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Magnetic-field control of electric polarization in coupled spin chains with three-site interactions
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The linear perturbation renormalization group (LPRG) is used to study coupled XY chains with Dzyaloshinskii-
Moriya (DM) and three-spin interactions in a magnetic field. Starting with a minimal model exhibiting the
magnetoelectric effect, a spin- 1

2 XY chain with nearest, next-nearest (J x
2 ), and DM (Dy

1 ) interactions in a magnetic
field, the recursion relations for all effective interactions generated by the LPRG transformation are found. The
evaluation of these relations allows us to analyze, among others, the influence of J x

2 , D
y

1 , three-spin (Sx
i S

y

i+1S
z
i+2 −

S
y

i Sx
i+1S

z
i+2), and interchain interactions on the thermodynamic properties. The field and temperature dependences

of the polarization, specific heat, and correlation functions are found. It is shown that an interchain coupling triggers
a phase transition indicated by the divergence of the renormalized coupling parameters.
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I. INTRODUCTION

The interest in the magnetoelectric effect (MEE), the mutual
influence of magnetic and electric properties, dates back to the
19th century [1,2]. However, recently a surge in interest in
multiferroic materials caused studies of MEE to be intensified
[2–6]. There are several mechanisms which lead to the effect of
induction of polarization by a magnetic field or magnetization
by an electric field, one of which was described by Katsura,
Nagaosa, and Balatsky [7] (called the KNB mechanism). In
this mechanism the spin-current-induced electric polarization
is given by

P ∝
∑

i

eβ × (Si × Si+β), (1)

where eβ is the unit vector in the β direction. According to
the KNB scenario the local electric polarization is connected
to the noncollinear ordering of the neighboring spins, and the
polarization operator is related to the Dzyaloshinskii-Moriya
(DM) interaction. So the minimal model exhibiting the magne-
toelectric effect in the spirit of the KNB mechanism is the XY

spin chain with nearest-neighbor (J1), next-nearest-neighbor
(J2), and DM interactions [5,8]:

H =
∑

n

[
J1

(
Sx

nSx
n+1 + Sy

nS
y

n+1

) + J2
(
Sx

nSx
n+2 + Sy

nS
y

n+2

)

+D
y

1

(
Sx

nS
y

n+1 − Sy
nSx

n+1

) − HzS
z
n

]
. (2)

D
y

1 denotes the strength of the DM coupling, which is in-
terpreted as an external electric field coupled to the electric
polarization. Brockman et al. [5] studied the integrable part
of the Hamiltonian (2) without the next-nearest-neighbor
interaction (J2 = 0) and showed that in such a model the po-
larization can be controlled by a magnetic field only if the DM
interaction parameter D

y

1 is finite. Recently, Menchyshyn et al.
[6] additionally included three-spin interactions in the form

E
∑

n

(
Sx

nSz
n+1S

y

n+2 − Sy
nSz

n+1S
x
n+2

)

+K
∑

n

(
Sx

nSz
n+1S

x
n+2 − Sy

nSz
n+1S

y

n+2

)
. (3)

The model is still integrable (if J2 = 0), and as the
authors have shown rigorously it allows us to get finite
magnetic-field-dependent polarization also in the absence of
the electric field (Dy

1 = 0), provided E is different from zero.
Exactly solvable models are fundamental, enabling better

understanding of the main feature of a phenomenon, and
they are reference points for more realistic cases. However,
in order to consider real materials one should have methods
which allow one to study more complicated models, foregoing
rigor. In this paper we consider the full chain Hamiltonian (2)
with weak interchain coupling at finite temperature by using
the linear perturbation renormalization group (LPRG) [9]. As
usual, even in one dimension, the RG transformation generates
all interactions admitted by the symmetry of the problem.
Consequently, for one chain, in addition to the four original
coupling parameters (J1,J2,D

y

1 , and Hz) of the Hamiltonian
(2) we have to consider eight others.

II. THE RG TRANSFORMATION

Let us start with a one-chain Hamiltonian

H1(Ŝ) =
∑

n

Hn
1 (4)

and

Hn
1 = kx

1

(
Sx

nSx
n+1 + Sy

nS
y

n+1

) + kx
2

(
Sx

nSx
n+2 + Sy

nS
y

n+2

)
+ d

y

1

(
Sx

nS
y

n+1 − Sy
nSx

n+1

) − hzS
z
n, (5)

where the operators Sα
n obey the commutation relations

[Sx
n ,S

y
n ] = 2iSz

n, etc.; ki = Ji/T ; d
y

i = D
y

i /T ; hz = Hz/T ;
and a factor −β = −1/kβT has been absorbed in the Hamil-
tonian (4).

