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Magnetism of metallacrown single-molecule magnets: From a simplest model to realistic systems
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Electronic and magnetic properties of molecular nanomagnets are determined by competing energy scales due
to the crystal field splitting, the exchange interactions between transition metal atoms, and relativistic effects. We
present a comprehensive theory embracing all these phenomena based on first-principles calculations. In order to
achieve this goal, we start from the FeNi4 cluster as a paradigm. The system can be accurately described on the
ab initio level yielding all expected electronic states in a range of multiplicities from 1 to 9, with a ferromagnetic
ground state. By adding the spin-orbit coupling between them we obtain the zero-field splitting. This allows to
introduce a spin Hamiltonian of a giant spin model, which operates on a smaller energy scale. We compare the
computed parameters of this Hamiltonian with the experimental and theoretical magnetic anisotropy energies
of the monolayer Ni/Cu(001). In line with them, we find that the anisotropy almost entirely originates from the
second-order spin-orbit coupling, the spin-spin coupling constitutes only a small fraction. Finally, we include
the ligand atoms in our consideration. This component has a decisive role for the stabilization of molecules
in experimental synthesis and characterization, and also substantially complicates the theory by bringing the
superexchange mechanisms into play. Since they are higher-order effects involving two hopping matrix elements,
not every theory can describe them. Our generalization of the corresponding perturbation theory substantiates the
use of complete active space methods for the description of superexchange. At the same time, our numerical results
for the {CuFe4} system demonstrate that the Goodenough-Kanamori rules, which are often used to determine
the sign of these exchange interactions, cannot deliver quantitative predictions due to the interplay of other
mechanisms, e. g., involving multicenter Coulomb integrals. We conclude by comparing ab initio values of the
exchange interaction constants for the {CuCu4} and {CuFe4} metallacrown magnetic molecules with experimental
values determined by fitting of the magnetic susceptibility curves χMT (T ), and attribute the remaining discrepancy
between them to the role of virtual electron excitations into and out of the active space (dynamical correlations).
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I. INTRODUCTION

Spin models are fundamental paradigms of condensed
matter physics, yielding a rich family of magnetically ordered
phases [1,2], realized in physically very diverse systems by
a number underlying mechanisms. In this work, we focus on
the question to which extent these spin model Hamiltonians
can be applied to finite molecular systems [3,4], and present a
comprehensive theory for treating realistic molecules such as
metallacrowns [5,6]. This class of organometallic molecular
systems features a remarkable diversity of compositions, spin
states and physical properties [7–10]. It typically comprises a
cyclic arrangement of four ring metal ions and hosts another
metal guest ion at its core. Metallacrowns (MC) are excellent
candidates for observations of the slow relaxation of the
magnetization—in contrast to quantum tunneling [11,12]. This
process is often rationalized in terms of the giant spin model
[13–16], which on the one hand justifies the term single-
molecule magnet (SMM) [17–19], and on the other hand poses
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the question as to what extent such a macrospin scenario is
relevant: for instance it is known that the giant spin model is
inadequate when different spin multiplets are nested within the
ground state [20].

Thus, one prominent question for any theory is to determine
the validity range of different spin models, notably supported
by ab initio calculations. There is no general prescription
here: the constituent transition metal (TM) atoms offer great
flexibility in the occupation of 3d orbitals and can lead to a
low- or high-spin ground-state configuration depending on the
choice of atoms and ligand (donor) atoms. Thus the analysis
needs to be specifically performed for each system. To this
end, we consider here a series of systems ranging from the
simplest five-center transition metal cluster to recently syn-
thesized CuII(DMF)2Cl2[12−MCFeIIIN(Shi) − 4](DMF)4 and
(HNEt3)2CuII[12−MCCuIIN(Shi) − 4] metallacrowns ({CuFe4}
and {CuCu4} for brevity; in the full metallacrown notation,
as introduced by Pecoraro, 12 refers to the total number of
segments in the cyclic host, and 4 is the number of involved
oxygen atoms [7,9]) (Fig. 1). We demonstrate how correspond-
ing spin models can be constructed on each stage and aligned
with experimental measurements of magnetic susceptibility,
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FIG. 1. (a)–(c) The three systems of the present study and (d) a
generic spin model. Ab initio calculations are performed on the FeNi4

cluster (a), and on the charged minimal models of metallacrowns [(b)
and (c)]. They are constructed by depriving MCs of weakly bound
solvent molecules and coordinated anions (HNEt3, DMF, Cl−), and
have a form AB4L4, where A and B are TM atoms. Notice that Ni
(d9) in FeNi4 is isoelectronic with CuII in {CuCu4} (b) and {CuFe4}
(c), and therefore these systems can be used for comparison. Color
scheme: light blue, yellow, and magenta spheres stand for Cu, Fe, and
Ni transition metal atoms, respectively. C, N, and O atoms are depicted
as grey, blue, and red spheres, respectively. Hydrogen atoms have been
removed for clarity. All three systems (a)–(c) are shown on the same
scale. DMF stands for dimethylformamide, and L=C7H4NO3 is the
ligand complex.

x-ray magnetic circular dichroism measurements of element-
selective magnetic moments [21], and high-field electron para-
magnetic resonance (EPR) measurements [22] of the axial (D)
and rhombic (E) zero-field splitting (ZFS) [23] parameters.
The manuscript is thus divided into three sections describing
the first-principles calculations and their applications to FeNi4
and {CuCu4}, {CuFe4}. The bare metallic FeNi4 cluster enables
us to perform extended calculations, which are prohibitively
complicated for the metallacrown molecules involving large
organic moities. At the same time, Ni (d9) in FeNi4 is
isoelectronic with CuII in {CuCu4} and {CuFe4} allowing
for the comparison of direct and ligand-mediated exchange
mechanisms and for the investigation of relativistic effects.

While generally a very accurate correspondence between
our ab initio calculations and a spin model can be established,
our main goal is to explain the remaining discrepancies.
Qualitative understanding is provided by the Goodenough-
Kanamori rules. However, being based on perturbation theory,
the rules are not accurate enough to make quantitative predic-
tions. This is rigorously shown for the {CuCu4} and {CuFe4}
metallacrown systems.

As we said above, the studied systems are at the intersection
of several fields: physical chemistry, theoretical solid state
physics, and quantum chemistry (Fig. 2). For instance, the
zero-field splitting in molecular systems is regarded as the
magnetic anisotropy in solid state materials. The Hubbard U

can be perceived as a parameter in some of the models, or it can
be computed from first principles, or determined by the fitting

FIG. 2. Outline of this work. We specifically focus on the
Heisenberg-Dirac-Van Vleck Hamiltonian Ĥex and the zero-field
splitting Hamiltonian ĤZFS bridging our ab initio calculations and
experimental measurements. Other abbreviations are NMR/EPR (nu-
clear magnetic resonance/electron paramagnetic resonance), SQUID
(superconducting quantum interference device), INS (inelastic neu-
tron scattering), and FMR (ferromagnetic resonance). ĤZ denotes
the Zeeman Hamiltonian, whereas ĤHFC is the hyperfine coupling
Hamiltonian.

of atomic spectroscopy data. Therefore the paper is organized
as to bridge these communities and to provide a unifying
view on the topic. Theoretical concepts used in this work are
presented in Sec. II, which is divided into three subsections:
the first-principles calculations including relativistic effects
(Sec. II A), Hamiltonians of the spin models (Sec. II B), and
the computation of experimental observables such as magnetic
susceptibilities (Sec. II C). Our main results are presented in
Sec. III, which is devoted to the bare metallic FeNi4 cluster, and
in Sec. IV devoted to the two metallacrowns. In Appendix A
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we summarize ab initio methods used in this work and in
Appendix B we investigate the role of biquadratic exchange
interactions.

II. THEORY

A. First-principles calculations

Ab initio calculations in this work were performed using
the complete active space (CAS) and correlated methods as
implemented in the ORCA quantum chemistry program [24].
These results can either be directly interpreted in terms of
energies and spin expectation values or used to produce
hopping tij and Coulomb matrix elements 〈ij |1/r|kl〉. They
are the ingredients of a general many-body Hamiltonian

Ĥ =
∑
ij

tijσ ĉ
†
iσ ĉjσ + 1

2

∑
ijkl

∑
σσ ′

〈ij |1/r|kl〉ĉ†iσ ĉ
†
jσ ′ ĉlσ ′ ĉkσ ,

(1)

where i, j, k, l specify the spatial state and σ,σ ′ = ±1 are
the spin labels. Here and in what follows (unless explicitly
specified) we use atomic units (me = e = h̄ = 4πε0 = 1).
Exact diagonalization (ED) of this Hamiltonian is only feasible
for very small active spaces. However, since we are interested
only in magnetic excitations, which are close to the ground
state and because the systems of interest permit a description in
terms of the localized basis states, their spectrum can efficiently
be computed within the density matrix renormalization group
(DMRG) approach. We are using the CHEMPS2 [25] implemen-
tation for this purpose.

The hopping tij contains the electron kinetic energy, the
interaction with nuclei, and the mean-field Coulomb part.
It is important to emphasize that already for 3d transition
metal atoms relativistic effects [26] are important. The scalar-
relativistic effects are included via the second-order Douglas-
Kroll-Hess (DKH) transformation [27] and are incorporated in
the hopping matrix elements.

The spin-orbit

ĤSOC = α2

2

∑
i

∑
A

ZA

(ri − RA) × pi

|ri − RA|3 ŝi

− α2

2

∑
i

∑
j �=i

(ri − rj ) × pi

|ri − rj |3 (ŝi + 2ŝj ) (2)

and the spin-spin

ĤSSC = α2

2

∑
i

∑
j �=i

1

|ri − rj |3
[

ŝi · ŝj − 3(ŝi · rij )(ŝj · rij )

|ri − rj |2
]
(3)

couplings (SSC) are added perturbatively. Here, r, p, and ŝ
are position, momentum, and spin operators of an electron,
α = 1/c is the fine-structure constant. There is no contact SSC
term for electrons [28].

