ThCr2Si2

structure which show exceptional magnetic properties, e.g., the
antiferromagnetic Kondo systems YbRh2Si2 [1] and CeRh2Si2

[2]; HoRh2Si2, which exhibits so-called component-separated
magnetic transitions [3] and a temperature-tunable surface
magnetism [4]; and SmRh2Si2, showing unusual valence states
of the Sm ions at the surface and in the bulk [5]. GdRh2Si2

possesses antiferromagnetic (AFM) order of well-localized
magnetic moments appearing below TN = 107 K [6], which
is characterized by an AFM propagation vector (001) and a
stacking of ferromagnetic layers [6,7]. In spite of the pure
spin ground state of Gd3+ a weak in-plane anisotropy occurs
which is indicated by the magnetization behavior of the ordered
moments being aligned in the basal plane. A mean-field model
could describe the magnetization data with the assumption that
the ordered magnetic moments are aligned parallel to the [110]
direction [8].

Recent angle-resolved photoelectron spectroscopy revealed
two-dimensional electron states at the Si-terminated surface
of GdRh2Si2 and their interplay with the Gd magnetism.
These surface states exhibit itinerant magnetism, and their spin
splitting arises from the strong exchange interaction with the
ordered Gd 4f moments [9].

Magnetic resonance techniques are widely used to study the
dynamic properties of magnetic ordering [10]. With GdRh2Si2

we study a prototypical material which not only exhibits a
simple magnetic structure but also allows for the investigation
of the magnetically ordered regime with conventional mag-
netic resonance techniques at low fields and frequencies. We
could estimate the temperature dependence of the anisotropy
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fields from the data by applying a standard condition for the
resonance modes in the ferromagnetic sublattices (Sec. III B).
However, for the resonance anisotropies observed in GdRh2Si2

common AFM resonance theories [10,11] turned out not to
be applicable because, for instance, the in-plane (a-a plane)
anisotropy shows torque effects; that is, the magnetization
follows the external field in a retarded way. We refrained from
applying the recently reported simulation tool for the com-
plicated case of noncollinear antiferromagnets [12]. Instead,
we utilized a mean-field model [8] for the AFM ordering
to describe the angular dependence of the resonance field
(Sec. III C).

GdRh2Si2 is best suited to studying the weak a-a plane
anisotropy because no hysteresis occurs in the magnetization.
This case is rarely reported [13], and to the best of our
knowledge, no detailed experimental study of torque effects
on the magnetization has been done.

II. EXPERIMENT

High-quality single-crystalline GdRh2Si2 was used in this
study, the growth and characterization of which is described in
Ref. [6]. We investigated the paramagnetic resonance (above
TN ) and the magnetic resonance of the ordered moments (be-
low TN ) by using a continuous-wave electron spin resonance
(ESR) spectrometer together with helium- and nitrogen-flow
cryostats allowing for temperatures between 5 and 300 K. Two
frequencies, ω/2π = 9.40 GHz (X band) and ω/2π = 34.07
GHz (Q band), were utilized to evaluate the resonance field
condition, which in the paramagnetic region simply reads
ω/γ = Hres, where γ = gμB/h̄ is the gyromagnetic ratio and
g is the spectroscopic splitting factor.

In general, an ESR spectrometer allows us to measure the
absorbed power P of a transversal magnetic microwave field
as a function of a static and external magnetic field μ0H . A
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lock-in technique improves the signal-to-noise ratio by a field
modulation which then yields the derivative of the resonance
signal dP/dH as the measured quantity. The resulting spectra
were fitted with a Lorentzian function including the influence
of the counterrotating component of the linearly polarized
microwave field [14]. From the fit we obtained the resonance
field Hres and the linewidth �H (half width at half maximum).

III. RESULTS AND DISCUSSION

A. Paramagnetic regime

For the paramagnetic regime, i.e., for T > TN = 107 K, the
ESR spectra and their temperature dependence was discussed
in a recent paper [15]. The spectra display a behavior typically
expected for well-defined local moments in a metallic environ-
ment with a temperature dependence expected for anisotropic
exchange-coupled paramagnets [16–18]. For temperatures
near magnetic ordering the critical linewidth divergence could
be described by a slowing down of in-plane ferromagnetic
fluctuations within a model for a three-dimensional Heisenberg
ferromagnet [19].

B. Ordered regime: Temperature dependence

GdRh2Si2 is a layered antiferromagnet below TN = 107 K.
The Gd 4f moments are ferromagnetically ordered within the
basal plane (with alignment parallel to the [110] direction),
while they stack in antiferromagnetic order along the [001]-
direction [8].

