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Resurrecting the partially isotropic Haldane-Shastry model
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We present an alternative, simpler expression for the Hamiltonian of the partially isotropic (XXZ-like) version
of the Haldane-Shastry model, which was derived by D. Uglov over two decades ago in an apparently little-known
preprint. While resembling the pairwise long-range form of the Haldane-Shastry model, our formula accounts
for the multispin interactions obtained by Uglov. Our expression is physically meaningful, makes hermiticity
manifest, and is computationally more efficient. We discuss the model’s properties, including its limits and
(ordinary and quantum-affine) symmetries, and review the model’s exact spectrum found by Uglov for finite
spin-chain length, which parallels the isotropic case up to level splitting due to the anisotropy. We also extend the
partially isotropic model to higher rank, with SU (n) “spins,” for which the spectrum is determined by sln motifs.
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The Haldane-Shastry model (HSM) [1,2] is a long-range
spin chain with pairwise 1/r2-exchange interactions. A salient
feature is its invariance under the Yangian of sl2 for finite spin-
chain length [3,4], explaining in part [5] the high degeneracies
observed in the spectrum [1], coming in representations of the
Yangian. This infinite-dimensional symmetry algebra renders
the HSM exactly solvable.

One naturally wonders whether the su2-symmetry can be
broken to get a partially isotropic (i.e., XXZ-like) version of
the HSM with quantum-affine symmetry. Uglov [6] provided
a positive answer, building on [4,7], yielding a rather compli-
cated Hamiltonian. The work was never published and appears
to have been forgotten.

With this text we wish to revive and continue Uglov’s work.
We present a novel expression for the Hamiltonian that paral-
lels the structure of the HSM. We give a down-to-earth review
of its properties, introduce the appropriate notion of translation
invariance, and review the exact spectrum [6]. We prove that
our formula equals that of Uglov. This shows that Uglov’s
Hamiltonian is Hermitian in the “easy-axis” case where the
anisotropy is Ising-like, corresponding to |�| � 1 for the
Heisenberg spin chain. We moreover generalize the model to
the partially isotropic version of the multicomponent HSM
with n “colors” [8]. Further details will be given elsewhere [9].

I. THE MODEL

Consider a ring with L equally spaced sites with spin 1/2.
The Hilbert spaceH = (C2)⊗L is the tensor product of for each
site one spin-1/2 space with basis |↑〉 and |↓〉. The Hamiltonian
can be written in the HSM-like form

H = −J

L∑
i<j

V (i − j ) S[i,j ], (1)

where the sum ranges over all pairs of sites. The constituents
of (1) are as follows. J is a coupling constant, with J > 0
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(J < 0) favoring (anti)ferromagnetic order. The potential V

is a “point splitting” of the inverse-square pair potential of the
HSM, where the chord distance r between the sites is deformed
by a (real) anisotropy parameter γ that here acts as a regulator
for the UV (short-distance) divergence of the HSM potential:

V (k) = 1

r+(k) r−(k)
, r±(k) = 2 sin

(
π k

L
± i γ

)
. (2a)

For the HSM it is customary to view the sites as positioned at
zk = e2πi k/L. Further setting q = eγ we can write

V (i,j ) = zi zj

(q zi − q−1 zj )(q zj − q−1 zi)
. (2b)

The parameters zk also enter the long-range interaction
operators S[i,j ] in (1). These are built from the R matrix, which
is defined on |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 by

Ř(u) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 u g(u) f (u) 0

0 f (u) g(u) 0

0 0 0 1

⎞
⎟⎟⎟⎠,

f (u) = u − 1

q u − q−1
,

g(u) = q − q−1

q u − q−1
.