The spin-spin coupling is a prototypic microscopic mech-
anism of the so-called magnetic shape anisotropy [29,30].
Whereas the first term in Eq. (3) depends only on the mutual
orientation of spins and favors their antiferromagnetic align-
ment, the second term depends on the relative orientation of

spins and a vector between them, rij . Therefore, it is sensitive
to the geometry of a sample: vanishes for the infinite-sized
crystals and favors the in-plane alignment in thin films. In the
latter case, a sum over the lattice can be performed yielding
for magnetic moments m located at lattice sites with period a

and ferromagnetically aligned at angle φ to the surface normal
the energy E = 1

2
μ0

a3 m2 cos2 φ [31,32]. In more complicated
geometries, the geometrical parameters are conventionally
parametrized in terms of the demagnetizing factors [33].

B. Spin models

In full generality, effective spin models are simplifications,
which arise by projecting out irrelevant energy scales. By
focusing on the lowest energy spin multiplet |aSa〉 and ne-
glecting the exchange interactions with other spins or nuclei,
the following spin Hamiltonian defined in terms of the g and
D tensors is relevant:

ĤS = μBB · g · Ŝ + Ŝ · D · Ŝ︸ ︷︷ ︸
ĤZFS

. (4)

This is the most general form of an interaction of spins with a
magnetic field B, linear in B and Ŝ, and a bilinear interaction
of spins and can simultaneously be regarded as the definition of
corresponding g andD tensors. While this form arises from the
Dirac-Coulomb-Breit Hamiltonian [28], two important parts of
which are given by Eqs. (2) and (3), it is also used for more
general scenarios. For instance, the magnetic field B in the
Zeeman interaction (first term) can be applied externally or
arise as exchange bias at interfaces, in magnetic heterostruc-
tures [34,35]. For the first part, relativistic-mass correction,
paramagnetic and diamagnetic terms of the Breit-Pauli Hamil-
tonian introduce important corrections to the g tensor, which
are further modified by the external magnetic field [27]. The
second term contains relativistic effects leading to the splitting
of the multiplet even in the absence of the field. This part is also
known as the zero-field splitting (ZFS) Hamiltonian HZFS. It is
the cause of the magnetic anisotropy, and has profound effects
on magnetic properties. For example, magnetic hardness (the
width of a hysteresis loop) is determined by the magnitude of
D. As for the origin of ZFS, if ĤSOC and ĤSSC are treated
perturbatively, it consists of a first-order term arising from
the direct spin-spin interaction (3) and of a second-order
contribution from the spin-orbit coupling, Eq. (2). We notice
that ĤSOC yields splittings of the ground-state multiplet already
in the first order, however, its form is not bilinear in spin
operators as postulated by the general form (4). A standard way
to find the D tensor is to equate the matrix elements of the first
principles, ĤSOC + ĤSSC, and the model ĤZFS Hamiltonians:

〈aSaM|ĤZFS|aSaM
′〉

= 〈aSaM|ĤSSC|aSaM
′〉

+
∑
b,M ′′

〈aSaM|ĤSOC|bSbM
′′〉〈bSbM

′′|ĤSOC|aSaM
′〉

Ea − Eb

.

(5)

According to the selection rules for the spin-orbit coupling, the
computation of the second-order term involves a sum over the
intermediate states |bSb〉 with Sb − Sa = 0, ± 1, as detailed
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by Neese [36], different implementations are compared by van
Wüllen et al. [37,38]. While ĤZFS can be generally put in
correspondence with magnetic anisotropy energy (MAE) of
an extended system (comprising the magnetocrystalline and
the shape parts), there are important differences how they are
evaluated in practice. Focusing on the magnetocrystalline part,
there are a lot of intricacies related to the bulk versus interface
contributions, which are very sensitive to the underlying crystal
structure [30,39,40]. Nonetheless, the second-order depen-
dence of the energy on the spin-orbit coupling is predicted [41].
While this is natural in view of the microscopic expression
(5), in the case of band-structure calculations of extended
systems, special treatment is required for degenerate states and
band-crossings [31,32,42].

On a larger energy scale, the interaction of spins on different
sites needs to be taken into account. On the basis of Eqs. (2)
and (3), relativistic effects rapidly subdue with the distance
as reflected in the well known fact that the spin-other orbit
coupling is weak. However, the Pauli exclusion principle is
still operative and governs exchange interactions. Transition
metals are known for the importance of the orbital degrees
of freedom, which manifest themselves in the ordering of
the orbitals. For example, it is typical in solid state physics
to represent the eg and t2g states in tetrahedral or octahedral
crystal environments as pseudospins with momentum 1/2 and
1, respectively. Following Tokura and Nagaosa [43], a generic
Hamiltonian would be

HPS =
∑
ij

[Jij (T̂i ,T̂j )Ŝi · Ŝj + Kij (T̂i ,T̂j )]. (6)

The interaction between spins Ŝ and pseudospins T̂, which
is not necessarily of relativistic origin as Eqs. (2) and (3),
sets all the multitude of electronic levels, whereas mag-
netic properties are determined solely by the spin configu-
ration. The form of the Hamiltonian (6) is not unique and
stresses the spin degrees of freedom. First-principles determi-
nation of the exchange constants Jij and Kij is a daunting task
[44]. This becomes evident considering the fact that even in
two-spin systems in the absence of orbital degrees of freedom,
there are at least three approaches differing by the correction
�S for the determination of a single J parameter on the basis of
the energy difference between the high- (HS) and the low-spin
(LS) configurations [45]:

J = ELS − EHS

〈Ŝ2〉HS − �S
. (7)

In the present work, we will focus on the spin-only Hamiltonian
as discussed below. However, we will see examples where this
model is insufficient.

For a square planar AB4 molecule schematically depicted
in Fig. 1 the isotropic exchange (ex) Heisenberg-Dirac-Van
Vleck Hamiltonian [4] is given by

Ĥex = −2J1

∑
i

ŝA · ŝBi
− 2J2

∑
〈ij〉

ŝBi
· ŝBj

, (8)

where 〈ij 〉 denotes a collection of nearest neighbors. ŝA and ŝBi

are effective spin operators representing possibly composite
spins on the centers A and Bi , respectively. The exchange
constants J1,2 are positive for ferromagnetic (FM) interactions

and negative for antiferromagnetic (AFM) ones. As a possible
generalization, a biquadratic interaction between spins can be
considered, i.e., Ĥ(2)

ex , where

Ĥ(2)
ex = −κ1

∑
i

(ŝA · ŝBi
)2 − κ2

∑
<ij>

(ŝBi
· ŝBj

)2. (9)

For our systems, κ1 and κ2 are very small. Interactions between
the next nearest neighbors (along diagonals) are neglected be-
cause there is no effective coupling mechanism. Some authors,
notably Kahn in Ref. [3], define the Heisenberg-Dirac-Van
Vleck Hamiltonian with different prefactors. In what follows,
we adhere to definition (8), which is also consistent with the
review of Furrer and Waldmann [4].

In addition to indirect mechanisms that will be considered in
details below, the bare Coulomb interaction between molecular
orbitals

〈ij |1/r|kl〉 =
∫

dr
∫

dr′ φ∗
i (r)φ∗

j (r′)φk(r′)φl(r)

|r − r′|
≡ (il|kj ) (10)

is a possible microscopic origin of exchange interactions. The
matrix elements are typically categorized into Hubbard U and
exchange J interactions, which nonetheless result from the
same four-index quantity. The dominant ones are those having
at most two distinct indices and having a generic form

Uab ≡ (aa|bb), Jab ≡ (ab|ab). (11)

They were specifically considered by Hubbard in the well
known model of Ref. [46]. As a side remark, there are a lot
of intricacies of this parametrization in the atomic limit, where
U and J can be determined from atomic spectroscopy data as
clarified by Hübner and Falicov [47]: the spherical symmetry
can only be assured by the inclusion of four-index quantities,
in cubic environment the exchange anisotropy term �J given
in the TM ions by the eg−t2g splitting is important, etc. While
these are key quantities in the crystal field models, they attain
their second life in the density functional calculations using
the LDA+U approach [48]. Here, for us it will be important
to notice that depending on whether a and b are centered on
the same atom, nearest neighbors, or across the diagonal, the
magnitude of U and J can span the range from tens of eV to
μeV [49,50]. However, they are always positive and cannot
explain that interactions between spins on TM atoms bridged
by several organic atoms can be rather large and not necessarily
ferromagnetic. Therefore, as we mentioned above, in the
majority of systems including bulk materials and molecular
magnets, the dominant contribution to the exchange constants
is from indirect mechanisms: either mediated by intermediate
atoms (superexchange), or facilitated by the hopping between
two neighboring atoms (kinetic exchange) [51]. The systems
considered here exemplify this point: the central TM atom (A)
in metallacrowns [Figs. 1(b) and 1(c)] is bound indirectly via
an oxygen (A–O–B) or an oxamate bridge (A–O–N–B) to the
TM atoms on the ring (B). The interaction between ring atoms
is also mediated by the oxamate bridge (B–O–N–B). This is
to be contrasted with the FeNi4 cluster that possesses direct
bonds, Fig. 1(a).