Figure 1 shows selected spectra for the in-plane direction
H‖100. Upon cooling below TN = 107 K the paramagnetic
resonance develops into a resonance mode of the AFM ordered
system. For temperatures below ≈65 K the spectra consist of
more than two lines. The spectral structure indicated by open
circles appears near the fields of the spin-flop transition (from
magnetization data [6,8], indicated by stars). By sweeping
across the spin-flop field the internal field rapidly changes,
and during this change it also matches the resonance condition
[Eq. (2)], which then leads to the observed structure.

In a narrow temperature region between 55 and 65 K another
mode in the H‖100 spectra is observed, as indicated by the
open squares. We suspect that this mode is part of one of the
observed resonance branches.

The spectral structures could be well described by
Lorentzian line shapes, which results in the resonance fields
and linewidths shown in Fig. 2. For the external field along
the easy direction [110], the X-band spectra disappear at
temperatures below ≈60 K, whereas the Q-band spectra are
well defined down to the lowest temperatures. This means
that with decreasing temperature an increasing anisotropy field
corresponds to an increasing excitation gap, which below
≈60 K is in between the X- and Q-band frequencies. With
increasing the temperature towards TN the anisotropy of the
line parameters decreases because the anisotropy field becomes
smaller.

The in-plane anisotropy field HA1 can be estimated from
the resonance field as follows. The conditions [10] of a
ferromagnetic (FM) resonance for a sample with cubic crystal
structure may be used for an approach to describe the resonance
fields for the ferromagnetic planes in GdRh2Si2. For our case
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FIG. 1. X-band (9.4 GHz) magnetic resonance spectra at various
temperatures, mostly in the magnetically ordered region (TN =
107 K), for the external field along the particular in-plane direction
[100]. Open squares and circles indicate the resonance fields of
additional lines at fields below the main line; see also corresponding
symbols in Fig. 2. Stars indicate the spin-flop field as determined from
magnetization data [6,8].

with the tetragonal in-plane anisotropy the symmetries are
the same as those for the cubic case. With this, we get the
resonance conditions which we apply to both FM sublattices
in the material: for the easy direction 〈110〉,

ω/γ = Hres + 2HA1; (1)

for the hard direction 〈100〉,

ω/γ =
[

(Hres − 2HA1)

(
Hres + HA1 + 1

2
HA2

)]1/2

. (2)

Here, HA1,A2 = K1,2/M are anisotropy fields, with K1,2 being
first- and second-order anisotropy constants. From Eqs. (1) and
(2) we calculated HA1, neglecting HA2: for the easy direction
〈110〉,

HA1 = 1
2 (ω/γ − Hres); (3)

for the hard direction 〈100〉,

HA1 = −Hres/4 +
√

9
16H 2

res − 1
2 (ω/γ )2. (4)

Figure 3 shows the results of Eqs. (3) and (4) using the
experimental temperature-dependent Hres. For both in-plane
directions the temperature dependencies of the anisotropy
fields HA1 are similar and thus provide a reasonable esti-
mate of the value for HA1. However, they show different
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FIG. 2. Temperature dependence of resonance field Hres and
linewidth �H for the external field along two different in-plane
directions and two microwave frequencies as indicated. Solid lines
guide the eyes. Open squares and circles indicate Hres of additional
lines, as shown in Fig. 1.

characteristics; the X-band data even seem to cross. This
indicates that the basic approach of just using the resonance
condition of a FM sublattice as described above is not sufficient
to describe our data.

The anisotropy field HA1 has to be distinguished from the
internal exchange fields which lead to magnetic order. The
antiferromagnetic order corresponds to an internal, in-plane
exchange field parallel to the [001] direction which is much too
large for an AFM resonance mode to be observed at gigahertz
frequencies. For B‖001, according to Eq. (A2) in Appendix A,
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FIG. 3. Calculated temperature dependence of the anisotropy
field according Eqs. (3) and (4) for the data at 9.4 and 34 GHz.

the internal field is

Bx
interior,A,B = 3kB

μ2
eff

TN

√
M2

sat

(
1 − T

TN

)
− (χ⊥Bz)2. (5)

Without an external field one obtains for T → 0, Msat = 7μB ,
μeff = 8.28μB , TN = 107 K, Bx

interior,A,B = 48.8 T. Hence, in
order to observe an antiferromagnetic resonance a resonance
frequency of ν = gμB/hBx

interior,A,B = 1.37 THz (g = 2) is
required. This may be hard to verify because terahertz (THz)
spectroscopy requires samples with a good transmission for
THz radiation, which is not the case for GdRh2Si2.