The RG transformation of the Hamiltonian (4) is defined by

eH
′
1(σ̂ ) = TrSP (σ̂ ,Ŝ)eH1(Ŝ), (6)

with a linear weight operator P (σ̂ ,Ŝ), which projects the
original spin space S onto the space of new spins σ . TrS denotes
the partial trace over S space. In the LPRG transformation one
divides the chain into m-spin blocks, and the first step in the
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procedure is the choice of the block size. It is obvious that
a renormalization-group transformation should preserve all
symmetries of the original problem. This determines, to some
extent, the choice of the block size. So if one wants to consider
nearest-neighbor and next-nearest-neighbor interactions and
admit the possibility of the existence of a phase transition
to the two-sublattice phase, one should use blocks with the
following numbers of sites: 7, 11, 15, . . . .. For a quantum
system, because of the noncummativity of several terms of
the Hamiltonian, the renormalization transformation cannot
be carried out exactly even for one chain, and the results of
the transformation depend on the block size. The advantage
of using a larger block was discussed in our previous article
[10], where an XY chain with nearest-neighbor interactions
was considered by using four-, six-, and eight-spin blocks. For
not very low temperatures all three approximations are in quite
good agreement with the exact result. In this paper, taking into
account a number of degrees of freedom of the considered
model, we will confine ourselves to the smallest acceptable
and tractable block without extended numerics, which is a
seven-site one (S1,S2,S3,S4,S5,S6,S7). For such a block

P (σ̂ ,Ŝ) = 1
128

(
1 + 1

3 Ŝ1σ̂1
)(

1 + 1
3 Ŝ4σ̂2

)(
1 + 1

3 Ŝ7σ̂3
)
, (7)

and Ŝi σ̂j = Sx
i σ x

j + S
y

i σ
y

j + Sz
i σ

z
j . The RG transformation

(6)–(7) applied to the Hamiltonian (4) generates all terms
acceptable by the symmetry, namely, in addition to the four
original terms (5), three two-spin terms,

Hn
2 = kz

1S
z
nS

z
n+1 + kz

2S
z
nS

z
n+2 + d

y

2

(
Sx

nS
y

n+2 − Sy
nSx

n+2

)
, (8)

and five three-spin interactions,

Hn
3 = kxxz

(
Sx

nSx
n+1 + Sy

nS
y

n+1

)
Sz

n+2 + kxzx

(
Sx

nSz
n+1S

x
n+2

+ Sy
nSz

n+1S
y

n+2

) + kxyz

(
Sx

nS
y

n+1 − Sy
nSx

n+1

)
Sz

n+2

+ kxzy

(
Sx

nSz
n+1S

y

n+2 − Sy
nSz

n+1S
x
n+2

)
+ dzS

z
nS

z
n+1S

z
n+2. (9)

So to consider the model (4) in the frame of the RG one
has to take into account 12 interaction parameters: the four
original ones (kx

1 ,kx
2 ,d

y

1 , and hz) and the eight generated by
RG transformation (kz

1,k
z
2,d

y

2 ,kxxz,kxzx,kxyz,kxzy , and dz), and
the final Hamiltonian of a seven-spin block reads [(4), (8),

and (9)],

H0(Ŝ) =
6∑

n=1

Hn
1 +

6∑
n=1

Hn
2 +

5∑
n=1

Hn
3 . (10)

It is easy to find the renormalized Hamiltonian (5) in the form

H′
0(σ̂ ) = ln TrSP (σ̂ ,Ŝ)eH0(Ŝ) = ln H̃0(σ̂ ), (11)

where

H̃0(σ̂ ) = f0 + f x
1

(
σx

1 σx
2 + σx

2 σx
3 + σ

y

1 σ
y

2 + σ
y

2 σ
y

3

)
+ f x

2

(
σx

1 σx
3 + σ

y

1 σ
y

3

) + f
xy

1

(
σx

1 σ
y

2 − σ
y

1 σx
2

+ σx
2 σ

y

3 − σ
y

2 σx
3

) − fz

(
σ z

1 + σ z
3

) − f ′
zσ

z
2

+ f z
1

(
σ z

1 σ z
2 + σ z

2 σ z
3

) + f z
2 σ z

1 σ z
3

+ f
xy

2

(
σx

1 σ
y

3 − σ
y

1 σx
3

) + fxxz

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
σ z

3

+ fxzx

(
σx

1 σ z
2 σx

3 + σ
y

1 σ z
2 σ

y

3

) + fxyz

(
σx

1 σ
y

2 − σ
y

1 σx
2

)
× σ z

3 + fxzy

(
σx

1 σ z
2 σ

y

3 − σ
y

1 σ z
2 σx

3

) + fdσ
z
1 σ z

2 σ z
3 ,

(12)

and for example,

f0 = 1
128 TrSe

H0(Ŝ),

f x
1 = 1

128 TrSS
x
1 Sx

4 eH0(Ŝ), (13)

f x
2 = 1

128 TrSS
x
1 Sx

7 eH0(Ŝ),

and so on. Now the point is to findH′
0(σ̂ ) [Eq. (11)] in the same

form as the original Hamiltonian H0(Ŝ) [Eq. (10)]. The task is
not trivial because of the noncommutativity of several terms in
the Hamiltonian, but it can be done by using the formula

ln H̃0(σ̂ ) =
8∑

i=1

ln λi

∏
j �=i

H̃0(σ̂ ) − λjI8

λi − λj

, (14)

where λi are eigenvalues of the Hamiltonian H0(σ̂ ) and I8 is
the unity matrix.

