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Intrinsic hysteresis due to the surface barrier for chiral solitons in monoaxial chiral helimagnets
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We present a theory of a surface barrier for isolated solitons to enter chiral magnets, in an analogous way to that
of the Bean-Livingston barrier in the type II superconductors. With this theory, we discuss hysteresis observed in
magnetoresistance (MR) measurements of monoaxial chiral helimagnet CrNb3S6. We argue that a large jump in
the decreasing field process of MR of micrometer-sized samples is due to the disappearance of the surface barrier
for the chiral soliton at a field H = Hb. This argument is justified through agreement between the experimental
results at 10 K and our theoretical result Hb/Hc = 4/π 2 ∼ 0.4 (with thermodynamic critical field Hc) based on
the sine-Gordon model.
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I. INTRODUCTION

Ordered states have generally their own rigidity [1] in their
ground states; solids (crystals) exhibit elasticity, superfluids
resist against rotating container and superconductors in the
Meissner state refuse the entrance of magnetic field. Some of
them also exhibit robustness even in metastable states; per-
sistent currents in superfluids and superconductors in annulus
geometry are examples. The metastability in those states owes
to topological metastability in the sense that each flowing state
is specified by a winding number of the phase of condensate
wave function and this number takes a discrete value and thus
cannot change continuously [2]. Those flows do not decay until
phase singularities (solitons and vortices) are nucleated and
phase slippage occurs [1]. Another example of topological
metastability is irreversibility in magnetization curves in the
type II superconductors, which is a manifestation of interplay
between underlying topological defects (i.e., Abrikosov vor-
tex [3]) and randomness (pinning centers) or surfaces of the
specimen [4–6].

Chiral magnets also exhibit topological metastability.
Metastability of skyrmions (magnetic vortices) [7–11] as an
isolated object opens a possibility to a devise application.
As an obvious consequence of the metastability, on the other
hand, each skyrmion cannot be annihilated or created inside the
samples without overcoming an energy barrier. Several ways
to efficiently create [12–18] or inject [19,20] skyrmions inside
chiral magnets have been proposed.

Cholesteric liquid crystals have physical properties similar
to chiral magnets [21]; the field-induced cholesteric-nematic
phase transition [22–24] is reminiscent of the continuous tran-
sition in chiral magnets [25–27] and it also shows metastability
related to penetration of topological defect (π -kink) in the
decreasing field process [23].

These examples illustrate the importance of topological
metastability in various fields of condensed matter physics. In
this paper, we present theoretically a prototype phenomenon
of topological metastability near the boundary in chiral mag-
nets and show that this phenomenon has been really ob-

served in the experiments in a monoaxial chiral material
CrNb3S6.

This paper is organized as follows: In Sec. II, we provide
background of monoaxial chiral magnets: representative ma-
terial CrNb3S6 (Sec. II A), its metastable property (Sec. II B),
and the theory for equilibrium state (Sec. II C). In Sec. III,
we present a theory of surface barrier for semi-infinite system
(Sec. III A) and finite-sized system (Sec. III B). In Sec. IV,
we compare our theory with experimental results of mag-
netoresistance (MR) measurements. In Sec. V, we discuss
the importance of our findings in monoaxial chiral magnets
in the context of similarity with the Bean-Livingston barrier
in type II superconductors and other systems those exhibit
continuous phase transition of nucleation type, which is one of
the category of continuous phase transition that deGennes first
classified [28].