The z component of the internal field is solely determined
by the external field Bz as

Bz
interior,A,B = 3kB

μ2
eff

�Wχ⊥Bz, (6)

again using Eq. (A2). One gets withχ⊥(T = 78 K) = 0.1μB/T
and �W = 8 K

Bz
interior,A,B/Bz = 0.052. (7)

This means that if an external field is applied along the c axis,
only ≈5% (at T = 78 K) is internally available as an effective
field for the magnetic resonance. For example, using Bz = 6 T
from an estimated value μ0H

‖
res = 6 T of the out-of-plane

uniaxial resonance field (Fig. 4, top left frame), one gets
Bz

interior,A,B = 0.31 T. This value is close to the value for the
X-band resonance field of Gd3+ in the paramagnetic state [15]
and also close to the resonance field along the direction [110].

C. Ordered regime: Anisotropy at 78 K

We investigated the anisotropy of the X-band data at T =
78 K, where the linewidth for the [110] direction shows a
minimum (see Fig. 2). The anisotropy of the resonance field
and linewidth shown in Fig. 4 is considerably stronger for
tilting the external field out of the tetragonal plane (angle �,
left frame) than rotating it within the plane (angle ϑ , right
frame). Interestingly, the out-of-plane anisotropy can be nicely
described by a uniaxial behavior (solid lines, left frame), just
like a paramagnetic resonance with a uniaxial crystalline field
anisotropy (Eq. (1.49a) in Ref. [20]) where the internal field is
always aligned along the external field. Also, the above internal
exchange-field estimation, Eq. (7), shows that the value of the
resonance field corresponds to a typical g value of Gd3+, as
observed in the paramagnetic regime [15].

The in-plane anisotropy as shown in the top right frame of
Fig. 4 presents a 90◦ periodicity of both resonance field and
linewidth, which reflects the fourfold symmetry in the tetrago-
nal basal plane. The open symbols show the out-of-plane data
of the left frame. Obviously, the angular dependencies of both
in-plane and out-of-plane data sets are very similar near the
easy direction of magnetization, [110]. Such a behavior is not
astonishing and can be explained as follows: Magnetization
measurements at T = 78 K on single crystals yield a spin-flop
field Bsf ≈ 250 mT for a field parallel to the [100] direction
and a domain-flip field Bdf ≈ 160 mT for a field parallel to
the [110] direction [8]. This implies that for fields of the
order of the resonance field, applied along a main symmetry
direction, the moments of both magnetic sublattices are in good
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FIG. 4. Angle dependence of X-band resonance field Hres and
linewidth �H ; [110] is the easy direction of magnetization. The
external field is oriented by angles � and ϑ respective of the indicated
crystalline directions. Top left: Out-of-plane anisotropy. Solid lines
indicate uniaxial behavior with μ0H

‖
res = 6 T, μ0H

⊥
res = 0.29 T and

μ0�H ‖ = 4 T, μ0�H⊥ = 0.03 T. Top right: In-plane anisotropy
with external field H in the basal plane (001) (c ⊥ H ) at varying di-
rections. Open squares indicate the data of the left frame. Bottom: Red
and green lines indicate ξ = (γD/γM )2 with ξ → 0 [best fit according
to Appendix B, En. (B9)] and ξ = −1 (according to Appendix C). The
blue line depicts the expected behavior for a uniaxial antiferromagnet
with basal plane anisotropy [11] and instantaneous alignment of the
magnetization with the external field.

approximation, aligned perpendicular to that field (Figs. 3 and 5
in Ref. [8]). The magnetic moments can therefore be described
as one large domain that extends over the whole single crystal.
Upon rotating the field in the basal plane away from a main
symmetry direction, the magnetizations of the two sublattices
are not equivalent anymore, and a sine-like modulation of the
resonance field occurs.

FIG. 5. The choice of the coordinate system.

The in-plane behaviour deviates from a simple sine-shaped
curve which is given in the textbook (Ref. [11], Eq. (4.41))
for a tetragonal crystal. The observed deviation is caused
by torque effects since the magnetization does not follow
the rotating field instantaneously but is retarded. This effect
can be studied well in GdRh2Si2 since no hysteresis in the
magnetization interferes with it. In AFM materials hysteresis
effects may be due to the switching of magnetic domains or
metamagnetic transitions and would result in an asymmetric
angular dependence of the resonance field. Such an asymmetry
is not observed in GdRh2Si2.