We can factor the eight-dimensional space of three spins
into four subspaces (two one-dimensional and two three-
dimensional), which allows us to find analytical formulas for
eigenvalues of the Hamiltonian H̃0(σ̂ ) [Eq. (12)], so

λ1 = f0 + fd + fz + f ′
z + f z

2 + 2f z
1 , λ8 = f0 − fd − fz − f ′

z + f z
2 + 2f z

1 , (15)

λ2 = 1

3
Cq + 21/3Bq

3Aq

− Aq

22/33
, λ3,4 = 1

3
Cq − (1 ± ı

√
3)Bq

22/33Aq

+ (1 ∓ ı
√

3)Aq

21/36
,

λ5 = 1

3
CQ + 21/3BQ

3AQ

− AQ

22/33
, λ6,7 = 1

3
CQ − (1 ± ı

√
3)BQ

22/33AQ

+ (1 ∓ ı
√

3)AQ

21/36
,

where the coefficients Ai,Bi,Ci (i = q,Q) are defined in Appendix A. Using formula (14), one can find the renormalized
Hamiltonian in the same form as the original one [(10), (5), (8), and (9)] with new effective interaction parameters:

(
f0 , kx

1 , kx
2 , d

y

1 , hz , kz
1 , kz

2 , d
y

2 , kxxz , kxzx , kxyz , kxzy , dz

)
(16)

↓(
Z0 , Kx

1 , Kx
2 , D

y

1 , Hz , Kz
1 , Kz

2 , D
y

2 , Kxxz , Kxzx , Kxyz , Kxzy , Dz

)
. (17)
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FIG. 1. Field dependences of polarization for kxyz = 0.5,kxzy = 0
(thick lines) and kxyz = 0,kxzy = 0.5 (thin lines) at reduced tempera-
ture t = 0.5 (solid lines) and t = 0.2 (dashed lines).

The formulas for the effective parameters as functions of the
original ones generated by the RG transformation have a rather
complicated but closed form and are presented in Appendix B.
We are now able to evaluate numerically the renormalization
transformation which allows us to find the thermodynamic
properties of the system. In each step of the transformation, in
addition to the spin-dependent terms (couplings) a constant Z0

(independent of effective spins σ̂ ) is generated. This constant,
presented in Appendix B [Eq. (B4)], can be used to calculate
the free energy per site according to the following formula:

f =
∞∑

n=1

Z
(n)
0

3n
, (18)

where n indicates the numbers of RG steps.
Evaluating the RG recursion relations, we can find the field

and temperature dependences of the polarization defined by

Py = 1

N

∑
n

〈
Sx

nS
y

n+1 − Sy
nSx

n+1

〉
, (19)

specific heat Ch, and the nearest-neighbor correlation function

Gxx = 1

2N

∑
n

〈
Sx

nSx
n+1 + Sy

nS
y

n+1

〉
, (20)

where the angle brackets denote the thermal average.

FIG. 3. Field dependences of polarization for three models:
(i) kxyz = 0.5,kx

2 = 0,d0
1 = 0 (thin solid line), (ii) kxyz = 0.5,kx

2 =
−0.5,d

y

1 = 0 (dashed line), and (iii) kxyz = 0.5,kx
2 = 0,d

y

1 = 0.3
(thick solid line) at t = 0.2.

As shown in Fig. 1, the three-spin interactions kxyz and
kxzy [Eq. (9)] induce the magnetic-field-dependent polarization
even if d

y

i = 0 for a certain range of the field [6]. At any
temperature the effect is larger for the model with kxyz �=
0,kxyz = 0 (thick lines) than for the opposite case kxyz =
0,kxyz �= 0 (considered in Ref. [6]). The remaining three-spin
interactions of Eq. (9) cannot lead to a finite polarization
for d

y

i = 0. Hereafter, we take J x
1 = 1 and assume that only

three original couplings, J x
2 ,D

y

1 , and Jxyz = kxyzT , can be
different from zero. The possible origin of the latter one
has been discussed in several papers [11]. Figure 2 shows
the field dependence of the polarization for several values of
temperature [Fig. 2(a)] and for several values of d

y

1 [Fig. 2(b)]
at temperature t = 0.5. As can be seen, the external electric
field through the effective Dzyaloshinskii-Moriya interactions
d

y

1 introduces asymmetry with respect to h → −h and Py →
−Py . For d

y

1 large enough, d
y

1 � dg ≈ 0.8, the polarization
is negative for negative and positive magnetic fields [Fig.
2(b)]. At lower temperature t = 0.2 (Fig. 3) the polarization
exhibits a broad, flat maximum (plateau) that is clearly visible
for two cases: (i) kxyz = 0.5,kx

2 = 0,d0
1 = 0 and (ii) kxyz =

0.5,kx
2 = −0.5,d

y

1 = 0. For the third case kxyz = 0.5,kx
2 =

0,d
y

1 = 0.3, the shape of the polarization curve strongly

(a) (b)

FIG. 2. Field dependences of polarization for kxyz = 0.5,kxzy = 0 (a) for several values of temperature, t = 2 (thick dashed line), 1 (thick
solid line), 0.5 (thin dashed line), and 0.2 (thin solid line), and (b) for several values of the electric field, d

y

1 = 0 (thin solid line), 0.3 (thick
dashed line), 0.5 (dotted line), and 0.8 (thick solid line), at t = 0.5.
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(a) (b)

FIG. 4. Field dependences of (a) polarization Py and (b) nearest-neighbor correlation function Gxx for (i) kxyz = 0.5,kx
2 = 0.0,d

y

1 =
0.0 (thin solid line), (ii) kxyz = 0.5,kx

2 = −0.5,d
y

1 = 0.0 (thick solid line), (iii) kxyz = 0.5,kx
2 = 0.0,d

y

1 = 0.3 (dashed line), and (iv) kxyz =
0.5,kx

2 = −0.5,d
y

1 = 0.3 (dotted line) at t = 2.

depends on the sign of the field, and the plateau is not so
pronounced.