II. MONOAXIAL CHIRAL HELIMAGNET

A. CrNb3S6

CrNb3S6 has a hexagonal layered structure consisting of
NbS2 layers with an intercalation of Cr atoms. The helical
axis is the principal c axis and perpendicular to the NbS2

layers. Each Cr atom has spin 3/2 and magnetic moment
3 μB [29,30]. Energy scales governing magnetic properties
of this material are modeled as the intralayer ferromagnetic
exchange interaction J⊥, interlayer ferromagnetic exchange
interaction J , interlayer Dzyaloshinskii-Moriya (DM) interac-
tion D, and easy-plane anisotropy (with the c axis being the
hard axis) K [29–31]. We ignore intralayer DM interactions,
which are negligibly small (monoaxial approximation [31]).
Among those scales, J⊥ is dominant and we assume that the
spin configuration is uniformly polarized in each layer, which
is consistent with experimental observations [26]. Further,
spins are considered as XY type owing to the presence of
K and D. In the absence of magnetic field, competition
between J and D results in a modulated spin structure in the
form of simple helix with the propagation vector parallel to
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FIG. 1. Magnetoresistance in a micrometer-sized sample (sample
A) of CrNb3S6 under in-plane magnetic field perpendicular to the
helical axis. The specimen dimensions are 11.25 μm by 17.5 μm in
the plane and 0.7 μm in thickness (17.5 μm width along the c axis).
Each run (from first to fifth run) is given separately, while all runs
are shown together in the lower-right panel. The blue and red arrows,
respectively, indicate Hjump and Hsat for each run.

the c axis. Magnetic fields perpendicular to the helical axis
distort the helical structure, which eventually transforms the
uniformly polarized state [which is called forced ferromagnetic
(FFM) state] at the thermodynamic critical field Hc of a
continuous phase transition. The distorted helical structure
(helicoid) in magnetic fields is recently called chiral soliton
lattice (CSL) [31], in order to emphasize that it consists
of underlying topological defects (single-discommensuration,
2π -kink, or domain wall [32], which we call chiral soliton.)
The Lorentz transmission electron microscope and small-angle
electron diffraction [26] showed that field-induced evolution
of equilibrium states are well described by the Dzyaloshinskii
theory for chiral magnets [25]. Thus CrNb3S6 can be regarded
as a textbook example of chiral magnets. Our main interest in
this paper is, however, metastability of this material [33–39].

B. Metastable property of CrNb3S6

In field-sweep processes, samples with different sizes ex-
hibit hysteresis, which is often accompanied by discrete steps,
in magnetization [29,30,34,35], MR [33,37,38], ferromagnetic
resonance [36], magnetic torque measurements [38]. These
observations imply the existence of underlying topological
defect, i.e., chiral soliton and metastability responsible for
hysteresis has a topological origin. Among those results, we
focus on the MR measurements in micrometer-sized samples
of CrNb3S6, which exhibit much larger hysteresis [33,37]
than bulk [27,29,30,34,35]. The hysteresis of micrometer-sized
samples in the MR consists of a conspicuous jump in the
decreasing field process and a relatively gradual change in the
increasing field process. Typical profiles have been presented
in Fig. 2 of Ref. [33] and Fig. 1 in the present paper [40].
While the closing fields Hsat of hysteresis in the higher field
side are near a thermodynamic critical field Hc, earlier studies
have not addressed a physical mechanism to govern the field
Hjump where a discontinuous jump occurs in the MR in the

decreasing field process. In the following part of this paper,
we present a theory based on the sine-Gordon model and
demonstrate that Hjump can be identified as a characteristic field
Hb = 4/π2Hc ∼ 0.4Hc where the surface barrier disappears
for chiral solitons to enter the samples. This theory agrees with
experimental results on the MR of micrometer-sized samples
of CrNb3S6 within a relative accuracy of several percent.

C. Summary of theory of monoaxial chiral
magnets in equilibrium

As a prerequisite, we summarize the theory of field-induced
state evolution of monoaxial chiral magnets in equilibrium.
We start with the chiral-sine-Gordon model a la Dzyaloshin-
skii [25,41], which is reduced from the spin Hamiltonian or
micromagnetic energy of chiral magnets. We take the helical
axis (c axis) as the z axis and set the local spin at z as
S(z) = S(cos ϕ(z), sin ϕ(z),0) with the modulus S. Under the
external magnetic field (strength H ) parallel to the x axis, the
energy of the chiral magnet occupying an interval I (which we
specify in each case in the following discussion) in the z axis
is given by