To model the in-plane behavior and to describe the
anisotropy in the FM sublattices the solutions given by the
standard theory for an AFM resonance [10] are not suffi-
cient. We are not aware of any published approach which
would be applicable to GdRh2Si2. Therefore, we derived an
antiferromagnetic resonance condition for this anisotropy as
described in Appendix B. The mean-field model that describes
the magnetization of the system [8] together with the resonance
condition (B2) predicts the sine-like modulation with excellent
quantitative consistency, as demonstrated by the red solid line
in the bottom frame of Fig. 4 which depicts the best fit with
ξ = 0 of Eq. (B9). The situation can also be described by
including the dynamics of the system, which is demonstrated
in Appendix C. This yields the green solid line with ξ = −1 for
the precession of the order parameter on an exact circle around
its equilibrium direction. For an elliptic precession we expect
a different value, such as ξ = 0, which fits the data slightly
better. Due to a lack of magnetization data, we are not able to
determine the restoring force in the basal plane acting on the
order parameter which would be necessary to determine the
eccentricity of its elliptic orbit.

The mean-field model [8] shows that the values of BD and
BM (see Appendix B, Fig. 5 ) are different for different AFM
domains. When approaching the [110] direction, the energy
difference between the domains decreases, and according to
the domain distribution estimated by the Ising chain model
[8], the domains coexist. On the other hand, by approaching
the [100] direction, the predicted values of BD and BM become
almost equal, such that the magnetic resonance frequency
of both domains becomes similar, too. The structure in the
angle dependence of the linewidth around ϑ = 45◦,135◦ may
therefore be due to a superposition and exchange narrowing of
anisotropic resonance signals arising from different domains.
A similar behavior was suggested for CdCr2S4, in which four
resonance fields are combined via exchange narrowing into
one line [21].

IV. SUMMARY

GdRh2Si2 is an exemplary tetragonal system for easy-plane
magnetic order with a weak in-plane magnetic anisotropy.
We investigated the temperature dependence of the resonance
field of two in-plane directions as well as the in-plane and
out of-plane anisotropies. We found that standard textbook
approaches cannot describe the data satisfactorily. Our pre-
sented modeling is restricted to the a-a plane and is suffi-
cient to explain one of the two resonance modes. In order
to completely describe the magnetization dynamics detailed
knowledge about not only the weak in-plane anisotropy [8]
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but also the strength of the out-of-plane forces is necessary.
We have worked out in detail how the magnetic resonance
shifts due to a characteristic property of the system, namely,
the retardation of the magnetization when the sample is rotated
in an external field. We gave a complete description of this
particular effect using closed analytical formulas. This torque
effect is not clearly worked out in the literature and can
nicely be observed in GdRh2Si2 because pure single crystals
were available and because of the absence of hysteresis in
the magnetization. Our investigations of the weak in-plane
anisotropy can serve as an interesting illustration of what
happens with the dynamics of the order parameter as the
anisotropy restrictions become very soft.
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APPENDIX A: INTERNAL EXCHANGE FIELD
IN THE AFM PHASE

In Ref. [8] a free-energy-based model to describe the AFM
phase of GdRh2Si2 was introduced. The free energy is

F = −T S − 1
2 (MA + MB) · B + φ(MA,MB)

= −T S − 1
2 (MA + MB) · B + EFM + EAFM + Fan,

with the contribution within a plane

EFM = −3kB

μ2
eff

(�W + TN )
1

8

(
M2

A + M2
B

)
and between planes

EAFM = −3kB

μ2
eff

(�W − TN )
1

4
( MA · MB ).

The anisotropic part Fan will be neglected for the discussion
of the c direction. We consider the field that is produced by a
ferromagnetic plane B and acts on an ion of the sublattice A,

F = −1

2
MA · B︸ ︷︷ ︸

Zeeman Term

− 3kB

μ2
eff

(�W − TN )
1

4
( MA · MB )︸ ︷︷ ︸

between layers

+ · · ·

= −1

2
MA

[
B + 3kB

μ2
eff

(�W − TN )
1

2
MB )︸ ︷︷ ︸

Binterior,B

]
+ · · · .

In the following, we determine the magnetization MB of one
ferromagnetic layer. We have

M2 + D2 = D2
0, D0 = Msat

√
1 − T

TN

,

with Msat = 7 μB. For the field along the c direction we have
M ⊥ D, and in particular

M(B) = χ⊥Bz.

This results in

MA = (D,0,M) = (√
D2

0 − (χ⊥Bz)2,0,χ⊥Bz

)
,

MB = (−D,0,M).

Therefore, we have

M = 1
2 (MA + MB) = (0,0,M),

D = 1
2 (MA − MB) = (D,0,0).

For the choice of the coordinate system see Fig. 8 in Ref. [8].
The field that acts on an ion of sublattice A, which is created
by sublattices A and B, reads

Binterior,A,B(T ,Bz) (A1)

= −2
∂

∂MA

[EFM + EAFM]

= 3kB

μ2
eff

[
�W

1
2 (MA + MB) + TN

1
2 (MA − MB)

]
= 3kB

μ2
eff

{
�W

2
M + TN

2
D

}

= 3kB

μ2
eff

⎛
⎜⎝TN

√
M2

sat(1 − T/TN ) − (χ⊥Bz)2

0

�W χ⊥Bz

⎞
⎟⎠. (A2)

The values of �W = 8 K, TN = 107 K, μeff = 8.28μB, and
χ⊥ = 0.149μB/T have been determined by magnetic measure-
ments [6,8].