Figure 4 illustrates the effect of the next-nearest-neighbor
(kx

2 ) interaction and the electric field d
y

1 on the polarization
Py and the correlation function Gxx [Eq. (20)]. There are field
dependences ofPy andGxx for the three cases mentioned above
plus another case where kxyz = 0.5,kx

2 = −0.5,d
y

1 = 0.3. As
can be seen, a negative value for kx

2 (kx
2 = −0.5) reduces the

correlation function, whereas such an interaction increases the
polarization. A positive value for d

y

1 (dy

1 = 0.3) shifts the max-
imum of Gxx from h = 0 towards positive fields and the point
Py = 0 towards negative fields. Figure 5 shows the polarization
and specific heat of model (i) as functions of temperature.
For some range of the field (around h = 2) the polarization
exhibits a maximum related to the low-temperature maximum
of the specific heat. A second peak structure in the specific
heat at low temperature has also been observed for the model
with three-spin interaction at h = 0 when J x

1 /Jxzy > αc (some
critical value) [12]. The existence of the three-spin interaction
is not, of course, a necessary condition to get the two-maximum
structure of the specific heat, which can be expected if there
are at least two mechanisms of local orderings. However, in
the present model the second peak of the specific heat is
accompanied by a maximum of the polarization. In Fig. 6
the polarization maxima and the low-temperature peaks of the

specific heat for kxyz = 0.2,0.5, and 0.8 and relevant values
of the magnetic field (from the range in which such maxima
occur) are compared.

III. COUPLED CHAINS

For higher dimensions the LPRG approach starts with a
renormalization of one chain [(6) and (7)]. Then, on the
basis of this renormalization, the interchain interaction HI is
renormalized in a perturbative way [9]. The renormalization
transformation for the system made of the coupled chains can
be written as

H′(σ̂ ) = H′
0(σ̂ ) + ln〈eHI 〉H0(Ŝ), (21)

with the standard cumulant expansion for ln〈eHI 〉H0(Ŝ), where
H′

0(σ̂ ) is the effective chain Hamiltonian (11) and H0(Ŝ) is the
original chain Hamiltonian (10). An average of an operator Â

is defined as

〈Â〉 = 1
4 {Tr{Â,P eH0(Ŝ)},[H′

0(σ̂ )]−1}, (22)

where the curly brackets denote anticommutators.
Now, in the frame of LPRG [9] we consider the weak

interchain interactions in the form

HI1 = jx
1

∑
n

(
Sx

n,mSx
n,m+1 + Sy

n,mS
y

n,m+1

)
, (23)

FIG. 5. Temperature dependences of polarization Py and specific heat Ch for kxyz = 0.5,kx
2 = 0.0,d

y

1 = 0.0, and several values of magnetic
field.
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FIG. 6. Temperature dependences of polarization Py and specific heat Ch for several values of kxyz and magnetic field.

where the label n refers to chains (rows) and m refers to
columns.

The LPRG transformation [9,13] when applied on an
infinite system generates an infinite number of new interactions
already in the second-order cumulant expansion which is the
lowest nontrivial case for the present system. Thus, in order to
find the LPRG recursion relations we have to confine ourselves
to a finite cluster. In a second-order calculation we have
to consider three chains (rows). Until now, considering the
one-dimensional (1D) system we have used seven spin blocks
to find RG recursion relations. In order to study the interchain
interaction we apply a (4-6-4) cluster with four, six, and again
four spins for the first, second, and third chains, respectively.
In addition for simplification we confine ourselves to only
two-site interactions between chains. Under these assumptions
the LPRG transformation generates only two new couplings,
jx

2 and d
y

2 ,

HI2 = jx
2

∑
n

(
Sx

n,mSx
n+1,m+1 + Sy

n,mS
y

n+1,m+1

)

+ d
y

2

∑
n

(
Sx

n,mS
y

n+1,m+1 − Sy
n,mSx

n+1,m+1

)
. (24)

Finally, the interchain Hamiltonian is given by

HI = HI1 + HI2. (25)

To evaluate the transformation (21) we have to know the
averages of the spin components and their products. They can
be easily found but have rather complicated, although closed,
expressions, for example,〈

Sx
1

〉 = x11σ
x
1 + x12σ

x
2 + y11σ

y

1 + y12σ
y

2

+ xzσ
x
1 σ z

2 + zxσ
z
1 σx

2 + zyσ
z
1 σ

y

2 , (26)

where coefficients are expanded functions of all interaction
parameters.

In a one-dimensional system (one chain) the RG transfor-
mation from the original set of coupling parameters to the set
of renormalized ones [(16) and (17)] exhibits only one stable
fixed point at T = ∞ (Kα = 0,Dα = 0). In a two-dimensional
(2D) system evaluating the LPRG recursion relations with
interchain interactions (25), we have found two stable fixed
points at T = ∞ and T = 0 and the critical surface in the space
of the 15 parameters: 12 from Eq. (16) and three interchain

interactions, jx
1 ,j x

2 , and d
y

2 [(23) and (24)]. This means that the
interchain interactions (23) trigger a phase transition indicated
by divergences of the coupling parameters. Unfortunately,
this method does not allow us to decide the character of the
phase transition and the nature of a low-temperature phase.
However, we can determine the location of the singularity
(critical) point. In Fig. 6 the critical temperatures as functions
of external field for several coupled chains are displayed.
Only in the case with jx