(3)

Ř(u)P , with P the permutation matrix, is the fundamental
object for the treatment of the XXZ model via the quantum
inverse-scattering method (QISM) [10], here in multiplicative
notation (u = e2λ, q = eγ ) and the “homogeneous picture”
[11]. We have [12]

S[i,j ] =
⎛
⎝ ↼∏

j>k>i

Řk,k+1(zk/zj )

⎞
⎠ (q − q−1) Ř′

i,i+1(1)

×
⎛
⎝ ⇀∏

i<k<j

Řk,k+1(zj /zk)

⎞
⎠, i < j, (4a)
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where the products run over k and the harpoons specify the
ordering. This expression can be understood as

(4b)

The notation [i,j ] as an interval will make sense soon.
The physical picture is as follows: the spin at site j is

transported down to i + 1 to interact with the spin at site i

and then brought back to j . The transport uses the R matrix
(3), where the spins take along their parameter zk as in (4b).
The nearest-neighbor interaction

(q − q−1) Ř′(1) =

⎛
⎜⎜⎜⎝

0 0 0 0

0 −q−1 1 0

0 1 −q 0

0 0 0 0

⎞
⎟⎟⎟⎠ (5)

equals −(q + q−1) times the q-antisymmetrizer (projector
onto the q-singlet). The appearance of Ř′(1) is familiar from
the QISM [10]: besides a factor of 2, (5) only differs from
the usual XXZ interaction σx

i σ x
i + σ

y

i σ
y

i+1 + � (σ z
i σ z

i+1 −
1),� = (q + q−1)/2, because of the “homogeneous picture.”
Thus, (4) should be compared with the decomposition

Pij − 1 = Pj−1,j · · · Pi+1,i+2(Pi,i+1 − 1)Pi+1,i+2 · · ·Pj−1,j

(6)

for the long-range interactions of the HSM.

A. Key properties

To show that (1) is indeed the appropriate generalization of
the HSM we list its most important properties.

a. Isotropic limit. As q = eγ → 1 we obtain the HSM.
Indeed, (2) clearly has the right limit, while Ř(u) → P and
(q − q−1) Ř′(1) → P − 1 so S[i,j ] → Pij − 1.

b. Partial isotropy. Spin z is conserved: (1) commutes
with Sz = ∑

1⊗(k−1) ⊗ (σ z/2) ⊗ 1⊗(L−k). This symmetry is
inherited through (4) from the R matrix.

c. Quantum-affine symmetry. Crucially, for each L (1)
commutes with the action of an infinite-dimensional quantum
group: the partial anisotropy deforms the Yangian symmetry of
the HSM [3,4] to quantum-affine sl2, which is usually denoted
by Uq(ŝl2). Invariance under Uq(ŝl2) is guaranteed by Uglov’s
derivation of the Hamiltonian following [4,7] by “freezing” a
dynamical spin model, as will be reviewed elsewhere [9]. This
should be contrasted with the Heisenberg models, which only
enjoy such symmetries as L → ∞ [13].

At “level zero” (degree zero) the quantum-affine symme-
tries contain quantum sl2, denoted by Uq(sl2), consisting of Sz

together with the q-ladder operators

S±
q =

L∑
k=1

(qσz/2)⊗(k−1) ⊗ σ± ⊗ (q−σ z/2)⊗(L−k), (7a)

where σ± = (σx ± i σ y)/2, with commutation relations

[Sz,S±
q ] = ±S±

q , [S+
q ,S−

q ] = q2 Sz− q−2 Sz

q − q−1
. (7b)

Thus, despite the partial isotropy, multiplets have a de-
scendant structure as in isotropic models. The symmetries (7)
also appear for certain open and quasiperiodic Heisenberg
spin chains [14]. The present model, however, has many

more symmetries. We will briefly get back to the “higher”
symmetries contained in Uq(ŝl2) at the end of this section.
Instead we will focus on the practical consequence of this
infinite-dimensional symmetry algebra: the highly degenerate
spectrum.

d. Additive energies. Besides its high degeneracies, the
spectrum of the HSM is special in that it is very regular: its
energies are quantized as half-integer multiples of J , though
not all such multiples occur [1]. This regular pattern is the
consequence of additivity of the energy together with a simple
dispersion relation. We will see that q 	= ±1 deforms the
half-integrality of the energy, yet the spectrum remains strictly
additive.