H[ϕ] = JS2a0N2d

∫
I

dz

(
1

2

(
∂ϕ

∂z

)2

− 2π

L(0)

(
∂ϕ

∂z

)

−
(

m

L(0)

)2

cos ϕ

)
. (1)

Here N2d is the number of spins in each layer. L(0) is 2πa0J/D

with the interlayer distance a0. The symbol m denotes the
dimensionless coupling constant

m = (π2/2)(H/Hc)
1
2 , Hc ≡ π2

16

D2S

J
. (2)

The stationary condition yields the sine-Gordon equation

∂2ϕ

∂z2
=

(
m

L(0)

)2

sin ϕ (3)

supplemented by the boundary condition

∂ϕ

∂z

∣∣∣∣
z∈∂I

= 2π

L(0)
. (4)

General solution to Eq. (3) is given by the Jacobi amplitude of
the elliptic function [42],

ϕ(z) = π + 2am

(
m

κL(0)
(z − zs),κ

)
, (5)

where κ denotes the modulus of the elliptic function. κ and
zs are constants of integral. We summarize the ground state
property for infinite system derived by Dzyaloshinskii [25,41].
Substituting Eq. (5) into (1) for I = (−∞,∞) and minimizing
the energy with respect to κ , we obtain the ground state
ϕ(z) = 2πz/L(0)+const. [simple helix with the period L(0)]
for H = 0, ϕ(z) = 0 (FFM) for H � Hc. For H ∈ (0,Hc), the
ground state is CSL described by Eq. (5) with κ determined by
the relation E(κ)/κ = (Hc/H )

1
2 (E(κ) is the complete elliptic

integral of the second kind [42]). At H = Hc, the energy of
single soliton is zero in the infinite system.
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FIG. 2. Energy of the single soliton with respect to the uniformly
polarized state (forced ferromagnetic state) as a function of the
position of the soliton for several values of fields.

III. SURFACE BARRIER FOR SINGLE SOLITON IN
MONOAXIAL CHIRAL MAGNET

A. Semi-infinite system

When we focus on the solution of a single soliton in
chiral magnets occupying semi-infinite interval I = [0,∞),
the modulus κ approaches unity from below and the function
“am” reduces to the Gudemann function. For the moment, we
ignore the boundary condition (4). The solution is then given
by [43,44]

ϕ(z; zs,m) = 4 arctan(em(z−zs)/L(0)) (6)

with the coordinate of the center of the soliton zs, where Eq. (6)
becomes π and S(z = zs) = (−S,0,0). When zs = 0 in Eq. (6),
the soliton is located on the surface of the chiral magnet. The
single soliton energy Es(zs,m) is given by H[ϕ] − H[ϕ = 0],
the energy of the state with a single soliton subtracted by that
of the FFM state. With use of Eq. (6), we obtain

Es(zs,m)

4N2dDS2
= F (emzs/L(0)), F (X) = m

π

X2

1 + X2
− arctan X.

(7)

Figure 2 shows Es(zs,m) as a function of zs for sev-
eral values of m. Equation (6) satisfies the boundary condi-
tion (4) when ∂Es/∂zs = 0 and |zs | < ∞. For m � π ≡ mb,
∂Es/∂zs = 0 for zs = ±zs(m) with

zs(m) ≡ L(0)

m
ln

⎛
⎝m

π
+

√(
m

π

)2

− 1

⎞
⎠. (8)

The points (±zs(m),Es(±zs(m))) in Fig. 2, respectively, cor-
respond to the local maxima and minima, which are depicted
by the open and solid circles.

We can see in Fig. 2 that the stable state for H > Hc

corresponds to the minimum at zs = −zs(m) and thus is not
uniformly polarized but the spin structure is distorted near the
surface [the FFM state corresponds to the limit zs → −∞ of
Eq. (6)]. This state was discussed in Refs. [14,43–45], which
has been called surface twisted state [44,45]. The distortion of
spin structure near the surface in the cubic chiral magnets has
been discussed in the study of skyrmions [14,19,20,46–51].