Of relevance for the studied systems (Fig. 1) are superex-
change mechanisms (see Ref. [52]): while the FeNi4 cluster
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FIG. 3. Bond lengths (Å) and angles (degrees) of a central frag-
ment of the CuII[12 − MCFeIIIN(Shi) − 4] metallacrown. Simplistic ap-
plication of the Goodenough-Kanamori rule predicts that the magnetic
interactions between CuII and FeIII ions are antiferromagnetic when
electrons can hop between the d orbitals of TM ions via the pz orbital
of O. In the opposite case, when the Fe–O–Cu angle approaches 90◦,
such hopping is not possible. In this case, a ferromagnetic interaction
arises due to the hopping of d-electrons onto two orthogonal p

orbitals.

lacks ligand-mediated pathways, the indirect mechanisms
are still operative there; at variance, the {CuCu4} and the
{CuFe4} metallacrowns are paradigmatic examples. Consider
for instance the A–O–B bond. When the d orbitals on A and
B interact via an oxygen in-between (in the linear geometry),
both d orbitals couple to the same pz orbital, while the hopping
to the two other px and py orbitals vanishes by symmetry.
The result is an antiferromagnetic superexchange coupling
which is due to the unobstructed electron-hopping via the
oxygen pz bridge and the on-site Hubbard repulsion. When
the A–O–B angle is close to 90◦, the d orbitals couple to two
orthogonal px/py orbitals, making it impossible for an electron
on one d orbital to reach the d orbital on the other site. In
this case, the superexchange is mediated via the intraatomic
Coulomb exchange on oxygen, and is ferromagnetic. Each
of the operative mechanisms depend in a crucial way on the
occupation of the participating orbitals. This is the rationale
behind the so-called Goodenough-Kanamori rules [53–55].
We refer here to the excellent monograph (Sec. III B) by

FIG. 4. Correspondence between the rhombically distorted AB4

spin system and a spin triangle. Analytic solution is possible for SA =
1/2 and is given by Eq. (12).

John B. Goodenough [56] for the discussion of all intricacies.
In realistic molecular systems, there is no clear separation
between the two mechanisms as evidenced by Fig. 3.

Biquadratic spin interactions (9) are typically associated
with magnetoelastic mechanisms as was originally proposed
by Kittel [57] and found in experiments on, e.g., spinels [58],
or even on the Ni4 magnetic molecules [59]. However, it
may also be obtained from the many-body Hamiltonian via
an indirect mechanism as was indicated by P .W. Anderson
[60,61]. In fact, the lowest-order contribution to the biquadratic
exchange constant κ is the same as in the antiferromagnetic
exchange mechanism, i.e., proportional to the forth power of
the hopping between the magnetic d orbitals and the ligand p

orbitals, and inversely proportional to the third power of the
on-site Coulomb repulsion. This is not surprising given the fact
that (ŝi · ŝj )2 = 3

16 − 1
2 (ŝi · ŝj ) for si = sj = 1

2 , and therefore
it makes sense to introduce the biquadratic exchange only for
higher spins [62]. In Appendix B, we generalize this trick to
spin triangles of the type AB2, where only sA = 1

2 . This is
relevant for our discussion of subsystems of spin of the {CuFe4}
metallacrown in Sec. IV B.

Regardless of the microscopic mechanisms, Eq. (8) can be
solved analytically. Straightforwardly, but perhaps not widely
known, even in the case of a rhombic distortion, the system
can be mapped onto the Hamiltonian of a general spin triangle
with spins ŝA, ŜB1 = ŝB1 + ŝB3 , and ŜB2 = ŝB2 + ŝB4 , respec-
tively, and three distinct exchange constants J ′

1 = (1 − δ)j ,
J ′′

1 = (1 + δ)j , and J2 = αj , as is shown in Fig. 4. In these
notations, for arbitrary SBi

and a fixed value of sA = 1/2, the
eigenenergies can be written in a concise form as functions of
the total spin (S):

E(S) = −(S + 1/2)2αj ± j
√

(S + 1/2)2(1 − α)2 + [(Smax + 1/2)2 − (S + 1/2)2]δ2. (12)

For a given total spin Smin � S � Smax − 1, there are two
possible eigenvalues corresponding to ferromagnetic and an-
tiferromagnetic alignments of the ŜB1 and ŜB2 spins. For
antiferromagnetic coupling constant j , the plus sign in Eq. (12)
corresponds to the lower antiferromagnetic branch of solutions.
The upper branch has one additional eigenvalue corresponding
to the ferromagnetic configuration and having the maximal spin
Smax = sA + SB1 + SB2 . Some partial cases of this equation
were considered by Haraldsen et al. [63].

For a square-symmetric system, the solution simplifies
significantly and the energies can be given in terms of the

total spin Ŝ = ŝA + ŜB , and three additional quantum numbers:
Ŝ13 = ŝB1 + ŝB3 , Ŝ24 = ŝB2 + ŝB4 , and the total spin of the ring
atoms ŜB = Ŝ13 + Ŝ24. The eigenstates are |S13S24SBSMS〉
and the corresponding energy is

E = −J1[S(S + 1) − sA(sA + 1) − SB(SB + 1)]

− J2[SB(SB + 1) − S13(S13 + 1) − S24(S24 + 1)], (13)

where Sk(Sk + 1) is the expectation value of Ŝ2
k , and MS is the

total spin projection. The system is degenerate with respect to
this quantum number. The dimension of the Hilbert space is
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(2sA + 1)(2SB + 1)4. Spin states for sA = 2 and sB ≡ sBi
= 1

2
(with relevance for the FeNi4 bare metallic cluster—its elec-
tronic configuration is analyzed in Sec. III) are decomposed as
follows:

2 ⊗ [
1
2 ⊗ 1

2 ⊗ 1
2 ⊗ 1

2

] = 0 ⊕ 14 ⊕ 26 ⊕ 34 ⊕ 4, (14)

where SA ⊗ SB and SA ⊕ SB is a direct product and a direct
sum of two spin-representations of dimensions 2SA + 1 and
2SB + 1, respectively. The superscript specifies the number of
independent multiplets of each spin.

Similarly, for the {CuCu4} and {CuFe4} metallacrowns
with sB = 1

2 , 1, 3
2 and sA = 1

2 (their electronic configuration
is analyzed in Sec. IV) the decomposition is as follows:

1
2 ⊗ [

1
2 ⊗ 1

2 ⊗ 1
2 ⊗ 1

2

] = 1
2

5 ⊕ 3
2

4 ⊕ 5
2 , (15a)

1
2 ⊗ [

3
2 ⊗ 3

2 ⊗ 3
2 ⊗ 3

2

] = 1
2

13 ⊕ 3
2

20 ⊕ 5
2

21

⊕ 7
2

16 ⊕ 9
2

9 ⊕ 11
2

4 ⊕ 13
2 , (15b)

1
2 ⊗ [

5
2 ⊗ 5

2 ⊗ 5
2 ⊗ 5

2

] = 1
2

21 ⊕ 3
2

36 ⊕ 5
2

45 ⊕ 7
2

48

⊕ 9
2

45 ⊕ 11
2

36 ⊕ 13
2

25 ⊕ 15
2

16

⊕ 17
2

9 ⊕ 19
2

4 ⊕ 21
2 . (15c)

C. Thermodynamic properties

From the knowledge of the eigenstates, basic thermody-
namic properties can be obtained. They are the partition
function

Z =
∑

λ

exp

(
− Eλ

kBT

)
, (16)

the magnetization along the α direction (α = x,y,z):

Mα = −gμB

∑
λ

pλ〈λ|Ŝα|λ〉, (17)

and the magnetic susceptibility

χαα = (gμB)2

kBT

⎡⎣∑
λ

pλ〈λ|Ŝ2
α|λ〉 −

(∑
λ

pλ〈λ|Ŝα|λ〉
)2

⎤⎦,

(18)

where pλ is the probability of thermally populating the state
λ ≡ |S13S24SBSMS〉:

pλ = 1

Z
exp

(
− Eλ

kBT

)
.

Typically, we consider the magnetization along the z direction,
which allows to perform the sum over −S � MS � S, the
degenerate substates:∑

λ

pλ〈λ|Ŝ2
z |λ〉 ≡ 1

Z

∑
S

∑
SB

∑
S13

∑
S24

exp

(
−E(S13S24SBS)

kBT

)

×
S∑

MS=−S

〈
MS

∣∣Ŝ2
z

∣∣MS

〉
, (19)

TABLE I. Comparison of SI and cgs-emu units used in this work.

Quantity SI cgs-emu

Energy J 1 erg=10−7 J
Magnetic field T 1 G =10−4 T
Magnetization J/T erg/G
Bohr magneton μB 9.274 × 10−24 J/T 9.274 × 10−21 erg/G
Boltzmann constant kB 1.381 × 10−23 J/K 1.381 × 10−16 erg/K
NAμ2

B/(3kB ) 0.125 cm3 mol−1 K

and use hereby

S∑
MS=−S

〈
MS

∣∣Ŝ2
z

∣∣MS

〉 = 1

3
S(S + 1)(2S + 1). (20)

Because
∑S

MS=−S〈MS |Ŝz|MS〉 = 0, the magnetization Mz (17)
is zero. When spin-orbit coupling is included, the degeneracy
is lifted and Mz need not be zero in general.

The magnetic susceptibility defined by Eq. (18) describes
the response of a single molecule to the applied magnetic
field, i.e., χαα = ∂Mα

∂Bα
. In experiment, one averages over an

ensemble of molecules, and the molar magnetic susceptibility
χM = NAχzz is measured. Here, the magnetic field is in Gauss
units (1G=10−4T), Table I. The function χMT (T ) is used for
fitting.