APPENDIX B: IN-PLANE ANISOTROPY

This appendix derives a fit formula using a general ansatz
without knowledge of the dynamics. In the following, we
consider the behavior of one domain. We use the mean-field
model developed in Ref. [8] to predict the ESR resonance
field for an external field B applied perpendicular to the
crystallographic [001] direction. The free energy

F (ϕ) = F0(D0) − B2

4
(χ⊥ + χ‖) − B2

4
(χ⊥ − χ‖) u

+B2
sf

8
(χ⊥ − χ‖) sin2 2ϕ,

with u = − cos(2ϑ − 2ϕ), where Bsf , χ⊥, and χ‖ are temper-
ature dependent, Eq. (6) [8], and the magnetization

M = χ̂B = χ⊥ (1 − eD ⊗ eD) B + χ⊥ eD ⊗ eD B,

Eq. (4) [8], serve as the starting point. See Fig. 5 for the choice
of the coordinate system. For our purpose it is sufficient to
ignore χ‖. The ESR interaction is so fast that we do not expect
an isothermic relaxation. Here, only χ⊥ is relevant since this
keeps the entropy unchanged. Therefore, the magnetization
becomes

M = χ⊥ BMeM,
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with BM = B · eM for B aligned perpendicular to the [001]
direction. The free energy

F (ϕ) = F0 − χ⊥
B2

4
[ 1 − cos(2ϑ − 2ϕ) ] + χ⊥

B2
sf

8
sin2 2ϕ

can be minimized with respect to ϕ

∂

∂ ϕ
F (ϕ) = χ⊥

B2

2
sin(2ϑ − 2ϕ) + χ⊥

B2
sf

4
cos 2ϕ sin 2ϕ

= 0.

With BD = B cos(ϑ − ϕ) and BM = −B sin(ϑ − ϕ) the min-
imum condition reads

−BD BM + 1
4 B2

sf sin 4ϕ = 0. (B1)

The decomposition of B = Bext (Fig. 5) into BD and BM is
done with respect to one AFM domain which consists of two
FM sublattices. In the paramagnetic regime, the ESR frequency
ω can be decomposed in the following way: The square of ω

is the sum of three parts that arise from the three components
of the external field. This reads

ω2 = ω2
x + ω2

y + ω2
z ,

with

ωx = γ Bx, ωy = γ By, ωz = γ Bz.

We deduce a similar ansatz to describe the ESR frequency in the
ordered regime. In particular, we describe the ESR behavior
of one certain domain. First of all, we introduce ωfield and
take into account that the external magnetic field decomposes
into a parallel component BD and orthogonal component BM

with respect to the ordering parameter D. Furthermore, we
account for the anisotropy in the system by utilizing ωaniso =
ωaniso(ϕ), which is a function of the order parameter ϕ. These
considerations lead to the ansatz

ω2 = ω2
aniso + ω2

field(B).

An arbitrary analytic function that respects the symmetry of
one domain has the form

φ(B) = φ0 + cD B2
D + cM B2

M,

and we can write

ω2
field(B) = γ 2

D B2
D + γ 2

M B2
M.

For symmetry reasons, there is a π/2 periodicity upon rotations
in the basal plane of the tetragonal lattice, such that

ω2
aniso = ω2

0,an + ω2
1,an cos 4ϕ,

where we take the constant and the first nonvanishing term of
the Fourier series into account. Summation yields

ω2 = ω2
0,an + ω2

1,an cos 4ϕ + γ 2
D B2

D + γ 2
M B2

M (B2)

for the resonance frequency. To introduce the amplitudes into
the fit formula, we use the [100] direction, where the resonance
field has its maximum Bmax, and the [110] direction, where
the resonance field has its minimum Bmin. We choose the
coordinate system such that ϕ is the angle between the [110]
direction and the ordering vector D. In both cases, the external

field is parallel to a main symmetry axis, such that B = BM .
This leads to

ω2 = ω2
0,an − ω2

1,an + γ 2
D B2

D + γ 2
M B2

max,

ω2 = ω2
0,an + ω2

1,an + γ 2
D B2

D + γ 2
M B2

min.

From these two equations we determine

ω2 − ω2
0,an = γ 2

M
1
2

(
B2

max + B2
min

)
,

ω2
1,an = γ 2

M
1
2

(
B2

max − B2
min

)
.