Compare this figure with Fig. 2 in Ref. [4] for the Bean-
Livingston barrier for vortices in type II superconductors (Hc

in the present case corresponds to the lower critical field Hc1

in superconductors in Ref. [4]). Then one will see similarity
between the single soliton energy in the monoaxial chiral
magnets and single vortex energy when both are located near
the surface. According to the theory in Refs. [4,5] for the
Bean-Livingston barrier, the energy barrier for vortex to enter
the type II superconductors vanishes at a threshold field, which
is different from Hc1. Correspondingly, we see a threshold field
in the present case is given by

Hb = (4/π2)Hc � 0.405285Hc, (9)

below which the energy barrier for chiral soliton to enter the
material vanishes.

In Fig. 2, the local minimum at a negative zs survives
down to H = Hb and we see that the existence of the surface
barrier at positive zs and the local minimum at a negative zs

for H > Hb is related with each other through the symme-
try relation Es(zs,m) − Es(0,m) = −Es(−zs,m) + Es(0,m).
It follows that the surface barrier exists (does not exist) when
surface twist exists (does not exist). The surface barrier and
surface twist illuminate dual aspect of a single phenomenon.

Underlying energetics for formation of an energy barrier
is easily understood; for simplicity we consider the case with
H = Hc. In comparison with FFM state, a single soliton is
favorable for DM energy but unfavorable for Zeeman energy
and exchange energy. Thus the DM energy acts the attractive
force (this energy term tries to invite the soliton to the
inside) while the Zeeman energy and exchange energy act the
soliton repulsion (these terms try to push out the soliton to
the outside). The competition between the two generates the
energy barrier. Note that the competing energies in surface
barrier for vortices in type II superconductors are different
from those in the present case; the screening current near the
surface attracts vortices to the inside of the superconductors
while the image vortex outside the sample attracts the vortices
to the outside [4,5]. However, it is worthwhile to emphasize
the similarity of surface barrier between the monoaxial chiral
magnet and superconductors; the derivations of single soliton
energy are analogous to that of single vortex energy (Ref. [5]
is most appropriate to see this similarity). Further, both the
surface barriers in the present case and the Bean-Linvingston
barrier can be an intrinsic origin of hysteresis for the system
that exhibits continuum phase transition in equilibrium case
(we will remark again the similarity in the section Discussion).

Here we remark that Müller et al. theoretically addressed
the penetration of chiral soliton into two-dimensional systems
of cubic chiral magnets [20], where the solitons penetrate the
material led by the penetration of merons in the field H �
0.66H cr

kink (H cr
kink denotes the magnetic field where the energy

of single soliton becomes zero in cubic chiral magnets). This
penetration is caused by instability of magnons bounded near
the edge with nonzero momentum along the edge. We expect
that edge instabilities in general uniaxial cases can interpolate
the edge instability in the monoaxial case (the present study)
and that found in the cubic case (Ref. [20]) as the two limiting
cases.
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FIG. 3. Spatial distribution of the local magnetization at H =
Hb − 0. We draw the Sx(z)/S = cos ϕ(z) inside the chiral magnet
by the solid curve and its extension to the outside by the dashed
curves. zs is the distance between the position of the soliton closest to
the center (z = 0) and the nearer boundary z = ±L/2. Here we take
L = 20L(0).

B. Finite-sized system

To see the effect of the surface barrier, we consider the
evolution of the metastable states in decreasing field process in
a finite-sized system. The chiral magnet occupies the interval
z ∈ [−L/2,L/2] of the length L along the helical axis. We
consider the state with the closest soliton to z = 0 located at
z = ±(L/2 − zs). For the definition of zs, refer to Fig. 3 [52].
The distance of the pair of solitons L − 2zs is equal to the
fundamental period of the elliptic functions 2κK(κ)L(0)/m.
Here K(κ) is the complete elliptic integral of the first kind.
With use of this condition, the state that we consider is given
by

ϕ − π = 2am

(
m(z + zs − L/2)