One can obtain the low- and high-temperature limits by
directly exploiting the Hilbert space partitions (15). At zero
temperature there is a vanishing probability to occupy all but
the ground state (p0 = 1), whereas in the high-temperature
limit exp (− Eλ

kBT
) ∼ 1 and pλ = 1/Z. In both cases, the sus-

ceptibility can be written in the same form, however, the values
of the effective spin squared 〈S2〉 differ:

χMT (T ) ∼ NAμ2
B

3kB

〈S2〉g2, (21)

〈S2〉0 = S0(S0 + 1), (22)

〈S2〉∞ =
∑

S νSS(S + 1)(2S + 1)∑
S νS(2S + 1)

, (23)

where S0 is the total spin of the ground state, and νs is the
number of distinct spin multiplets S [they are indicated as
exponents in Eqs. (15)]. For the three different choices of sB ,
the values of the effective spin squared 〈S2〉∞ are 15/4, 63/4,
and 143/4. From these simple estimates, one can already make
some useful conclusions. It is known that in CuCu4 each of
the copper atoms has one unpaired electron, sA = sB = 1/2.
Assuming a frustrated antiferromagnetic ground state with the
total spin 1/2, we obtain by virtue of Eq. (21), 0.375 and
1.875 cm3mol−1K for the low- and high-temperature limits
of χMT (T ), respectively.

These considerations cannot provide the susceptibility at
intermediate temperatures, however, in some simple cases such
as a single effective spin J , the exact analytic solution for
the magnetization is given in terms of the Brillouin function
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Mz = NgμBJBJ (x) with

BJ (x) = 2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
,

x = gμBJB

kBT
, kB = 0.086

meV

K
, μB = 0.058

meV

T
.

(24)

This equation is useful for several reasons. It shows the relative
magnitude of the thermal and magnetic excitations, gives
an example of a smooth interpolating function between the
low- and high-temperature limits, and allows to study the
high-temperature limit analytically. By expanding the function

BJ (x)
T →∞∼ J + 1

3J
x, Mz

T →∞∼ NAμ2
B

3kB

J (J + 1)g2B

T
, (25)

we arrive at the simple asymptotic form

χMT (T )
T →∞∼ NAμ2

B

3kB

J (J + 1)g2 � 0.125〈J 2〉g2 cm3K

mol
,

(26)
where the cgs-emu units adopted in experiment are used
(Table I).

Finally, we mention that while the magnetic susceptibility
measurement is a versatile approach to get information about
(theoretically) all magnetic excited states regardless of their
symmetry, fine details, especially about the energetic position
of low-spin states, can be obscured by the thermodynamic
averaging, viz. Eq. (18). In contrast, inelastic neutron scattering
(INS) and electron paramagnetic resonance (EPR) experiments
have a more direct access to the excited states, however, they
are restricted by the selection rules: �S,Ms = 0, ± 1 for INS,
and �S = 0 for EPR [4,64].

III. BARE METALLIC CLUSTER

A general strategy of performing calculations involving TM
atoms is to converge an electronic state of highest multiplicity
and use partially occupied natural orbitals as a basis for
multireference self-consistent field and correlated calculations.
In the FeNi4 cluster, Fe and Ni atoms are in the oxidation
state zero and possess valence electronic configurations s2d6

and s1d9, respectively. The highest possible multiplicity is
9. It is prohibitively hard to include all the 5 × (1 + 5) = 30
valence states in the active space. That is the reason why early
calculations of magnetic anisotropies in TM clusters inevitably
exploited the tight-binding approach [65,66].

Two mechanisms for the orbital ordering were considered
here for the reduction of the configuration space: weak Ni-Ni
versus weak Fe-Ni coupling. In the former case, depending
on which Fe d orbital is doubly populated, a number of
closely spaced electronic states arise. They differ by the
orbital orderings on the Ni atoms. The energy spacing between
different Fe d states is considerably larger. Our calculations,
however, disproved this hypothesis and showed that, in fact,
the second scenario takes place: the energy spacing between
different orbital orderings on Ni atoms is larger than that
of the Fe d states. The d orbital of Fe follows standard
symmetry considerations for the crystal field splitting in the
square planar geometry (Fig. 5) that minimizes overlap with

FIG. 5. Ordering of atomic orbitals in the FeNi4 cluster. Spin-
polarized natural atomic orbitals localized on Ni and Fe atoms are
depicted in (a) and (b), respectively. They constitute the active space.
The Hamiltonian matrix elements relevant for the antiferromagnetic
coupling of Ni atoms are indicated in (a). In accordance with the
Hamitonian (8), indices associated with the central atom are denoted
as a, and for the peripheral atoms we use b, b′, etc. The state averaged
calculation performed in CAS(10,9) yields the crystal field splitting
in (b).

the Ni d states. The orbitals are filled according to Hund’s rule.
Correspondingly, the dz2 orbital is filled in the ground state, and
the others are half-filled.

This finding allows us to simplify the calculations consid-
erably: only one d state on each Ni atom plus four or five
states on Fe need to be included in the active space (Fig. 5).
We thus use the CAS self-consistent field (CASSCF) method
with N active electrons in M active orbitals [CAS(N,M)] and
perform the following sequence of calculations: (i) CAS(8,8)
for the spin multiplicity κ = 9 followed by the multireference
EOM-CC yielding 1, 4, 6, 4, 1 states in the multiplicities
1 to 9, respectively, Fig. 6(a); (ii) state-averaged CAS(10,9)
for κ = 9 yielding five high-spin states; they serve as a basis
for the multireference EOM-CC, predicting 5 × (1, 4, 6, 4, 1)
states in all multiplicities in accordance with combinatorial
considerations for the spin-1/2 flips on four sites and spin-2
rotation on the central site, Fig. 6(b). Finally, the spin-orbit
and spin-spin interactions are added on top of (ii), Fig. 6(c).
Computational details are presented in Appendix A. All the
calculations were performed in a slightly distorted geometry
in order to avoid degenerate states and make the rhombohedral
splitting visible. They are well converged showing all the
expected symmetry properties.

Having all the states at our disposal, we compute the
magnetic susceptibility for (i) and (ii), Fig. 7. At first we
notice that the energy splittings are substantial (for instance,
the singlet state is 531 meV above the ground nonet state, i.e., a
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FIG. 6. Electronic states of the FeNi4 cluster. (a) and (b) differ by the choice of reference spaces [CAS(8,8) and CAS(10,9) as depicted on the
insets below]. (c) is a enlarged portion of the (b) showing spin-orbit splitting of the lowest energy spin multiplet. The strength of spin-orbit and
spin-spin couplings is encoded in the width of lines connecting non- and relativistic calculations. The selection rule that 〈aSaM|ĤSOC|bSbM

′〉
is different from zero only for Sa − Sb = 0, ± 1 [cf. Eq. (2)] is manifested in the fact that each relativistic state is predominantly composed
of states with the same spin, i.e., Sa = Sb with a small admixture of Sa − Sb = ±1. There are no states composed of Sa = 4 and Sb = 2 at the
same time. On the inset of (c), we compare the computed energy fine structure with the eigenenergies of the ZFS Hamiltonian (28) using the
computed value of the axial parameter D and neglecting the rhombohedral splitting.

state with multiplicity 9). This explains why the saturated value
of χMT (T ) is reached at very high temperatures. We fit both
susceptibilities using the eigenstates of the spin model, Eq. (14)
with sA = 2 and sB = 1/2. In the CAS(8,8) case, both the
ab initio and the model Hamiltonians possess the same set of
states and multiplicities. Therefore the mapping is well justified
yielding a rather large ferromagnetic Fe-Ni coupling, and a
much smaller antiferromagnetic coupling between Ni atoms:
J1 = 26.0 meV, J2 = −4.4 meV. It is interesting that naive
application of Eq. (7) with SHS = 4, SLS = 0, and �S = 0 (as
suggested by Ruiz et al. [67,68] based on the broken symmetry
approach) yields a very similar value of J1 = 26.6 meV. One
can substantiate the mapping onto the two-center model by
regarding all four Ni atoms as one unit with the effective spin
SB = 2.

Because of the vanishing overlap between the d orbitals
on the Fe and Ni atoms, a direct mechanism is the only
explanation of the ferromagnetic coupling. In order to arrive
at this conclusion, we use the Goodenough-Kanamori rule that
superexchange interactions are of AFM type where the virtual
electron transfer is between half-filled orbitals, but of FM type
if the transfer is from a half-filled to an empty orbital or, as is the
case here, from a filled (Fe-dz2 ) to half-filled dxz, dyz orbitals
on the Ni atoms. We further notice that FM superexchange is a

higher-order process, which can be neglected in the presence
of strong direct interactions.

In contrast, the antiferromagnetic coupling between Ni
atoms is a typical example of the kinetic exchange. It arises
from the electron hopping between the half-filled Ni d orbitals
(with matrix element tbb′ ) and can be expressed as J2 =
−2t2

bb′/Ubb, where Ubb = Ub′b′ is the on-site repulsion. This
is a well known result of the degenerate perturbation theory
where singlet and triplet ground states are coupled with matrix
element

√
2tbb′ to a charge transfer state with excitation energy

Ubb. In order to verify the correctness of this interpretation,
we performed an exact diagonalization (ED) on the CAS(8,8)
subspace in undistorted geometry. In this way, we completely
neglect the dynamic correlations, i.e., the virtual electron
excitations outside of the active space are unaccounted for, but
have the advantage that all matrix elements can be analyzed.
Such an analysis is extremely useful for large systems where
other correlated methods are not at our disposal. Importantly,
the many-body Hamiltonian on the active subspace represents a
very useful simplification of the full problem. In the discussion
of Sec. II B, the relevance of the hopping mediated by ligands
was emphasized. The magnitude of these matrix elements
would be difficult to estimate from first principles. In the
reduced Hamiltonian, they are present and account for all
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FIG. 7. The magnetic susceptibility of the FeNi4 cluster computed
using states from Fig. 6(a) (CAS(8,8) reference, circles), and Fig. 6(b)
(CAS(10,9) reference, squares) and fitted by the spin model (8)
with sA = 2 and sB = 1/2, full and dashed lines, respectively. The
low and the high-temperature limits are consistent with 〈S2〉0 = 20
and 〈S2〉∞ = 69/8, Eqs. (22) and (23). Insets (a) and (b) compare
the density of states from ab initio CAS(8,8) calculations and
from the spin model, respectively. Analogically, insets (c) and (d)
compare the density of states from ab initio CAS(10,9) calculations
and from the spin model, respectively. The solid line denotes the
total contribution from all spin multiplicities, whereas color-shaded
curves separately resolve different spins. Notice a larger density in
(c) because more states are included.

possible hopping pathways in a mean-field fashion. We will
return to this point in the next section where a ligand-mediated
scenario is considered.