1 = 0.9,kxyz = 0, and d
y

1 = 0 close
to the spatially isotropic XY model (jx

1 = 1) can the critical
temperature be satisfactory fitted for small fields to a single
power (parabolic) law, tc(h) = 0.498 − 0.067h2. In other cases
the dependences are more complicated. Figure 7 shows the field
dependences of the polarization for temperatures above and
below the zero-field critical temperature tc(0). For t > tc(0) the
appropriate curves are close to that for a single chain, whereas
for t < tc(0) the polarization increases near the critical point
t → tc(h) because of divergences of the coupling parameters.
For the model with jx

1 = 0.1,kx
2 = −0.5 at low temperature

(but still higher than the critical one), the polarization displays
a broad, flat maximum like in the 1D case. Such a maximum
has been observed, for example, in Ba2Mg2Fe12O22 [14]. The
critical temperature is accompanied by the divergence of the

FIG. 7. Critical temperature as a function of magnetic field for
kxyz = 0 (solid lines) and kxyz = 0.5 (dashed lines), jx

1 = 0.5 or 0.9,
and d

y

1 = 0 (bottom and top curves) or d
y

1 = 0.3 (middle curve).
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FIG. 8. Field dependences of polarization for 2D (kxyz = 0.5) and jx
1 = 0.5,kx

2 = 0 (dashed lines), jx
1 = 0.1,kx

2 = 0 (thin solid line), and
jx

1 = 0.1,kx
2 = −0.5 (thick solid line) at temperature t = 0.5 and 0.2.

specific heat (Fig. 8), but in the frame of the LPRG method
we are not able to determine the character of this singularity
(critical index) reliably.

IV. CONCLUSIONS

Admittedly, there is no universal generally accepted mech-
anism of the magnetoelectric effect, but the KNB mechanism
may be regarded as a plausible explanation in several quasi-
one-dimensional magnetic materials such as spin- 1

2 chain
cuprates LiCu2O2 [15,16] and LiCuVO4 [17], the frustrated
magnet MnWO4 [18], cupric chloride (CuCl2) [19], and a
number of others [4]. The fundamental properties of the models
based on the KNB mechanism have been analyzed for exactly
solvable spin chains in Refs. [5,6]. The authors of those papers,
in order to preserve system integrability, confined themselves
to the nearest-neighbor XY model with DM interaction in
a magnetic field [5], supplemented alternatively with three-
spin interaction (3) [6]. At the expense of giving up exact
solvability one can, of course, consider more realistic or at
least more complex models. The main point is the possibility
of taking into account the next-nearest-neighbor interaction
J x

2 . Moreover, although the compounds mentioned above may
be regarded as one-dimensional, it is known that they undergo
a phase transition triggered by some interchain coupling. So
we have used the method that allows us to consider both

next-nearest-neighbor and interchain interactions in a reason-
able approximation.

The linear RG transformation applied to the Hamiltonian
of a J x

1 -J x
2 chain with DM interaction in a magnetic field

generates eight new effective interactions, three two-spin and
five three-spin ones, which have to be considered in an analysis
of the RG recursion relations, although their original values
(16) can be zero. In the present paper we have focused on the
influence of the next-nearest-neighbor (NNN) kx

2 , three-spin
kxyz [Eq. (9)], and interchain jx

1 [Eq. (23)] interactions and an
external electric field d

y

1 (5) on the polarization, the nearest-
neighbor correlation function, and the specific heat. As already
shown [6], the three-spin interaction kxzy [Eq. (9)] triggers the
polarization and is influenced by the magnetic field even in
the absence of the electric field. Similarly, the polarization
can be controlled solely by the three-spin interaction kxyz

[Eq. (9)], and the effect is larger in the latter case. The
polarization as a function of magnetic field is, of course,
impacted by an electric field d

y

1 [Fig. 2(b)] and also by NNN
interaction [Fig. 4(a)]. A sufficiently large electric field ensures
that the polarization does not change sign for any value or
sign of the magnetic field. The electric field also shifts the
maximum of the correlation function Gxx from the point h = 0
[Fig. 4(b)]. The negative NNN interaction reduces Gxx but
increases the polarization. The temperature dependences of
the polarization and the specific heat have also been studied for
several values of the magnetic field (Fig. 9). It has been shown

FIG. 9. Temperature dependences of polarization Py and specific heat Ch for kxyz = 0.5 and jx
1 = 0 (solid lines) and jx

1 = 0.5 (dashed
lines) at several values of field.
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FIG. 10. Comparison of the polarization found in this paper
(solid lines) with the exact results [6] (dashed lines) for the model
(2)–(3) with J1 = 1,J2 = 0,D

y

1 = 0,K = 0, and E = 0.5 at reduced
temperatures t = 0.5 (thin lines) and 2 (thick lines).

that for some range of the field the polarization as a function of
temperature exhibits a maximum. For the same values of the
field a two-peak structure of the specific heat is observed.

Most of the compounds showing the magnetoelectric effect
and treated as one-dimensional undergo a phase transition.
For this reason we have taken into account weak interchain
interactions (23) between the chains defined by the Hamil-
tonian (10). As one would expect, such an interaction can
lead to a phase transition indicated by the divergence of the
interaction parameters in the RG recursion relation iteration.
The applied method does not allow us to recognize the nature
of the transition, only its location as a function of couplings
and strength of the magnetic field.