κL(0)
,κ

)

= 2am

(
mz

κL(0)
− K(κ),κ

)
. (10)

Substituting Eq. (10) into Eq. (1), we obtain

Es

N2dDS2
= m2L

πL(0)

(
1 − 1

κ2

)
+ 4mE(κ)

πκ
− 2π

+ 4m

πκ
ε

(
mzs

κ
,κ

)
− 4am

(
mzs

κ
,κ

)
, (11)

where ε(u,κ) is the Jacobi’s epsilon, which is defined as the
integral of Jacobi’s dn function ε(u,κ) ≡ ∫ u

0 dn(u′,κ)du′. We
consider the evolution of metastable state in the decreasing
field process starting with the surface twisted state above Hc

(i.e., m > π2/2). In this process, we specify the metastable
state at m by zs(m), which is the smallest zs among those sat-
isfying ∂Es(zs,m)/∂zs = 0 and ∂2Es(zs,m)/∂z2

s > 0. A more
schematic description is given in the Appendix. Substituting
Eq. (10) with zs(m) into the expression for the magnetization
M

Msat
= 1

L

∫ L/2
−L/2 cos ϕdz, normalized by that of the FFM state

Msat, we obtain the magnetization curve of those metastable
states in the decreasing field process, which is shown in
Fig. 4 by blue dots for H < Hb. For H > Hb, we plot the
approximate expression for the magnetization curve of surface
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FIG. 4. M-H curve of metastable state in the decreasing field
process for a finite size system with L = 20L(0) is shown in blue
dots. Blue curve represents approximate M-H curve Eq. (12) of the
surface twisted states. M-H curve for energy minimum state for the
finite size system (red dots) and that for infinite size system (dashed
line) are also shown.

twisted state

M/Msat = 1 − (4L(0)/(mL))(1 −
√

1 − π2/m2), (12)

which is equivalent to Eq. (24) of Ref. [44] and valid for
sufficiently large system satisfying e−mL/L(0) 
 1. Further we
also show the magnetization curves of the ground state for a
finite-sized system with L = 20L(0) (red dots) [53,54] and for
the thermodynamic limit (the black dashed curve) in Fig. 4. In
this figure, we can see a sharp drop in the magnetization curve
of the metastable states (blue dots) around H ∼ 0.4Hc [55].

IV. COMPARISON WITH EXPERIMENTS

We now compare the theory with experimental results of
MR for microsized samples of CrNb3S6 at a low temperature
(10 K), which exhibit large hysteresis. Following Ref. [33], we
consider that a large jump in MR results from discontinuous
change in the soliton number. First we see experimental results
for MR of thin samples with the c axis (the helical axis) in the
plane under in-plane external magnetic fields perpendicular to
the c axis and thus demagnetization effect is small. Figure 1
shows five runs of the MR data for the microsized CrNb3S6

specimens (sample A). We define Hsat as the magnetic field
where hysteresis close in the higher field side of hysteresis loop
and Hjump as the large jump occurs in MR in the decreasing
field process. We see in Fig. 1 that the large jump in the
decreasing field process is reproducible in the multiple runs
in this measurement and we obtain Hjump = 775 Oe±25Oe,
which we identify as Hb. We see that Hsat are scattered
in the five runs as listed in Table I in the order of run of
measurements from the first to fifth lines. The mean value
of a set of the results H

(i)
sat of the ith run is H̄sat = 1895 Oe

and its uncertainty �Hsat ≡
√∑n

i=1(H (i)
sat − H̄sat)2/(n(n − 1))

with n = 5 is 52 Oe. Earlier studies reported that the Hsat

is close to Hc [33] or the value determined by the most
stable state of a finite-sized system [37]. We thus assume
that H̄sat − �Hsat � Hc � H̄sat + �Hsat. From these data, we
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TABLE I. Hjump(θ ) and Hsat(θ ) at 10 K for the three samples A, B, and C. The magnetic fields are perpendicular to the helical axis and
tilted from the plane of the platelet by the angle θ . The angle θ = 90◦(0◦) corresponds to the configuration of the least (most) demagnetization
effect. The sample B and C were used, respectively, in Ref. [33] and its supplemental material.