For the current system, the situation is somewhat simpler
because the hopping between Ni atoms (tbb′ ) is direct and
is not mediated by ligands. Other dominant matrix elements
originating from the Coulomb interaction are indicated in
Fig. 5(a). As becomes evident from Fig. 8, the results of ED
using these matrix elements are perfectly matched by the spin
model allowing to determine the exchange constants by the
fitting of energy levels with accuracy exceeding 0.1 meV. In
order to arrive at the same values of J1 and J2 perturbatively,
the following has to be done.

(1) Account for the fact that Jab—the exchange integral
between different Fe and Ni states, Eq. (11)—depends on the
type of the involved Fe d states. It can be easily demonstrated
that J1 is an average of these matrix elements: consider the
splitting between states of multiplicity six and four arising
from the exchange interaction of (composite) SB = 2 and sA

according to the Hilbert space partition 2 ⊗ 1
2 = 3

2 ⊕ 5
2 and

compare it with the interaction of constituent spins:

E4 − E6 = 5J1 = 5Jab. (27)

For the second identity, we use the analytic solution (13) for
the Hilbert space (14) with J2 = 0.

(2) Account for the fact that J2 is determined by the
competition of the ferromagnetic exchange Jbb′ > 0 and the
kinetic exchange −2t2

bb′/Ubb < 0.

FIG. 8. Energy level scheme of the FeNi4 cluster in an undistorted
square geometry neglecting the dynamical correlations. Nondegener-
ate and doubly degenerate states are shown as black and blue lines,
respectively. The expected level spacings from the exact solution (13)
of the spin Hamiltonian (8) are indicated. Since the root-mean-square
error of the fitting δRMSE is very small, eigenenergies of the ab initio
and the spin model (4) are indistinguishable on the shown energy
scale.

Finally, we notice that electronic correlations beyond the
conventional DFT are rarely discussed in the context of mag-
netic interactions in molecular systems. A comparison between
the exchange constants obtained from the fitting of the χMT (T )
curves, Fig. 7 (based on correlated excited states) and from the
exact diagonalization on the subspace, Fig. 8, J1 = 26.0 meV,
J2 = −4.4 meV versus J1 = 18.1 meV, J2 = −0.58 meV,
indicates that the effect of electronic correlations is large and is
particularly manifested when indirect mechanisms are present.

The extended CAS(10,9) calculation yields five times as
many states related to the five possibilities of the doubly
occupied d orbital in Fe. Due to this additional orbital degree
of freedom, there could be no unique correspondence with the
same spin model. There is some regularity in the spectra as,
for instance, is evidenced by the replication of major peaks
in the density of states depicted in Figs. 7(b) and 7(c), top
panels. However, the majority of states has a mixed character
with nonzero occupation probability of each of the Fe d

states. This fact precludes a separate consideration of each
subspace. Here, we can take advantage of the natural averaging
provided by a thermodynamic quantity such as χMT (T ) with
a caveat that it gives a preferential treatment of high-spin
states [the S(S + 1) factor in Eq. (21)]. The corresponding
fit is likewise very accurate (cf. squares and dashed line in
Fig. 7), however, the Ni-Ni exchange coupling is ferromagnetic
now: J1 = 15.0 meV, J2 = 4.8 meV. Thus orbital degrees
of freedom unaccounted for on the model Hamiltonian level
distort the determination of exchange coupling constants. This
finding substantiates the fact that χMT (T ) being an integral
thermodynamic quantity, i.e., such that it depends on the
whole excitation spectrum, is insufficient to serve alone as a
reliable method for the determination of exchange constants. A
possible resolution of this ambiguity can involve a combination
of experimental and theoretical investigations. Information
about the excitation spectrum from, e. g., inelastic neutron
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scattering can be exploited to improve the spin model by
including the orbital degrees of freedom. One such study (albeit
involving only spin degrees of freedom) has been performed
recently by Furrer et al. [69].

On a smaller energy scale, relativistic effects are important
although there is no strict separation of the scales set by (i) the
crystal field splitting, (ii) the exchange interactions of spins,
and (iii) the spin-orbit interaction as is evidenced by Fig. 6. If
we take the spectral width due to the action of each of those
effects, their magnitude can be estimated as 200 meV (Fig. 8),
500 meV [Fig. 6(a)], and 50 meV [Fig. 6(c)], respectively. Our
calculations show that the spin-orbit splitting of the lowest
nonet state is dominated by the interaction within the same
spin-multiplets, the energy stabilization is around 26 meV.
Only for higher energies the admixture of κ = 7 and 5 becomes
important as can be seen in Fig. 6(b). We focus now on the low-
est nonet [magnified in Fig. 6(c)] and characterize its splitting
in terms of the effective zero-field splitting (ZFS) Hamiltonian:

ĤD = D
(
Ŝ2

z − 1
3S(S + 1)

) + E
(
Ŝ2

x − Ŝ2
y

)
. (28)

The parameters of the ZFS Hamiltonian are our main finding
for this molecule. The axial parameter D yields a well known
ladder of states quantized with respect to the z-spin projection,
whereas E additionally incorporates rhombohedral splitting.
They can be related to the matrix elements of the D tensor
discussed above [Eq. (4)]:

D = Dzz − 1/2(Dxx + Dyy),

E = 1/2(Dxx − Dyy).

We predict a positive value of D = 0.71 meV, leading to
a single-well parabolic potential [inset of Fig. 6(c)]. Thus,
in this case, no quantum tunneling nor slow relaxation of
magnetization can be observed. The rhombohedral parameter
is very small (E = 0.1 meV). We note that these values almost
entirely originate from spin-orbit effects—the contribution of
spin-spin coupling is D = 0.024 meV.

As discussed in the context of Eq. (3), the latter contribution
corresponds to the shape anisotropy (the dipole sum). In
line with the data for magnetic anisotropies of thin films, it
constitutes only a small but important fraction of the total
value. Let us compare the computed values with the MAE
of ultrathin Ni films on the Cu(001) surface. Ferromagnetic
resonance measurements on this paradigmatic system were
performed in 1994 by Schulz and Baberschke [40] and two
reorientation transitions from the in-plane to out-of-plane and
back to in-plane alignment of the magnetization vector as a
function of the film thickness were found. It is of great techno-
logical importance to find materials with two distinct magnetic
states: with large and negative D for SMM, and with large
out-of-plane magnetization for films. Therefore the discovery
of a possibility to control the easy axis of magnetization by
varying the film thickness has stimulated a lot of experimental
measurements [70,71] and theoretical calculations [72,73] for
different substrates. For a monolayer Ni/Cu(001), the ferro-
magnetic resonance measurements of Schulz and Baberschke
yielded for the energy difference between the out-of-plane and
in-plane magnetization 124 μeV/atom (E⊥ − E‖ = −Keff =
−(KV

u + 2KS
u

d
), KV

u = 30 μeV
atom , KS

u = −77 μeV
atom , d = 1) [40]. A

theoretical estimate by Bruno [41] using the tight-binding

approach yielded a much larger value of 860 μeV/atom. This
was subsequently improved by Moos et al. [32] using the
degenerate perturbation theory. Their value for E⊥ − E‖ is
120 μeV/atom, which includes the shape-anisotropy contri-
bution of just 20 μeV/atom.

Summary. Our ab initio calculations demonstrate that
the FeNi4 cluster (i) possesses several important electronic
and magnetic features that can be found in many larger
organo-metallic complexes, and (ii) can serve as a paradigm
for superexchange interactions in the presence of orbital
degrees of freedom. Specifically, in this case, the kinetic
exchange accounts for the interaction between Ni atoms. The
full description thus requires a Hamiltonian of the type (6),
which clearly goes beyond the considered model (8). Accurate
fitting of the magnetization curves is still possible, however,
it has to do with the “averaging” (in a thermodynamic sense)
property of the susceptibility χMT (T ). Working on a subspace
of electronic states, i.e., explicitly excluding orbital degrees of
freedom, allows to establish a correspondence to the model (8)
individually for each state. Exchange constants can be reliably
determined by fitting the energies to the model expressions,
and are in agreement with the prediction of perturbation
theory [53]. However, we find that electronic correlations
significantly affect their values.

IV. ELECTRONIC PROPERTIES OF METALLACROWNS

Based on our insight from the study of the FeNi4 cluster, we
are now in the position to add ligands into the consideration.
We use molecules that have been characterized structurally,
electronically by XMCD, XAS, and magnetically by SQUID-
magnetometry in works of Happ et al. [21,74]. The core
molecule, which comprises the full salicylhydroxamic acid
scaffold [Fig. 1(b,c)], has a chemical composition AB4L4,
where A and B are transition metals, and L=C7H4NO3 is
the ligand complex. Accordingly, we consider cases A=CuII,
B=FeIII and A=CuII, B=CuII. The bond distances are very
similar in both cases, the symmetry irreducible central region
where magnetic exchange interactions are operative is depicted
in Fig. 3. Both systems have in common that the magnetic
dx2−y2 orbital of the central Cu(II) ion directly points toward
the linking donor atoms and is consequently capable to induce
strong antiferromagnetic interactions.

For the two mentioned metallacrowns, we follow the same
strategy for our first-principles calculations as outlined in
Sec. III above. On the first step CASSCF in the highest possible
multiplicity is performed using the def2-svp full electron
basis set [75] of the double zeta quality and including the
scalar relativistic effects on the second-order DKH level. SCF
calculations are accelerated by the use of RIJCOSX method
[76], which requires an exchange fitting basis [77]. On the
second step the molecular orbitals from the active space are
localized using the Boys procedure [78] and used as a basis for
DMRG calculations. Dynamical correlations—in the sense of
inclusion of virtual electron transitions in and out of the active
space—are added on top of CASSCF where possible.