With Eq. (B2) we get

1
2

(
B2

max + B2
min

) − 1
2

(
B2

max − B2
min

)
cos 4ϕ = ξ B2

D + B2
M,

(B3)

with the parameter ξ = (γD/γM )2 to be determined by fitting.
To parametrize the plot in ϕ, which is the angle between the x

axis ([110] direction) and the direction of the ordering vector
D, we rewrite Eqs. (B1) and (B3) and get

B2
M + ξ B2

D = A1, (B4)

BM BD = A2, (B5)

with

A1 := 1
2

(
B2

max + B2
min

) − 1
2

(
B2

max − B2
min

)
cos 4ϕ (B6)

and

A2 := 1
4 B2

sf sin 4ϕ. (B7)

To solve these equations we multiply Eq. (B4) by B2
M and get

a quadratic equation,

B4
M + ξ A2

2 = A1 B2
M.

From the two solutions we use the larger one,

B2
M = A1

2
+

√
A2

1

4
− ξ A2

2,

such that |BD| < |BM | is fulfilled. Now we compute the
component of the external field that is parallel to D:

B2
D = A2

2

B2
M

= 1

ξ

⎧⎨
⎩A1

2
−

√
A2

1

4
− ξ A2

2

⎫⎬
⎭.

This yields the square of the external field for the resonance
condition:

B2
res = B2

M + B2
D

=
(

1

2
+ 1

2ξ

)
A1 +

(
1

2
− 1

2ξ

)√
A2

1 − 4 ξ A2
2. (B8)

Since we have

BM = Bres cos(ϑ − ϕ), BD = Bres sin(ϑ − ϕ),

we get

A2 = BM BD = 1
2 B2

res sin(2ϑ − 2ϕ).

With this we get a relation between the resonance field
Bres and the angle ϑ between the external field and the [110]
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direction,

ϑ = ϕ + 1

2
arcsin

2A2

B2
res

, (B9)

using Ens. (B6), (B7), and (B8). For ξ → 0 (and γD → 0) the
ESR data are described well by Eq. (B9), as shown by the red
line in the bottom frame of Fig. 4. The precession of the order
parameter on a circle around its equilibrium direction leads to
ξ = −1.

APPENDIX C: DYNAMICS OF THE ORDER PARAMETER

A particular model which describes the motion of the order
parameter in the a-a plane is presented in this appendix. This
model fixes the four parameters ω0,ωan,γD , and γM (Appendix
B), and only one parameter, γ , remains.

The free energy [8] is

F = F0 − χ⊥
B2

4
[1 − cos(2ϑ − 2ϕ)] + χ⊥

B2
sf

8
sin2 2ϕ,

where ϕ is the direction of the antiferromagnetic order param-
eter. With

BD = B cos(ϑ − ϕ),

BM = −B sin(ϑ − ϕ),

we rewrite F according to

F (ϕ) = F0 − χ⊥
2

B2
M + χ⊥

B2
sf

8
sin2 2ϕ. (C1)

We expand F around its minimum at ϕ0 up to second order in
ϕ. Using

∂BD

∂ϕ
= −BM,

∂BM

∂ϕ
= BD,

we obtain the first and second derivatives of F with respect to
the direction of the order parameter,

∂F

∂ϕ
= −χ⊥ BD BM + χ⊥

1

2
sin 2ϕ cos 2ϕ,

∂2F

∂ϕ2
= χ⊥ (B2

M − B2
D) + χ⊥ B2

sf cos 4ϕ.

The direction of the order parameter is described by two canon-
ical spatial variables and two conjugated momentum variables.
For an oscillating system this results in two eigenfrequencies.
The model [8] is restricted to the a-a plane, and only one of
the dynamical variables is accessible for us. Therefore, we can
expect to explain one of the two resonance modes. We have
the dynamical variable

eD = ( cos ϕ , sin ϕ),

and the projection of the external field B = B(cos ϑ , sin ϑ)
into the order parameter direction

BD = eD · B.

The Larmor energy is

ELM = χ⊥
2

(eD · B)2 + χ⊥
2

ė2
D

γ 2
,

where the first part is a potential due to the external field and
the second part is the kinetic energy due to the change in the
order parameter. The anisotropy contribution is

Ean = χ⊥
B2

sf

8
sin2 2ϕ = U.

For small displacements for the direction of the order parameter
�ϕ(t) with the ansatz

ϕ = ϕ0 + �ϕ(t)

we have

ė2
D = (�ϕ̇)2.