θ Hjump/Oe Hsat /Oe Hjump/Hsat (Hsat − Hjump)/Oe

A 90◦ 775 ± 25 2025 ± 25 0.383 1250 ± 50
90◦ 775 ± 25 1875 ± 25 0.413 1100 ± 50
90◦ 775 ± 25 1725 ± 25 0.449 950 ± 50
90◦ 775 ± 25 1975 ± 25 0.392 1200 ± 50
90◦ 775 ± 25 1875 ± 25 0.413 1100 ± 50

B 90◦ 892.5 ± 2.5 2147.5 ± 2.5 0.416 1255 ± 5
90◦ 892.5±2.5 2202.5±2.5 0.405 1310 ± 5
90◦ 892.5±2.5 2187.5±2.5 0.408 1295 ± 5
0◦ 1967.5±2.5 3082.5±2.5 1115 ± 5

C 90◦ 710 ± 10 1770 ± 10 0.404 1060 ± 20
0◦ 1890 ± 10 2970 ± 10 1080 ± 20

obtain

0.385 � Hb/Hc � 0.434 (13)

which agrees with the theoretical result Eq. (9) with the relative
errors +7% and −5%. As more simple estimation, we just list
the ratio of the median of Hjumb and that of Hsat in each run
in Table I. We consider other samples. The sample B, which
was used in Ref. [33], has the dimensions 10 μm square plane
and 1 μm thickness (10 μm width along the c axis). Hjump and
Hsat of the sample B are listed in Table I. We see that Hjump is
highly reproducible while Hsat are scattered. We assume that
Hjump ∼ Hb again and further assume that Hsat ∼ Hc. For the
configuration of the least demagnetization effect (see the data
for B with θ = 90◦ in Table I), we then obtain

Hb/Hc = 0.416,0.405,0.408, (14)

which are close to the theoretical value Eq. (9). In the sup-
plemental material of Ref. [33], they reported that Hjump =
720 Oe and Hsat=1780 Oe for another sample (sample C) with
dimension 13 μm square plane and 0.5 μm thickness (13 μm
width along the c axis). We obtain

Hb/Hc = 0.404, (15)

which is also close to Eq. (9).
Next we consider the demagnetization effect. In Ref. [33],

the MR results for specimen C have been reported under the
external magnetic field perpendicular to the c axis with various
angles θ from the normal direction of the plane. We assume
that magnetic field H inside specimen, external magnetic field
Hex and magnetization M are spatially uniform and parallel
to one another in the FFM state for θ = 0◦ and 90◦. Then
the relation H = Hext − Nd(θ )M(H ) with demagnetization
factor Nd(θ ) holds for H � Hb in the decreasing field process.
Experimentally observed fields Hjump and Hsat depend on θ

and are related to Hb and Hc via

Hc = Hsat(θ ) − Nd(θ )M(Hc) (16)

Hb = Hjump(θ ) − Nd(θ )M(Hb + 0). (17)

Subtracting both hand sides of Eq. (17) from Eq. (16) and
ignoring the difference M(Hb + 0) and M(Hc), we obtain

Hsat(θ ) − Hjump(θ ) = Hc − Hb = (1 − 4/π2)Hc, (18)

i.e., Hsat(θ ) − Hjump(θ ) does not depend on whether θ = 0◦ or
90◦ within this approximation. In Table I, we see that Hsat(θ ) −
Hjump(θ ) is independent of θ within relative error 10% in the
specimen B and 5% in the specimen C.