B. Further properties

The preceding properties say that we are dealing with
the correct generalization of the HSM. Before turning to the
spectrum we discuss a few more properties and quirks of the
partially isotropic HSM.

e. Hermiticity. The Hamiltonian is Hermitian for q real.
This is clear from (1)–(4), yet not at all obvious from Uglov’s
expression; see below. In terms of the XXZ model’s parameter,
real q corresponds to the massive (easy-axis) regime |�| > 1.
Replacing q by −q yields an overall minus sign for the
energy; for even L it amounts to conjugating H by either
of (σ z⊗ 1)⊗L/2 and (1⊗ σ z)⊗L/2, again up to an overall
sign.

f. Multi-spin interactions. Despite the pairwise form of
(1) the partially anisotropic long-range interactions (4) affect
all intermediate spins when q 	= ±1, taking into account
interactions between multiple spins. This structure is more
manifest in Uglov’s formula. It is also the reason why we
write the subscript of (4) as an interval (except when j =
i + 1). Physically such long-ranged multispin interactions are
acceptable, and do indeed occur in any real material, as long
as their strength falls off sufficiently rapidly. We intend to
investigate this issue of locality in the near future.

g. Parity violating. For q 	= ±1 (1) is not invariant under
parity reversal (i 
→ L − i + 1), as is already suggested by
the asymmetric roles played by i and j in (4). There is,
however, a “CPT invariance” under simultaneously reversing
|↑〉 ↔ |↓〉 , zi 
→ z−1

i = zL−i+1 and q 
→ q−1.
h. q-homogeneity. The potential (2) is translationally in-

variant, yet for q 	= ±1 the operators (4) are not . This, and
the absence of periodicity in the usual sense, is particularly
clear comparing S[1,L] with any Si,i+1. However, there is
a q-analogue of homogeneity: H commutes [9] with the
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TABLE I. The exact spectrum for su2 at L = 4: motifs, the
quantum-affine and q-spin content of the corresponding multiplet,
its degeneracy, q-momentum (mod 2π ) and energy. (The coinciding
coefficients for the AF energy are accidental.)

(unitary) q-translation operator

(8)

which reduces to the usual (left) shift operator as q → 1. Thus
there is a q-analogue of (crystal) momentum, determined by
the eigenvalue ei p of U and quantized as p = 2π

L
m mod 2π

by the q-periodic boundary conditions UL = 1, which holds by
the Yang-Baxter equation for (3). Similar modified translation
operators appear for inhomogeneous quantum-integrable spin
chains [10] and 2d electrons moving in a transverse magnetic
field.

C. Exact spectrum

Due to the quantum-affine symmetries, the exact spectrum is
known explicitly for any spin-chain length L. Let us review the
results of [6] from a more physical viewpoint. We have verified
the following numerically with random values for q = eγ for
L � 16. While going through the following the reader may
wish to consult the examples in Table I and Fig. 1.

Just as for the HSM the combinatorial structure of the
spectrum is given by “motifs” [3]. For a given length L a motif

is a sequence (mr )r of increasing integers 1 � mr � L− 1
differing by more than 1: mr+1 > mr + 1. A motif can be
represented by 1

2 + (L− 1) + 1
2 (semi)circles, , where

for every r the mr th full circle is filled; then there are no
adjacent ’s. This pattern may be interpreted as a “generalized
Pauli principle” [15].

Each motif corresponds to a multiplet that has linear q-
momentum p = ∑

r 2π mr/L mod 2π , and additive energy
E = ∑

r ε(mr ) with dispersion relation

ε(m) = J
1

q − q−1

(
m − L

qm [m]q
qL [L]q

)

= J

[L]q

L−1∑
n=1

min(nm,(L − m)(L − n)) qL−2n, (9)

with q-integers defined as [L]q = (qL− q−L)/(q − q−1). The
anisotropy tilts the dispersion, cf. Fig. 1, causing a level-
splitting of the HSM’s spectrum. The quadratic relation
εHS(m) = J m (L− m)/2 is recovered as q → 1. Mirror-
image motifs yield equal energy only for q = ±1; generically

1

3

5

7

9

11

13

15

FIG. 1. The full spectrum for su2, L = 8 and γ = 1/5. Each dot
represents a multiplet, labeled by its motif and with color indicating
its degeneracy. The dotted curve is the (off-shell) magnon dispersion
ε(p)/J . The additivity of the q-momentum (mod 2π ) and energy is
manifest.

motifs and energies are in one-to-one correspondence: there
are no “accidental” degeneracies, cf. [5].