The approximation around the minimum is

E = ELM + Ean

= 1

2

∂2F

∂ϕ
(ϕ − ϕ0)2 + χ⊥

2

ė2
D

γ 2

= 1

2

∂2F

∂ϕ2
(�ϕ)2 + 1

2

χ⊥
γ 2

�ϕ̇2,

which is the energy of a harmonic oscillator. The frequency of
this harmonic oscillator is the ESR resonance frequency ωres,
determined by

∂2F

∂ϕ2
= χ⊥

γ 2
ω2

res.

Being more explicit, we get

γ 2
(
B2

M − B2
D

) + γ 2 B2
sf cos 4ϕ = ω2

res. (C2)

Our ansatz in (B2),

ω2
res = ω2

0,an + ω2
1,an cos 4ϕ + γ 2

D B2
D + γ 2

M B2
M, (C3)

has four parameters, ω0,an, ω1,an, γD , and γM . Equation (C2)
contains only one parameter, which fixes three of our parame-
ters. A comparison with Eq. (C3) yields

ω2
0,an = 0, ω2

1,an = γ 2B2
sf , γ 2

D = −γ 2, γ 2
M = γ 2,

ξ = −1.

The green line in the bottom frame of Fig. 4 illustrates how
this result fits the data.

[1] O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F. M.
Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich, Phys.
Rev. Lett. 85, 626 (2000).

[2] S. Quezel, J. Rossat-Mignod, B. Chevalier, P. Lejay,
and J. Etourneau, Solid State Commun. 49, 685
(1984).

214424-7

https://doi.org/10.1103/PhysRevLett.85.626
https://doi.org/10.1103/PhysRevLett.85.626
https://doi.org/10.1103/PhysRevLett.85.626
https://doi.org/10.1103/PhysRevLett.85.626
https://doi.org/10.1016/0038-1098(84)90221-7
https://doi.org/10.1016/0038-1098(84)90221-7
https://doi.org/10.1016/0038-1098(84)90221-7
https://doi.org/10.1016/0038-1098(84)90221-7


J. SICHELSCHMIDT et al. PHYSICAL REVIEW B 97, 214424 (2018)

[3] T. Shigeoka, T. Fujiwara, K. Munakata, K. Matsub-
ayashi, and Y. Uwatoko, J. Phys. Conf. Ser. 273, 012127
(2011).

[4] A. Generalov, M. M. Otrokov, A. Chikina, K. Kliemt, K. Kum-
mer, M. Höppner, M. Güttler, S. Seiro, A. Fedorov, S. Schulz,
S. Danzenbächer, E. V. Chulkov, C. Geibel, C. Laubschat,
P. Dudin, M. Hoesch, T. Kim, M. Radovic, M. Shi, N. C.
Plumb, C. Krellner, and D. V. Vyalikh, Nano Lett. 17, 811
(2017).

[5] A. Chikina, A. Generalov, K. Kummer, M. Güttler, V. N.
Antonov, Y. Kucherenko, K. Kliemt, C. Krellner, S. Danzen-
bächer, T. Kim, P. Dudin, C. Geibel, C. Laubschat, and D. V.
Vyalikh, Phys. Rev. B 95, 155127 (2017).

[6] K. Kliemt and C. Krellner, J. Cryst. Growth 419, 37
(2015).

[7] G. Czjzek, V. Oestreich, H. Schmidt, K. Łatka, and K. Tomala,
J. Magn. Magn. Mater. 79, 42 (1989).

[8] K. Kliemt, M. Hofmann-Kliemt, K. Kummer, F. Yakhou-
Harris, C. Krellner, and C. Geibel, Phys. Rev. B 95, 134403
(2017).

[9] M. Güttler, A. Generalov, M. M. Otrokov, K. Kummer, K.
Kliemt, A. Fedorov, A. Chikina, S. Danzenbächer, S. Schulz,
E. V. Chulkov, Y. M. Koroteev, N. Caroca-Canales, M. Shi,
M. Radovic, C. Geibel, C. Laubschat, P. Dudin, T. K. Kim,
M. Hoesch, C. Krellner, and D. V. Vyalikh, Sci. Rep. 6, 24254
(2016).

[10] A. Gurevich and G. Melkov, Magnetization Oscillations and
Waves (CRC Press, Boca Raton, New York, 1996).

[11] E. Turov, Physical Properties of Magnetically Ordered Crystals,
edited by A. Tybulewicz and S. Chomet (Academic, New York,
1965).

[12] V. Glazkov, T. Soldatov, and Y. Krasnikova, Appl. Magn. Reson.
47, 1069 (2016).

[13] A. I. Pankrats, D. Y. Sobyanin, A. M. Vorotinov, and G. A.
Petrakovskii, Solid State Commun. 109, 263 (1998).

[14] D. Rauch, M. Kraken, F. J. Litterst, S. Süllow, H. Luetkens, M.
Brando, T. Förster, J. Sichelschmidt, A. Neubauer, C. Pfleiderer,
W. J. Duncan, and F. M. Grosche, Phys. Rev. B 91, 174404
(2015).