In contrast to the Ising model for the quantum system
the linear renormalization-group transformation (6)–(7) can-
not be carried out exactly even in 1D case because of the
noncommutativity of several parts of the Hamiltonian. Thus,
the approximation takes the quantum effect into account only
within a single seven-spin block. Such an approximation is,
of course, better at higher temperatures [20]. In Fig. 10 the
polarization found in this paper is compared with the exact
result obtained by Menchyshyn et al. [6] for the model (2)–(3)
with J1 = 1,J2 = 0,D

y

1 = 0,K = 0, and E = 0.5 at reduced
temperatures t = 0.5 and 2. To make the comparison we used
Eq. (3.5) of Ref. [6], taking into account that in our case
Sz = ±1 instead of Sz = ± 1

2 . As seen for both small and large
magnetic fields, our RG approximation is in good agreement
with the exact result. However, there is a visible deviation from
the exact result around the field of the polarization maximum.
As one would expect, the agreement with the exact result
is better at higher temperature, where the location of the
polarization maximum is correctly found. For coupled chains
(2D system) the LPRG transformation is obtained by two
additional approximations: (i) the abbreviation of the cumulant
expansion, which is reasonable if the intrachain interaction is
weaker than the interchain one, and (ii) the truncation of the
interchain interaction generated by the transformation (21).
As mentioned above, the number of different interactions
generated by LPRG transformation already in the second-order
cumulant expansion is infinite for an infinite system. Thus, in
order to evaluate the LPRG transformation we have had to
confine ourselves to a finite cluster, which is justified again
only if the temperature is not too low. So the LPRG method
can be used to locate a critical point for a system with a
weak interchain interaction that is not too weak because in
the latter case the critical temperature is shifted to very low
temperatures.

APPENDIX A

Coefficients in the expressions for the eigenvalues of the Hamiltonian (12) are

Aq = (
2q3

1 − 27o1q
2
2 − 18o1q1q3 + 18q1q2r1 − 27q3r

2
1 − 6q2

1 r2 + 18o1q3r2 − 18q2r1r2 (A1)

+ 6q1r
2
2 − 2r3

2 + {[
4(−q2

1 − 3o1q3 − 6q2r1 + 2q1r2 − r2
2

)3 + (
2q3

1 − 27o1q
2
2 − 18o1q1q3

+ 18q1q2r1 − 27q3r
2
1 − 6q2

1 r2 + 18o1q3r2 − 18q2r1r2 + 6q1r
2
2 − 2r3

2

)2]1/2}1/3
,

Bq = q2
1 − 3o1q3 − 6q2r1 + 2q1r2 − r2

2 , Cq = 2q1 + r2.

The coefficients AQ,BQ,CQ are the same functions of Q1,Q2,Q3,R1,R2, and O1 as coefficients Aq,Bq,Cq of q1,q2,q3,r1,r2, and
o1, and

q1 = f0 − fd + f ′
z − f z

2 , q2 = 2
(
ıf xy + f x

1 + fxxz + ıfxyz

)
,

q3 = 2
(
ıf

xy

2 + f x
2 + fxzx + ıfxzy

)
, r1 = 2

(−ıf xy + f x
1 + fxxz − ıfxyz

)
,

r2 = f0 − fd + fz − f ′
z + f z

2 − 2f z
1 , o1 = 2

( − ıf
xy

2 + f x
2 + fxzx − ıfxzy

)
,

Q1 = f0 + fd − f ′
z − f z

2 , Q2 = 2
(
ıf xy + f x

1 − fxxz − ıfxyz

)
,

Q3 = 2
(
ıf

xy

2 + f x
2 − fxzx − ıfxzy

)
, R1 = 2

(−ıf xy + f x
1 − fxxz + ıfxyz

)
,

R2 = f0 + fd − fz + f ′
z + f z

2 − 2f z
1 , O1 = 2

( − ıf
xy

2 + f x
2 − fxzx + ıfxzy

)
. (A2)
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APPENDIX B

The RG transformation (6)–(7) for the Hamiltonian (10) has the form of 12 recursion relations for the renormalized coupling
parameters as functions of the original ones (16):