A. CuCu4

Ab initio results for this homometallic metallacrown are
summarized in Table II. CAS(5,5) predicts weakly AFM J1 and
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TABLE II. Energies of the {CuCu4} MC in meV. Since the system
is not of a perfect square geometry, the degeneracy is slightly lifted
(these values are shown on the same line).

κ = 2S + 1 Formula CAS(5,5) NEVPT2

2 −2J2 1.798/1.798 4.748/4.773
2 −2J1 + 2J2 3.571 9.732
2 −2J1 − 2J2 7.191 17.308
4 J1 − 4J2 0.917 2.393
4 −3J1 8.084 18.957
4 −3J1 − 2J2 9.894/9.894 23.370/23.407
6 −4J1 − 4J2 14.407 32.867

J2 interactions. These values cannot be explained by the AFM
superexchange alone. For an estimate, we can use matrix ele-
ments between the localized states from our calculations: the
hopping parameters are tbb′ = 165.88, tbb′′ = 165.78 meV and
tab′ = tab′′ = 300.4 meV, Uaa = 28.79 and Ubb = 28.68 eV
from where the superexchange coupling can be deduced
Jbb′ = Jbb′′ = −1.92 and Jab′ = Jab′′ = −6.27 meV (b, b′,
etc., denote symmetry-inequivalent peripheral Cu atoms). This
significant difference to the CAS(5,5) results (listed in the
third column of Table II) can be attributed to the act of other
mechanisms including the direct ones.

Second-order perturbation theory (NEVPT2, see Ap-
pendix A for a summary of the used methods, Table IX)
performed on top further increases the exchange interaction
constants (forth column of Table II), however, they are almost
three times smaller than the experimentally determined values
(J1 = −19.24 meV and J2 = −11.44 meV [74]). Since this is
the same trend (see Table III where results of different methods
are compared with experiment) as was observed for the bare
TM cluster, some clarifications are needed.

Consider the transition matrix element between the ground
(gr) state and an excited charge transfer (CT) state in some
abstract system. In the case of FeNi4, this electronic transition
is realized by a single-electron transition between two orbitals
φb and φb′ belonging to the active space. Properly accounting
for the normalization of many-body wave functions [79] we
arrive at

√
2tbb′ as the transition matrix element between

the many-body states. The charge transfer state in {CuCu4}
cannot be obtained by considering electronic transitions only
within the active space. Let B and B ′ denote atomic orbitals
predominantly constituting the b and b′ TM molecular orbitals,

TABLE III. The exchange interaction constants J1 and J2, the
root-mean-square error δRMSE of the least squares fitting at different
levels of theory are compared with perturbative estimates accord-
ing to the kinetic exchange mechanism (according to which J1 =
−2t2

ab/Uaa and J2 = −2t2
bb′/Ubb) and with experimental values. All

values in meV.

Method J1 J2 δRMSE

CAS(5,5) −2.70 −0.90 0.00
NEVPT2 −6.36 −2.08 0.20
Kinetic exchange −6.27 −1.92
Experiment −19.24 −11.44

respectively. The basic assumption is that they are half-filled
and that the hopping tBB ′ vanishes because the magnetic ions
are far apart. This is not so for tbb′—the hopping between the
molecular orbitals—as due to the hybridization with ligand-
states it is no longer zero. Let us for definiteness assume that
b and b′ are obtained by the localization of molecular orbitals
from the active space [such as depicted in Fig. 9(a)]. As can
be seen from this plot, they contain a small admixture of the
ligand p states:

φb = φB + αLφL, (29a)

φl = φL − αLφB, (29b)

where the collective index L denotes electronic states pertinent
to ligand atoms. States (29a) and (29b) are orthonormal up to
the first order in the hybridization coefficients αL. Thereon
we write explicitly the many-body ground and CT states as
combinations of Slater determinants (denoted as | . . . |)

ψgr(S = 0) = 1√
2

(|φbφ̄b′φl| − |φ̄bφb′φl|) + ψ
(1)
0 ,

ψgr(S = 1,MS = 1) = |φbφb′φl| + ψ
(1)
1 ,

ψB
CT = |φbφ̄bφl| + ψ

(1)
B ,

where for simplicity we assume that there are no other magnetic
d states in the active space and separate first-order corrections
ψ (1) due to virtual transitions in and out of the active space.
We follow the standard notation that φ̄b is a spin-flipped φb

orbital. Now the hopping matrix element reads〈
ψB

CT

∣∣t̂∣∣ψgr(S = 0)
〉

=
√

2(tBB ′ + αL′ tBL′ + αLtB ′L)

+ 1/
√

2
〈
ψ

(1)
B

∣∣t̂∣∣(|φbφ̄b′φl| − |φ̄bφb′φl|
)〉+ 〈|φbφ̄bφl

∣∣t̂∣∣ψ (1)
0

〉
.

Here, tBB ′ vanishes by assumption, however, the two other
terms in the first line are nonzero and are accounted for
on the CASSCF level. By contrast, terms on the second
line originate from virtual electron transitions outside the
active space. These dynamical correlations can be taken into
account perturbatively by, e.g., NEVPT2, or nonperturbatively
with the help of multireference configuration interaction or
coupled cluster methods. It is important to emphasize that both
contributions are of the same order and cannot be neglected
as the consideration of {CuCu4} shows (Table III). We note
in passing that ferromagnetic superexchange mechanism is a
third-order effect [60,80], which is also partially covered by
the CAS electronic states via the αLαL′ tBLtL′B ′ contributions.

B. CuFe4

It was demonstrated that a high-spin ground state (S =
11/2) in the CuFe4 heterometallic metallacrown is realized
by antiferromagnetic couplings of all five constituent TM
atoms [21,74]. These findings can be compared with ab
initio calculations. The minimal active space consistent with
experimentally determined charges of transition metal atoms
comprises all five d orbitals on the FeIII ions and a single
one on the central CuII ion. Self-consistent calculations in
the highest-spin configuration (S = 21/2) of CAS(21,21)—21
electrons distributed over 21 d orbitals—indeed confirm that
the half-filled Cu d orbital has in-plane orientation with lobes
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(a)

(b)

FIG. 9. The natural atomic orbitals on Fe and Cu atoms (a), and
two representative localized MOs of the p character on the ligand
atoms computed using the Boys procedure [78] (b).

pointing towards O atoms. Other orientations lead to a number
of excited states with energies exceeding one eV (Fig. 10).
This rather large energy difference explains why CAS(21,21)
is sufficient, and why other d orbitals on the central Cu can be
excluded from the active space.

However, CAS(21,21) is a rather large space motivating us
to focus in more details on even smaller AB2 units of the AB4

cluster. The separation into subsystems is technically possible
due to the use of a localized basis, Fig. 9. We perform DMRG
calculations for two different scenarios where the Fe atoms are
either nearest neighbors or are situated on a diagonal of the AB4

cluster. These subsystems are depicted as insets of Fig. 11. The
solution of the isosceles spin-triangle model (13) is used for
fitting. A comparison of the two panels in Fig. 11 shows that J1

exchange constant is drastically different for the two cases and
the fit accuracy is lower in the nearest-neighbor case [panel
(a)]. The latter finding hints at the deviation of the system’s
geometry from the ideal square shape. More information can
be obtained by analyzing the matrix elements.

The data in Table IV demonstrate that the hopping between
d orbitals is appreciable. As explained in the preceeding
section, it results from nonzero hybridization coefficients αL,
Eqs. (29), and points at the importance of indirect mecha-
nisms. Noticable is a strong variation of the hopping and the
direct exchange depending on the orbital type of the same
TM ion (these parameters are reported in columns 4 and
7). Since the molecule lacks fourfold symmetry, there are

(a)

(b) (c)
1.24 eV 1.35 eV

FIG. 10. The inclusion of different Cu d-MOs into the active
space gives rise to different electronic states. Energy differences of
the two excited states (b) and (c) with respect to the ground-state
configuration (a) are indicated. All calculations are performed at the
CAS(21,21) level of theory and the total spin S = 21/2.

also smaller variations in the matrix elements pertinent to
different atoms. Adding the distortion, i.e., introducing the
δ asymmetry parameter (leading to the appearance of two
different exchange constants J ′

1 = (1 − δ)j , J ′′
1 = (1 + δ)j )

and using Eq. (12) instead of Eq. (13) for fitting, improves
the agreement substantially (Table V), but does not change
the conclusion of the analysis in Fig. 11 that the exchange
constant J1 is very different for the two subsystems. Notice

FIG. 11. Fitting of the DMRG calculations (circles) for two AB2

subsystems (green shaded areas) of the {CuFe4} cluster with a spin
model (8). The eigenvalues of the spin Hamiltonian corresponding to
these isosceles triangles are shown as pluses. A large discrepancy in
the fitted values of J1 in the left vs right panels poses a question about
the origin of the exchange coupling in this system.
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TABLE IV. Averaged hopping and exchange matrix elements of
the {CuFe4} molecule in meV. The averaging is performed for each
pair of atoms (i, j ) over all possible combinations of participating
d orbitals (i = 1, . . . ,4 for FeIII ions and i = 5 for the central CuII

ion). The variances var(a) = 〈(a − 〈a〉)2〉 indicate how strongly these
parameters of the many-body Hamiltonian deviate from the mean
values 〈a〉. Additionally, we indicate the averaged superexchange
coupling J se = −2〈t2〉/U .