Recall that the quantum-integrable Heisenberg model has
“functionally additive” energies in terms of the quasimomenta.
Its spectrum, however, is rather more complicated because the
Bethe-ansatz equations determining the quasimomenta admit
complex solutions, which may (asymptotically) be interpreted
as bound states of magnons. Instead, motifs give a simple com-
binatorial rule for the allowed quasimomenta pr = 2π mr/L

and occurring energies, which together with the additivity
means that the spectrum describes an ideal gas of quasiparticles
interacting through their statistics only.

Motifs also characterize the degeneracy, and in fact the
Uq(ŝl2) content of the multiplet. Namely, the multiplet is the
tensor product of the following factors: first replace each

by a q-singlet , and then every remaining string of
1
2 + (n− 1) + 1

2 open (semi)circles by a q-symmetric
irrep with n boxes. This tensor product may be
reducible as a Uq(sl2) representation, but not for Uq(ŝl2):
here the “higher” symmetries show up in the spectrum. The
degeneracies can be counted as for su2. The spectrum is less
degenerate than for the HSM, yet much more than for the
Heisenberg models.

The empty motif ( ) corresponds to the q-ferromagnetic
multiplet, consisting of |↑ · · · ↑〉 and its “level-zero” q-
descendants (S−

q )M |↑ · · · ↑〉 for 1 � M � L, with S−
q from

(7). The Mth descendant has Sz = L/2 − M . Next, each motif
of the form (m) describes a q-magnon with p 	= 0 and Sz =
L/2 − 1 together with its q-descendants. S−

q produces L − 2
“level-zero” descendants, and there are additional “higher-
level” (“affine”) descendants for 2 � m � L − 2. This de-
scendant structure is compatible with the value ε(0) = 0; cf.
εXXZ(0) = J (� − 1) vanishing only at the isotropic point
� = 1.

At the other end of the spectrum we find for even L the
singlet corresponding to the antiferromagnetic (AF)
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motif (1,3, . . . ,L − 1) with p = Lπ/2 mod 2π and Sz = 0.
When J < 0 this is the unique ground state. For odd L the
AF motif is not allowed and there is at least one , yielding
a doublet that we interpret as a q-spinon (Sz = 1/2) and its
“level-zero” q-descendant. Back at even L the excitations over
the q-AF vacuum are described by motifs with two ’s that
may or may not be adjacent and describe two q-spinons. The L

motifs yielding for each q-momentum the lowest excitation are
obtained from the AF motif by removing m = 1 or m = L − 1
and then step by step moving the remaining ’s towards the
new , cf. Fig. 1.

D. Quantum-affine symmetries

Let us sketch the (level c = 0) action of quantum-affine sl2,
which goes via a monodromy matrix as usual [10], but is rather
more involved than the Yangian symmetry of the HSM. For a
multiplet, characterized by some motif, consider

Ta(u) = ⇀∏
1�k�L

Lak(qμku), L(u) = 1

f (u)
Ř(u) P, (10)

where μk = 2 k − L− 1 unless k or k − 1 is contained in
the motif, in which case the values are swapped: μmr

=
2 mr − L+ 1, μmr+1 = 2 mr − L− 1 for all r . The operator
(10) obeys the RT T relations with R matrix R̄(u) = Ř(u) P .
Only for the empty motif, however, do the four “quantum oper-
ators” contained in (10) commute with H on the corresponding
eigenspace. The actual monodromy matrix is modeled on (10)
and involves the values of a special case of nonsymmetric Mac-
donald polynomials at the point {zk = e2πi k/L} [6]. Expansions
in u±1 yield infinite towers of “higher” symmetries, with (7) at
zeroth order. In fact (7) can already be found from (10), which
becomes independent of the motif in the “braid limits” u → 0
and u → ∞.