Kx
1 =

∑
i �=j �=k=2,3,4

Nx
q ln λk +

∑
i �=j �=k=5,6,7

Nx
Q ln λk − (

Nx
qa + Nx

Qa

)
ln a,

Kz
1 =

∑
i �=j �=k=2,3,4

Nz
q ln λk +

∑
i �=j �=k=5,6,7

Nz
Q ln λk − (

Nz
qa + Nz

Qa

)
ln a + 1

8
(ln λ1 + ln λ8 − 2 ln a),

Hz = 1

2

⎛
⎝ ∑

i �=j �=k=2,3,4

Nz
q ln λk +

∑
i �=j �=k=5,6,7

Nz
Q ln λk − (

Nz
qa + Nz

Qa

)
ln a

⎞
⎠ + 1

4
(ln λ1 − ln λ8),

Kx
2 =

∑
i �=j �=k=2,3,4

N2x
q ln λi +

∑
i �=j �=k=5,6,7

N2x
Q ln λi − (

N2x
qa + N2x

Qa

)
ln a,

Kz
2 = −

∑
i �=j �=k=2,3,4

N2z
q ln λi −

∑
i �=j �=k=5,6,7

N2z
Q ln λi + (

N2z
qa + N2z

Qa

)
ln a + 1

8
(ln λ1 + ln λ8 − 2 ln a),

Dz = −
∑

i �=j �=k=2,3,4

Nd
q ln λi −

∑
i �=j �=k=5,6,7

Nd
Q ln λi + (

Nd
qa + Nd

Qa

)
ln a + 1

8
(ln λ1 − ln λ8),

D
y

1 = i
∑

i �=j �=k=2,3,4

N1y
q ln λi + i

∑
i �=j �=k=5,6,7

N
1y

Q ln λi − i
(
N1y

qa + N
1y

Qa

)
ln a,

D
y

2 = −i
∑

i �=j �=k=2,3,4

N2y
q ln λi − i

∑
i �=j �=k=5,6,7

N
2y

Q ln λi + i
(
N2y

qa + N
2y

Qa

)
ln a,

Kxxz = −
∑

i �=j �=k=2,3,4

Nxxz
q ln λi −

∑
i �=j �=k=5,6,7

Nxxz
Q ln λi + (

Nxxz
qa + Nxxz

Qa

)
ln a,

Kxzx = −
∑

i �=j �=k=2,3,4

Nxzx
q ln λi −

∑
i �=j �=k=5,6,7

Nxzx
Q ln λi + (

Nxzx
qa + Nxzx

Qa

)
ln a,

Kxyz = i
∑

i �=j �=k=2,3,4

Nxyz
q ln λi + i

∑
i �=j �=k=5,6,7

N
xyz

Q ln λi − i
(
Nxyz

qa + N
xyz

Qa

)
ln a,

Kxzy = −i
∑

i �=j �=k=2,3,4

Nxzy
q ln λi − i

∑
i �=j �=k=5,6,7

N
xzy

Q ln λi + i
(
Nxzy

qa + N
xzy

Qa

)
ln a, (B1)

where

Nα
q = Wα

q1 + (λi + λj )Wα
q2 + λiλjW

α
q3

8(a − λk)(λk − λi)(λk − λj )
,

Nα
qa = wα

q0 + (λ2 + λ3 + λ4)wα
q1 + (λ2λ3 + λ2λ4 + λ3λ4)wα

q2

8(a − λ2)(a − λ3)(a − λ4)
,

wx
q0 = 2q2

2 r1 + 2q2r
2
1 + q2

1 (q2 + r1) + q3r1r2 + q2r
2
2 + r1r

2
2 + q1[2q3r1 + (q2 + r1)r2]

+ o1[2q1q2 + q3r1 + q2(q3 + r2)],

wx
q1 = −[o1q2 + q3r1 + q1(q2 + r1) + q2r2 + r1r2], wx

q2 = q2 + r1,

Wx
q1 = q2

1q2 + q2
1 r1 + 2q2

2 r1 + 2q1q3r1 + 2q2r
2
1 + q1q2r2 + q3r1r2 + q2r

2
2

− a[o1q2 + q3r1 + q1(q2 + r1) + q2r2 + r1r2] + o1[2q1q2 + q3r1 + q2(q3 + r2)],

Wx
q2 = −[o1q2 + q1q2 + q1r1 + q3r1 − a(q2 + r1) + q2r2 + r1r2],

wz
q0 = a3 − o1q

2
2 − 2q1q2r1 − q3r

2
1 − 4q2r1r2 − r3

2 , wz
q1 = −a2 + 2q2r1 + r2

2 ,

Wz
q1 = −o1q

2
2 − 2q1q2r1 − q3r

2
1 − 4q2r1r2 − r3

2 + a
(
2q2r1 + r2

2

)
,

wz
q2 = a − r2, Wz

q2 = 2q2r1 + r2(r2 − a),
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N2z
q = n2z

q0 + n2z
q1(a + λj + λk) + n2z

q2[a(λj + λk) + λjλk − a2(λj + λk]

8(a − λi)(λi − λj )(λi − λk)
,

N2z
qa = a3 + n2z

q0 + (
n2z

q1 − a2
)
(λ2 + λ3 + λ4) + n2z

q2(λ2λ3 + λ2λ4 + λ3λ4)

8(a − λ2)(a − λ3)(a − λ4)
,

n2z
q0 = −2q3

1 − o1q
2
2 − q3r

2
1 − 2q1(3o1q3 + q2r1) + 2q2r1r2 + r2

2 ,

n2z
q1 = 2q2

1 + 2o1q
2
3 − r2

2 , n2z
q2 = a − 2q1 + r2,

Nd
q = nd

q0 + nd
q1(a + λj + λk) + nd

q2[a(λj + λk) + λjλk] + 3aλjλk

8(a − λi)(λi − λj )(λi − λk)
,

Nd
qa = nd

q0 + 3a3 + (
nd

q1 − 3a2
)
(λi + λj + λk) + (

nd
q2 + 3a

)
(λ2λ3 + λ2λ4 + λ3λ4)

8(a − λi)(λi − λj )(λi − λk)
,

nd
q0 = −2q3

1 − 3o1q
2
2 − 3q3r

2
1 − 6q1(o1q3 + q2r1) − 6q2r1r2 − r3

2 ,

nd
q1 = 2q2

1 + 2o1q3 + 4q2r1 + r2
2 , nd

q2 = −(2q1 + r2), (B2)

and

Nβ
q = n

β

q0 + n
β

q1(a + λj + λk) + n
β

q2[a(λj + λk) + λjλk]