Atoms 〈tij 〉 var(tij ) J se
ij 〈Jij 〉 var(Jij )

1 2 128.8 104.0 −1.90 0.154 0.138
1 3 8.0 9.0 −0.01 0.001 0.001
2 3 123.6 120.4 −2.06 0.162 0.187
1 4 123.4 120.4 −2.06 0.162 0.187
2 4 8.3 8.2 −0.01 0.001 0.001
3 4 128.7 103.9 −1.90 0.155 0.138
1 5 184.6 153.7 −4.00 0.959 0.718
2 5 181.5 133.7 −3.52 0.887 0.601
3 5 184.6 153.7 −4.00 0.959 0.718
4 5 181.5 133.7 −3.52 0.887 0.601

that adding the biquadratic exchange interaction as explained
in Appendix B does not improve the fitting in Fig. 11.

This indicates that in an AB2 trimer, the exchange interac-
tions J ′

1 and J ′′
1 are mutually dependent and that the difference

between them cannot be attributed solely to the effect of the
geometrical distortion on the hopping parameters. In order
to elucidate the effect of other mechanisms, we perform
calculations for (i) AB dimers, and AB2 trimers with (ii) only
A–B interactions, (iii) all possible pairwise interactions, and
finally (iv) three- and four-center Coulomb integrals included.
The results are presented in Fig. 12, panels (a), (b), (c), and
(d), respectively. Demonstrably, the difference between all
four scenarios is substantial. Only AB subsystems are well
described by the sum of direct exchange and superexchange
mechanisms, the corresponding estimates of the exchange
constants are presented in columns 6 and 5 of Table IV, re-
spectively. In AB2 clusters, virtual electron transitions leading
to the redistribution of the electronic occupations on different
B atoms are mutually exclusive (in view of the Pauli principle)
and the simple perturbative estimates in Table IV are no longer
valid. The situation is even more complicated if we add all mul-

TABLE V. Results of the fitting of DMRG calculations for all
possible AB2 subsystems with the analytic solution (12). All exchange
constants are in meV. The largest root-mean-square error of the fitting
δRMSE is 10−4 meV. α and δ parameters are dimensionless and are
defined as in Eq. (12). Data presented here are also visualized in
Fig. 12(d).

B1 B2 j J ′
1 J

′′
1 J2 α δ

1 2 −1.253 −0.797 −1.709 −0.032 0.025 0.364
1 3 −0.350 −0.340 −0.350 0.000 −0.001 0.001
1 4 −1.296 −0.715 −1.878 −0.039 0.030 0.449
2 3 −1.296 −0.715 −1.878 −0.039 0.030 0.449
2 4 −0.285 −0.285 −0.285 0.000 −0.001 0.001
3 4 −1.253 −0.797 −1.709 −0.032 0.020 0.364

FIG. 12. Variation of the exchange constants in meV units for
different included interactions within AB and AB2 spin clusters
of the CuII(DMF)2Cl2[12−MCFeIIIN(Shi) − 4](DMF)4 molecule. Thick
lines denote the included hopping and pairwise Coulomb matrix
elements—black for nearest and blue for next-nearest neighbors—
whereas dashed lines stand for the excluded pairwise interactions.
DMRG solutions of the cluster models are mapped onto the analytic
solutions for spin dimers (a) and trimers [(b)–(d)]. The energy levels
of an AB2 cluster are given by Eq. (12) with sA = 1/2 and sB = 5/2.

ticenter Coulomb integrals [panel (d)] to the case where only
pairwise interactions are included [panel (c)]. The inclusion
of these terms reduces the J1 exchange constant by 38% in
the linear cluster and doubles J ′′

1 in the triangular cluster. This
is as well a manifestation of indirect exchange mechanisms.
However, they cannot be reduced to the textbook application of
the Anderson-Goodenough-Kanamori perturbative approach,
which does not take into account the multicenter Coulomb
integrals. Currently, there are no theories that account for
multicenter integrals in superexchange interactions. Therefore
first-principles calculations are indispensable for multicenter
molecular magnets.

Let us now focus on the electronic excitations of the whole
AB4 system. This is a very difficult task because the number
of electronic configurations grows rapidly with decreasing
multiplicity. That is why we computed excited states using
the CASSCF(21,21) approach only for the two highest multi-
plicities and found that they differ by E22 − E20 = 16 meV.
Such calculations account for static and, to some extent,
dynamic correlations because different orbital relaxations for
each spin multiplicity are permitted. Other states are possible
to access only by the use of specialized methods such as
DMRG albeit neglecting dynamical correlations (Table VII).
It is very important that DMRG calculations are performed in
the localized basis. While calculations are possible to converge
in MO basis, they typically lead to excited states.

The fitting procedure, with the goal to determine values
of the spin-exchange constants J1 and J2, is different from

214408-13



Y. PAVLYUKH et al. PHYSICAL REVIEW B 97, 214408 (2018)

FIG. 13. Energy levels of the spin model (8) involving the FeIII

high-spin sB = 5/2 configuration from the analytic solution (13).
Black horizontal bars denote levels of the all-AFM setting (J1 < 0,
J2 < 0), whereas red ones correspond to FM J1 > 0 and AFM J2 < 0
interactions. In order to emphasize symmetries between AFM and FM
solutions, we use values of the exchange constants J1 = ±5.5 meV
and J2 = −0.5 meV that only approximately correspond to the exper-
imental exchange constants J1 = −6.10 meV and J2 = −0.47 meV
(sB = 5/2) [9]. The lowest energy state in each scenario (chosen as
reference) is a frustrated magnetic configuration with intermediate
total spin.

the one used for the {CuCu4} MC and for AB and AB2

subclusters of the {CuFe4} MC above. The dimension of the
Hilbert space of the spin model—it contains 286 different spin
multiplets (15c)—is prohibitively large to perform the fitting
on the totality of states. Thus a subset of well identifiable states
needs to be selected. It seems that the lowest-energy states in

TABLE VII. Energies of the {CuFe4} MC with respect to the low-
est doublet (κ = 2) state in meV. Analytic solution (13) is tabulated in
the second column. Generic energy level schemes corresponding to
FM and AFM couplings are visualized in Fig. 13. Results of the least
squares fitting are compared with experimental values in Table VIII.

κ = 2S + 1 Formula DMRG(21,21)

4 J1 − 4J2 −0.5181
6 2J1 − 10J2 −0.9533
8 3J1 − 18J2 −1.2928
10 4J1 − 28J2 −1.5337
12 5J1 − 40J2 −1.6751
14 6J1 − 54J2 −1.7165
16 7J1 − 70J2 −1.6446
18 8J1 − 88J2 −1.4980
20 9J1 − 108J2 −1.2370
22 −12J1 − 108J2 14.4791

each multiplicity serve well this purpose. With the analytical
solution of the spin Hamiltonian given by Eq. (13) (lowest
part of the spectrum is shown in Fig. 13), we additionally
assume that both exchange constants are antiferromagnetic
in order to choose expressions for fitting. One hint for such
an assumption comes from the χMT (T ) measurements of
Happ and Rentschler [74]. Another indication is that a fully
ferromagnetic configuration withκ = 22 is strongly disfavored
on the CASSCF and DMRG levels, cf. last row of Table VII
with the energy level scheme in Fig. 13. On the other hand,
experimental results for other systems containing Cu and Fe
ions (Table VI) show that interaction between these ions can
also be of ferromagnetic type. The interplay of different indi-
rect mechanisms, which are very system-specific, is a decisive
factor. We also note in passing that for the Heisenberg spin
model the low-temperature limit of the magnetic susceptibility

TABLE VI. Some systems containing magnetically interacting Fe and Cu ions. Here, Tp stands for hydrotris (pyrazolyl) bo-
rate, bpca for bis(2-pyridylcarbonyl)amidate, and tacn for 1,4,7-triazacyclononane, dmg for dimethylglyoxime, bpb for bis(pyridine-2-
carboxamido)benzenate, and tn for 1,3-propanediamine.

Material Spin system SFe JCu−Fe (cm−1) Ref.

[(Dopn)CuII(OH2)FeIII(Cl)L](ClO4)2 Dimer, six-coordinated Fe, distorted square
pyramidal Cu with dx2−y2 orbitals pointing
towards bridging N and O, AFM
σ -superexchange dx2−y2 ‖p(N)‖p(O)‖d ′

x2−y2 vs.
FM dx2−y2 ‖p(N)⊥p(O)‖ t ′

2g pathway

5/2 −38.8 [81]

[L2Fe2Cu(dmg)3](ClO4)2 ∗ 0.5MeOH Trimer, octahedral coordination of the two FeIII 5/2 −42.0 [82]

[Tp2(Me3tacn)3Cu3Fe2(CN)6]4+ Trigonal bipyramidal metal-cyanide core with
approximate D3h symmetry

1/2 +8.5 [83]

[CuL1][Fe(bpb)(CN)2]2 ∗ 4H2O Cyano-bridged complex, AFM origin is not clear 1/2 −0.59 [84]

[Cu(tn)2][Fe(bpb)(CN)2]2 ∗ 2H2O Amino-bridged complex, FM coupling due to
orthogonality of 3d magnetic orbitals between
Cu(II) and Fe(III)

1/2 +3.1 [84]

[(Tp)Fe(CN)3Cu(Tp)]2 ∗ 2H2O Tetranuclear square cluster, square pyramidal
coordination of Cu

1/2 +11.9 [85]

[(Tp)Fe(CN)3Cu(bpca)]2 ∗ 4H2O Tetranuclear square cluster, square pyramidal
coordination of Cu, ZFS

1/2 +1.38 [85]
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TABLE VIII. The exchange interaction constants J1 and J2, the
root-mean-square error δRMSE of the least squares fitting involving
lowest energy states in each multiplicity κ are shown in meV. The fully
converged ground state is a frustrated magnetic configuration with the
total spin S = 13/2. Experimental measurements yield S = 11/2 as
the lowest energy state [74].