[15] J. Sichelschmidt, K. Kliemt, C. Krellner, and C. Geibel, J. Phys.:
Conf. Ser. 807, 012007 (2017).

[16] B. Elschner and A. Loidl, Electron-Spin Resonance on Localized
Magnetic Moments in Metals (Elsevier, Amsterdam, 1997),
Chap. 162, p. 221.

[17] D. L. Huber, Mod. Phys. Lett. B 26, 1230021 (2012).
[18] E. Kwapulińska, K. Kaczmarska, and A. Szytuła, J. Magn. Magn.

Mater. 73, 65 (1988).
[19] H. Benner and J. P. Boucher, in Magnetic Properties of Layered

Transition Metal Compounds, edited by L. J. De Jongh, Physics
and Chemistry of Materials with Low-Dimensional Structures
Vol. 9 of Magnetic Properties of Layered Transition Metal
Compounds (Kluwer, Dordrecht, 1990), pp. 323–378.

[20] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance
of Transition Ions (Clarendon, Oxford, 1970).

[21] D. Ehlers, V. Tsurkan, H.-A. Krug von Nidda, and A. Loidl,
Phys. Rev. B 86, 174423 (2012).

214424-8

https://doi.org/10.1088/1742-6596/273/1/012127
https://doi.org/10.1088/1742-6596/273/1/012127
https://doi.org/10.1088/1742-6596/273/1/012127
https://doi.org/10.1088/1742-6596/273/1/012127
https://doi.org/10.1021/acs.nanolett.6b04036
https://doi.org/10.1021/acs.nanolett.6b04036
https://doi.org/10.1021/acs.nanolett.6b04036
https://doi.org/10.1021/acs.nanolett.6b04036
https://doi.org/10.1103/PhysRevB.95.155127
https://doi.org/10.1103/PhysRevB.95.155127
https://doi.org/10.1103/PhysRevB.95.155127
https://doi.org/10.1103/PhysRevB.95.155127
https://doi.org/10.1016/j.jcrysgro.2015.02.079
https://doi.org/10.1016/j.jcrysgro.2015.02.079
https://doi.org/10.1016/j.jcrysgro.2015.02.079
https://doi.org/10.1016/j.jcrysgro.2015.02.079
https://doi.org/10.1016/0304-8853(89)90290-4
https://doi.org/10.1016/0304-8853(89)90290-4
https://doi.org/10.1016/0304-8853(89)90290-4
https://doi.org/10.1016/0304-8853(89)90290-4
https://doi.org/10.1103/PhysRevB.95.134403
https://doi.org/10.1103/PhysRevB.95.134403
https://doi.org/10.1103/PhysRevB.95.134403
https://doi.org/10.1103/PhysRevB.95.134403
https://doi.org/10.1038/srep24254
https://doi.org/10.1038/srep24254
https://doi.org/10.1038/srep24254
https://doi.org/10.1038/srep24254
https://doi.org/10.1007/s00723-016-0825-1
https://doi.org/10.1007/s00723-016-0825-1
https://doi.org/10.1007/s00723-016-0825-1
https://doi.org/10.1007/s00723-016-0825-1
https://doi.org/10.1016/S0038-1098(98)00539-0
https://doi.org/10.1016/S0038-1098(98)00539-0
https://doi.org/10.1016/S0038-1098(98)00539-0
https://doi.org/10.1016/S0038-1098(98)00539-0
https://doi.org/10.1103/PhysRevB.91.174404
https://doi.org/10.1103/PhysRevB.91.174404
https://doi.org/10.1103/PhysRevB.91.174404
https://doi.org/10.1103/PhysRevB.91.174404
https://doi.org/10.1088/1742-6596/807/1/012007
https://doi.org/10.1088/1742-6596/807/1/012007
https://doi.org/10.1088/1742-6596/807/1/012007
https://doi.org/10.1088/1742-6596/807/1/012007
https://doi.org/10.1142/S0217984912300219
https://doi.org/10.1142/S0217984912300219
https://doi.org/10.1142/S0217984912300219
https://doi.org/10.1142/S0217984912300219
https://doi.org/10.1016/0304-8853(88)90169-2
https://doi.org/10.1016/0304-8853(88)90169-2
https://doi.org/10.1016/0304-8853(88)90169-2
https://doi.org/10.1016/0304-8853(88)90169-2
https://doi.org/10.1103/PhysRevB.86.174423
https://doi.org/10.1103/PhysRevB.86.174423
https://doi.org/10.1103/PhysRevB.86.174423
https://doi.org/10.1103/PhysRevB.86.174423