8(a − λi)(λi − λj )(λi − λk)
ln λi,

Nβ
qa = n

β

q0 + n
β

q1(λ2 + λ3 + λ4) + n
β

q2(λ2λ3 + λ2λ3 + λ3λ4)

8(a − λ2)(a − λ3)(a − λ4)
,

β = 2x,1y,2y,xxz,xzx,xzy,xyz,

n2x
q0 = o2

1q3 + 3q2
1q3 + 2q2Q3r1 + o1

(
3q2

1 + q2
3 + 2q2r1

) + 2q1
(
q2

2 + r2
1

) + q2
2 r2 + r2

1 r2,

n2x
q1 = −(

2o1q1 + q2
2 + 2q1q3 + r2

1

)
, n2x

q2 = o1 + q3,

n
1y

q0 = q2
1 (q2 − r1) + 2q2

2 r1 − 2q2r
2
1 + q3r1r2 + q2r

2
2 − r1r

2
2

− o1(2q1q2 − q2q3 + q3r1 + q2r2) + q1(2q3r1 + q − 2r2 − r1r2),

n
1y

q1 = o1q2 − q3r1 + q1(r1 − q2) − q2r2 + r1r2, n
1y

q2 = q2 − r1,

n
2y

q0 = −2q1q
2
2 + o2

1q3 − 3q2
1q3 − 2q2q3r1 + 2q1r

2
1

+ o1
(
3q2

1 − q2
3 + 2q2r1

) − q2
2 r2 + r2

1 r2,

n
2y

q1 = −2o1q1 + q2
2 + 2q1q3 − r2

1 , n
2y

q2 = o1 − q3,

nxxz
q0 = 2q2

2 r1 + 2q2r
2
1 + q2

1 (q2 + r1) + q3r1r2 + q2r
2
2 + r1r

2
2

+ q1[2q3r1 + (q2 + r1)r2] + o1[2q1q2 + q3r1 + q2(q3 + r2)],

nxxz
q1 = −[o1q2 + q3r1 + q1(q2 + r1) + q2r2 + r1r2], nxxz

q2 = q2 + r1,

nxzx
q0 = o2

1q3 + 3q2
1q3 + 2q2q3r1 + o1

(
3q2

1 + q2
3 + 2q2r1

)
+ 2q1

(
q2

2 + r2
1

) + q2
2 r2 + r2

1 r2,

nxzx
q1 = −(

2o1q1 + q2
2 + 2q1q3 + r2

1

)
, nxzx

q2 = o1 + q3,

n
xyz

q0 = q2
1 (q2 − r1) + 2q2

2 r1 − 2q2r
2
1 + q3r1r2 + q2r

2
2 − r1r

2
2

− o1(2q1q2 − q2q3 + q3r1 + q2r2) + q1(2q3r1 + q2r2 − r1r2),

n
xyz

q1 = o1q2 − q3r1 + q1(r1 − q2) − q2r2 + r1r2, n
xyz

q2 = q2 − r1,

n
xzy

q0 = −2q1q
2
2 + o2

1q3 − 3q2
1q3 − 2q2q3r1 + o1

(
3q2

1 − q2
3 + 2q2r1

) − q2
2 r2 + r2

1 r2,

n
xzy

q1 = (−2o1q1 + q2
2 + 2q1q3 − r2

1

)
, n

xzy

q2 = o1 − q3. (B3)
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A constant term appearing in each step of the transformation reads

Z0 = 1

8
(ln λ1 + ln λ8) +

∑
i �=j �=n=2,3,4

Wq1 + (λi + λj )Wq2 + λiλjWq3

8(a − λk)(λk − λi)(λk − λj )
ln λk

+
∑

i �=j �=n=5,6,7

WQ1 + (λi + λj )WQ2 + λiλjWQ3

8(a − λk)(λk − λi)(λk − λj )
ln λk

+
(

7

4
+ −8λ2λ3λ4 + (λ2λ3 + λ2λ4 + λ3λ4)wq2 − (λ2 + λ3 + λ4)wq1 + wq0

8(a − λ2)(a − λ3)(a − λ4)

+ −8λ5λ6λ7 + (λ5λ6 + λ5λ7 + λ6λ7)wQ2 − (λ5 + λ6 + λ7)wQ1 + wQ0

8(a − λ5)(a − λ6)(a − λ7)

)
ln a, (B4)

where

Wq1 = −2q3
1 − 3o1q

2
2 − 3q3r

2
1 − 6q1(o1q3 + q2r1) − 6q2r1r2 − r3

2 + a
(
2q2

1 + 2o1q3 + 4q2r1 + r2
2

)
,

Wq2 = 2q2
1 + 2o1q3 + 4q2r1 + r2

2 − a(2q1 + r2), Wq3 = 3a − 2q1 − r2,

wq0 = 5a3 + 2q3
1 + 3o1q

2
2 + 6o1q1q3 + 6q1q2r1 + 3q3r

2
1 + 6q2r1r2 + r3

2 ,

wq1 = 5a2 + 2q2
1 + 2o1q3 + 4q2r1 + r2

2 , wq2 = 5a2q1 + r2. (B5)

Just as before the coefficients nQi,WQi,wQi,W
α
Qi,w

α
Qi are the same functions of Q1,Q2,Q3,R1,R2, and O1 as coefficients

nqi,Wqi,wqi,W
α
qi,w

α
qi of q1,q2,q3,r1,r2, and o1 (22).
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