Method J1 J2 δRMSE

DMRG(21,21) −0.7476 −0.0507 0.0113
Experiment −6.10 −0.47

(21), which is determined by the ground-state multiplicity (22),
and its high-temperature limit, which is obtained by assuming
equal occupation probability for each of the states (23), are
almost indistinguishable for the two scenarios when J1 is ferro-
or antiferromagnetic (see discussion in Sec. II C). This can
immediately be seen from the spectrum in Fig. 13 and makes
determination of J1 and J2 on the basis of χMT (T ) rather
challenging.

The results of fitting of the DMRG calculations (see
Table VII) are as follows: (i) Similarly to the {CuCu4} system,
the root-mean-square error δRMSE is in the range of 10 μeV
indicating the high accuracy of the procedure and the relevance
of the spin model. (ii) Unlike for the AB2 subclusters, the
rhombic distortion is small, the value of J1 is greater than that
for the linear AB2 cluster and is smaller than for the triangular
one. (iii) In comparison with experiment (J1 = −6.1 meV and
J2 = −0.47 meV), both exchange constants are substantially
underestimated (J1 = −0.75 meV and J2 = −0.05 meV). As
our calculations for the {CuCu4} system suggest (Sec. IV A),
these values can be improved by adding dynamical corre-
lations. Such calculations go beyond current computational
capabilities for the {CuFe4} system. It is interesting to notice,
however, that the ratio J1/J2, which determines the ground
state, is also well reproduced. We predict that S = 13/2 is
the frustrated antiferromagnetic ground state, whereas the
S = 11/2 state is just 0.04 meV above it. Experimentally,
S = 11/2 is the state of lowest energy.

C. Summary

Superexchange magnetic interactions are typically treated
perturbatively and require at least two virtual electron tran-
sitions (from two TM atoms to the bridging ligand atom).
Therefore it is not immediately obvious and, to the best of our
knowledge, was not demonstrated before that even the simplest
AFM mechanism can be treated by the complete active space
approach. In this section, we provided such mathematical
argument and supported it by ab initio calculations. We found
a very precise mapping onto the spin model is possible
for the {CuCu4} system (Table III) and the {CuFe4} system
(Table VIII). At the same time, the fitted exchange constants
cannot be solely explained by the Anderson-Goodenough-
Kanamori AFM superexchange mechanism. We performed a
detailed study of the magnetic interactions in subclusters of the
{CuFe4} system and found three- and four-center Coulomb in-
tegrals are important. We also show that the exchange constants
are strongly modified by dynamical electron correlations. The
latter effects can only partially be taken into account for the
{CuCu4} system.

V. CONCLUSIONS

In this work, we presented quantum chemistry calculations
of three transition metal clusters with progressively increasing
complexity of electronic states. Dealing with multideterminant
open-shell electronic states represents the main difficulty of
the correlated calculations. Therefore we started with the
complete active space approach followed, where possible, by
the inclusion of dynamical correlations. Relativistic effects are
added on the scalar-relativistic level via the DKH Hamiltonian,
and on top of the excited state calculations by including
spin-orbit and spin-spin coupling effects.

Mapping of the ab initio calculations onto spin-models was
the main goal of our study. For FeNi4 and {CuCu4} we find
perfect correspondence on the lowest (CAS) level of theory. At
the same time it is possible to establish (and even to make these
conclusions quantitative) that the observed exchange splitting
cannot be explained only with the help of direct and AFM su-

TABLE IX. Ab initio methods used in this work. In order to run CHEMPS2, we use interface provided by ORCA (CIstep DMRGCI option to
CASSCF).

Key Method Note

RIJCOSX Treatment the Coulomb term via the resolution of identity (RI) and the exchange term via
seminumerical integration [76,91]

ORCA [24]

Trafostep RI Integral transformation in CASSCF calculations using RI

DKH Douglas-Kroll-Hess relativistic Hamiltonian [27]

DLPNO Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital
Coupled Cluster Framework [92] (option for NEVPT2)

NEVPT2 N-Electron Valence State Perturbation Theory [93]

dkh-def2-svp Relativistically recontracted Karlsruhe basis sets [75]

def/jk Coulomb+Exchange fitting for all def2 basis sets [77]

DoSOC, DoSSC Spin-orbit, spin-spin couplings and ZFS calculations [36]

DMRG Density matrix renormalization group CHEMPS2 [25]

NPA Natural population analysis [94] JANPA [95]
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perexchange mechanisms. The Goodenough-Kanamori rules
give only qualitative estimates. For {CuFe4}, accurate mapping
onto a spin model has been established for a set of lowest energy
states in each multiplicity, which where obtained by the DMRG
calculations.

Going beyond the CAS level of theory, we found that dy-
namical correlations are important. We arrive at this conclusion
by generalizing the AFM exchange mechanism to the CAS
reference states and showing that virtual electron transitions
outside the active space are of comparable magnitude. This is
further supported by ab initio calculations.

The determination of J1 and J2 parameters is also an
important experimental goal. For the two metallacrowns, they
were determined by fitting the temperature dependence of the
magnetic susceptibility. While this is generally accepted and a
very reliable method, examples of the bare metallic FeNi4 clus-
ter and the {CuFe4} metallacrown show that, due to inherent
thermodynamical averaging, the results of such an approach
are not unique and should be supported by the spectroscopical
measurements, e.g., inelastic neutron scattering.

Relativistic effects are important on the smaller energy
scale where the mapping onto the effective ZFS Hamilto-
nian was performed (accurate nonrelativistic calculations is
a prerequisite). For the bare FeNi4 cluster, we find D =
0.71 meV predominantly due to the spin-orbit coupling. While
the axial parameter is positive precluding the observation of the
spin tunneling of magnetization in this system, the absolute
value is large. This finding encourages further explorations of
metallacrowns possessing this interesting phenomenon.

In a recent comprehensive review [86] focusing on the
rigorous extraction of magnetic Hamiltonians, major chal-
lenges for theoretical methods are presented and possible
solutions are discussed. Here, we would like to put our results
in a broader context of new trends of molecular magnetism.
An important goal in molecular magnetism is to control the
intramolecular exchange coupling. For storage purposes, the
exchange coupling should be maximized in order to stabilize
the magnetic state at finite temperature, while for quantum
computing applications the exchange coupling must be easily
switchable by external means. As Neese and Pantazis point
out [87], a lot of synthetic efforts for the development of more
efficient single molecule magnets is put into the maximization
of the total spin. However, this does not automatically imply the
maximization of the magnetic relaxation barrier. Instead, there
seems to be a number of systems where high axial anisotropy
is achieved through electronic configurations with close to
orbital degeneracy, which maximizes spin-orbit interaction and
leads to large zero-field splitting. The importance of orbital
degrees of freedom was emphasized already in an early work
of Bruno [41]: “there is a very strong connection between
the anisotropy energy and the orbital moment.” Thus future
developments will certainly pursue the route of optimization
of magnetic properties through the optimization of ligands.
A complementary and universal approach for the design of
magnetic systems with desired properties is via an external
driving field. Ultrafast and reversible control of the exchange
interaction iron oxides [88] has recently been demonstrated.
Theoretical foundations for the driven spin systems were set in
recent letters [89,90]. We anticipate even more developments
in this direction.
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APPENDIX A: COMPUTATIONAL DETAILS AND
AB INITIO METHODS REFERENCE

All calculations were performed using the def2-svp full
electron basis set [75] of the double zeta quality and including
the scalar relativistic effects on the second-order DKH level
(see Table IX for a summary of the used ab initio methods).
It results in 205, 901, and 901 contracted basis functions
for the FeNi4 cluster, {CuCu4} and {CuFe4} metallacrowns,
respectively. Geometry optimization was performed for the
model FeNi4 cluster, whereas experimental geometries are
used for the metallacrown molecules. Correlated calculations
for the FeNi4 cluster were performed in the energy window
from −5 to 5 Hr, i.e., molecular orbitals in the range from
26 to 147 were correlated. Reference configurations with
weight above the tpre = 10−4 threshold were selected, and the
convergence criteria Etol = 10−7 and Rtol = 10−7 were used.

APPENDIX B: BIQUADRATIC EXCHANGE INTERACTION
IN AB2 SPIN CLUSTERS

For spin-1/2 systems, the biquadratic spin-exchange is
reduced to the ordinary exchange by the virtue of the identity:

(ŝi · ŝj )2 = 3
16 − 1

2 ŝi · ŝj . (B1)

Thus this mechanism is only nontrivially manifest in the
interaction of larger spins. It turns out, however, that such
renormalization of ordinary exchange constants by the bi-
quadratic exchange is more common. Consider a spin-dimer
AB, where sA = 1

2 , but sB is arbitrary. Using the same method
as in Ref. [62], here we have

(ŝA · ŝB)2 = 1

4
sB(sB + 1) + i

2

∑
jkl

εjkl ŝ
(j )
A ŝ

(k)
B ŝ

(l)
B ,

where j , k, and l are running over three projections, and εjkl is
the fully antisymmetric tensor. From the commutation relation
of the spin-operators on the same site[

ŝ
(k)
B ,ŝ

(l)
B

] = iεjkl ŝ
(j )
B ,

we obtain

(ŝA · ŝB)2 = 1
4 sB(sB + 1) − 1

2 ŝA · ŝB. (B2)

From this equation immediately follows that for the isosceles
spin-triangle model (AB2) the biquadratic exchange Hamilto-
nian Ĥ(2)

ex commutes with the exchange Hamiltonian Ĥex [cf.
Eqs. (8) and (9)]. As a consequence, the A-B exchange constant
is modified as J1 → J1 − 1/4κ1, whereas κ2 additionally
contributes:

− 1
2κ2

[
SB(SB + 1) − sB1 (sB1 + 1) − sB2 (sB2 + 1)

]2
, (B3)

to the total energy. Here, ŜB = ŝB1 + ŝB2 .
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