II. UGLOV’S FORMULA

Let us briefly recall the Hamiltonian found by Uglov [6].
Up to a rescaling it can be written as

H̃ = −J

L∑
N=2

∑
i1<···<iN

Ṽ (i1, . . . ,iN ) (Y[i1,...,iN ] − 1). (11)

Here an N -point interaction has potential

Ṽ (i1, . . . ,iN )

= L/[L]q
(q − q−1)2

N∏
n=1

g
(
zin/zin+1

)
f

(
zin/zin+1

) in+1−1∏
k=in+1

1

f (zk/zin)
, (12)

with [L]q given below (9), and iN+1 ≡ i1 and zL+1 ≡ z1. The

operator Y[i1,...,iN ] is given by

Y[i1,...,iN ] = ⇀∏
1�n<N

Y[in,in+1]
(
zin ,ziN

)
,

Y[i,j ](u,v) =
⎛
⎝ ↼∏

j>k>i

Řk,k+1(zk/u)

⎞
⎠ Ři,i+1(v/u)

×
⎛
⎝ ⇀∏

i<k<j

Řk,k+1(v/zk)

⎞
⎠, i < j. (13a)

In the diagrammatic notation from (4c{}{}{}) a typical exam-
ple assumes the form

(13b)

Note that Y[1,...,L] = U−1 is the inverse of the q-translation
operator. As q → 1 (13) just becomes the cyclic permutation
of the spins at i1,i2, . . . ,iN , though only the terms with N = 2
actually survive this limit due to (12).

Our formula is computationally much more efficient; on a
laptop we have numerically obtained the full spectrum of (1)
for L � 16, as opposed to L � 12 for (11).

Sketch of proof of equality

The “minimal Hermitian constituents” of (11) consist of all
terms with fixed i1 = i and iN = j :

h[i,j ] = −J

j−i+1∑
N=2

∑
i1 < · · · < iN
i1 = i, iN = j

Ṽ (i1, . . . ,iN ) (Y[i1,...,iN ] − 1). (14)

In fact, we will show that this equals a single term of (1).
The case i = j − 1 straightforwardly follows from

f (u)−1 (Ř(u) − 1) = (q − q−1) Ř′(1) (15)

along with
∏L

k( 	=j ) f (zk/zj )−1 = [L]q/L, valid for any j since
zk = e2πik/L.

For i < j − 1 we proceed recursively, at each step halving
the number of terms as follows. Group the terms in (14) into
pairs differing only in whether or not j − 1 “partakes in the
interaction”:

h[i,j ] = −J

j−i−1∑
n=0

∑
i0 < · · · < in

i0 = i, in < j − 1

[Ṽ (i0, . . . ,in,j ) (Y[i0,...,in,j ] − 1)

+ Ṽ (i0, . . . ,in,j − 1,j ) (Y[i0,...,in,j−1,j ] − 1)], (16)

where n is the number of interacting spins between i and j − 1.
(Note the slight abuse of language: the “noninteracting” spins
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may still be affected by the transport.) We will combine the
two terms in the summand of (16) using (15) and(

1 − f (zj−1/zin−1 )

f (zj−1/zj )

)
Ṽ (i0, . . . ,in,j )

+ Ṽ (i0, . . . ,in,j − 1,j ) = 0. (17)

First focus on the parts of the summand of (16) that
involve Y (rather than −1). Observe that Y[i0,...,in,j ] =
Řj−1,j (zj−1/zin) Y[i0,...,in,j−1,j ]. Use (15) to express this
Řj−1,j (zj−1/zin) as a linear combination of Řj−1,j (zj−1/zj )
and 1. The terms with 1 arising in this way cancel against
Ṽ (i0, . . . ,in,j − 1,j ) by (17). The result is proportional to

Řj−1,j (zj−1/zj ) Y[i0,...,in,j−1,j ] = Řj−1,j (zj−1/zj )

× (Y[i0,...,in,j−1]