V. DISCUSSION

The surface barrier was discussed theoretically first in
the context of type II superconductors more than fifty years
ago [4,5]. However, no sharp transitions related to vortex
entrance into the samples have been observed experimentally.
The reason was attributed to surface irregularities, which
results in the inhomogeneities of fields near the surface [4,5].
Thus, the large jump of MR in the decreasing field process
in chiral magnets is important as the first observation of large
discontinuity due to the disappearance of the surface barrier of
topological defects.

de Gennes [28] remarked that hysteresis is often observed
in nucleation-type continuous phase transition between an
ordered state that is an assembly of topological defects and the
other phase without them. Examples of this type of transition
include the lower critical field in type II superconductors,
Dzyaloshinskii transition of the chiral soliton lattice [25] and
cholesteric-nematic transition [22–24] in liquid crystals. With-
out strong perturbation to overcome topological metastability,
the number of topological defects can change only by entrance
or escape through the surface. Thus the surface barrier can be
an intrinsic origin of hysteresis in nucleation-type continuous
phase transitions in various systems. In conclusion, our study
shows that the large jump of MR in CrNb3S6 is a clear
phenomenon related to the surface barrier, which results from
topological metastability.

Note added in proof. Recently, the CSL was confirmed
in YbNi3Al9 through MR measurements [56]. This CSL has
a short period (3.4 nm in zero field), in contrast to that in
CrNb3S6, where the period in zero field is about 48 nm.
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FIG. 5. Energy profile Es(zs,mb) as a function of zs. (a) The
red curve represents Es(zs,mb,20L(0)) as a function of zs. The red
dotted curve represents twice the energy of single soliton Es(zs,mb)
for a semi-infinite system. The vertical dashed lines represent zs =
nL(0)/(2n + 1), for which the intersoliton distance (L − 2zs) be-
comes commensurate with the system size L. The local minima in
the red curve are denoted by the blue dots. The arrow indicates the
left-most local minimum, by the coordinate of which we defined
zs(m). (b) Magnified view of the upper panel near the global minimum,
which is indicated by the red arrow.

Understanding of properties of short-period CSL is an impor-
tant future issue.
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FIG. 6. Magnified view of Es(zs,m) (red curve) as a function of
zs for (a) H = Hb, (b) H = 0.405Hc, and (c) H = 0.404Hc. The
local minima are denoted by blue dots. The blue arrows indicate the
leftmost local minima. The vertical dashed lines are the same as those
in Fig. 5.

APPENDIX

The metastable state at m in the decreasing field process
is specified by zs(m), which is defined by the local mini-
mizer of Es(zs,m,L) with the smallest zs. Figure 5 shows
Es(zs,mb,20L(0)) as a function of zs by the red curve (the lower
panel is a magnified view of the upper panel). This red curve
is practically independent of zs for zs � 6L(0) and approaches
the red dotted curve, which represents twice the energy of a
single soliton for the semi-infinite system [Eq. (6)]. The local
minima (blue dots) in the red curve are located near the crossing
points with the vertical dashed lines. Those lines represent
the commensurate condition for intersoliton distance with the
system size.

With use of this diagram, we explain the evolution of
the metastable state in the decreasing field process. At H =
Hb + 0, the soliton is located at the surface zs(mb + 0) = 0. At
H = Hb − 0, the state with zs = 0 becomes unstable and the
soliton state evolves to a local minimum [with zs(mb − 0) ∼
8L(0)] that is accessible with energy relaxing monotonically
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from zs = 0 to zs(mb − 0). The existence of local minima and
maxima is clearly shown in the lower panel of Fig. 5. We thus
see that those structures in the energy landscape hinder the
state to reach the global stable state, which is indicated by the
red arrow in the lower panel. We see in the lower panel that
the depth of the local minimum is shallower for smaller zs

when zs � 9.4L(0). We note a shoulder in the red curve near

zs ∼ 6.6L(0) in the upper panel of Fig. 5 and this is not a local
minimum. The shallow local minima at zs/L(0) = 8,8.56,8.8
causes an avalanchelike entrance of soliton slightly below
H = Hb in the decreasing field process. Figure 6 shows the
blowup of Es(zs,m) near m = mb (H = Hb). Slight decrease
in m makes the leftmost local minimum unstable and induces
successive entrance of solitons.
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