∣∣
zj−1 
→zj

− 1) Řj−1,j (zj /zj−1) + 1 , (18)

where the equality uses the unitarity property of the R matrix,
Ř(u) Ř(1/u) = 1. But by virtue of (17) the contribution of
the final + 1 from (18) cancels against the remaining parts,
featuring the −1’s, of the summand of (16). In this way we
obtain the recursion relation

h[i,j ] = 1

f (zj−1/zj )
Řj−1,j (zj−1/zj )

× [f (zj /zj−1) h[i,j−1]]zj−1 
→zj
Řj−1,j (zj/zj−1). (19)

By iteration this reduces to the case i = j − 1. The conclusion
is that h[i,j ] = −J V (i − j ) S[i,j ], as we claimed.

III. HIGHER RANK

For the HSM one can replace the spin algebra su2 by
sun while maintaining the model’s special features [8]. Each
site carries a copy of the fundamental representation, and
the Hamiltonian just involves the appropriate spin exchange.
Likewise, the partially isotropic model is adapted to higher
rank by using the trigonometric sln R-matrix. The Hilbert
space is H = (Cn)⊗L. The Hamiltonian is as before, with (3)
generalized to (see e.g. [16])

Ř(u) =
n∑

a=1

Eaa ⊗ Eaa + f (u)
n∑

a 	=b

Eab ⊗ Eba

+ g(u)
n∑

a<b

(uEaa ⊗ Ebb + Ebb ⊗ Eaa), (20)

with Eab the n × n matrix with entries (Eab)cd = δac δbd . As
q → 1, Ř(u) → ∑

a,b Eab ⊗ Eba = P and we get the SU (n)
HSM. Since (15) and the unitarity property remain valid, the
Hamiltonian may be written in Uglov’s form (11) for higher
rank too.

Analytic and numerical checks confirm that this guess
works. The Hamiltonian is q-homogeneous, and hermitian for

real q. It has a highly degenerate, additive spectrum, with the
same q-momentum and dispersion (9). This time, more choices
of quasimomenta are allowed: sln-motifs admit at most n − 1
adjacent mr [3]. The degeneracy per motif is a bit more tricky
to compute for general n [17]. The AF motif, consisting of
strings of n− 1 ’s separated by a , only occurs if n divides
L. We thus have partially isotropic spin chains realizing various
instances of the generalized Pauli principle. The super-case is
likely likewise obtained from the sln|m R-matrix.

IV. OUTLOOK

Given the extensive literature on the HSM it seems rea-
sonable to expect this work to open up new directions in
the research of quantum integrability and exact solvability
for long-range spin chains. Opportunities for the near future
include investigating whether the interactions are sufficiently
local and if the model can be adapted to the regime −1 < � <

1 for � = (q + q−1)/2 (or q a root of unity), which is most
relevant for realizations in nature or (cold-atom) experiments; a
better understanding of the “higher-level” (affine) symmetries
and the (highest-weight) wave functions; and an analysis of
the thermodynamics and its field-theoretic description.

Other applications may reside in the gauge/gravity duality.
The point-split form of (2) and the presence of long-range mul-
tispin interactions in (4) resemble properties anticipated from
a psu(2,2|4)-spin chain governing the (conformal) spectrum
of N = 4 super Yang-Mills theory dual to strings moving in
an AdS5 × S5 background [18]. Although that spin chain is
isotropic, a new class of examples of integrable long-range
models may help finding a nonperturbative expression for it.

A particularly tantalizing direction is the study of a partially
isotropic version of the Inozemtsev spin chain [19], which
should interpolate between (1) and the XXZ model [20]. The
ultimate goal in this direction would be to find and solve a fully
anisotropic “master spin chain” that contains the XYZ model,
Inozemtsev’s elliptic spin chain, and (1) as special cases.

Note added. Recently another partially isotropic HSM-like
spin chain was found [21] with pairwise interactions and no
anisotropy parameter. Numerical investigations show that its
spectrum is regularly spaced and highly degenerate, though the
degeneracy pattern is different.
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