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Epitaxial films of the B20-structure compound Fe1−yCoyGe were grown by molecular beam epitaxy on Si
(111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom
for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction
(DMI), and the films’ helical magnetic ground state was confirmed using polarized neutron reflectometry
measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y ∼
0.45. This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods.
We also measured the longitudinal and Hall resistivity of our films as a function of magnetic field, temperature,
and Co content y. The Hall resistivity is expected to contain contributions from the ordinary, anomalous, and
topological Hall effects. Both the anomalous and topological Hall resistivities show peaks around y ∼ 0.5. Our
first-principles calculations show a peak in the topological Hall constant at this value of y, related to the strong spin
polarization predicted for intermediate values of y. Our calculations predict half-metallicity for y = 0.6, consistent
with the experimentally observed linear magnetoresistance at this composition, and potentially related to the other
unusual transport properties for intermediate value of y. While it is possible to reconcile theory with experiment
for the various Hall effects for FeGe, the large topological Hall resistivities for y ∼ 0.5 are much larger than
expected when the very small emergent fields associated with the divergence in the DMI are taken into account.
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I. INTRODUCTION

Topologically protected spin structures, termed skyrmions,
have recently come to the forefront of spintronics research
[1]. Skyrmions boast the possibility for high-density magnetic
nonvolatile storage [2] and the ability to be used in logic gates
[3,4]. These exotic magnetic systems host many of the novel
spintronic phenomena such as the anomalous Hall effect [5],
the spin Hall effect [6], and current-induced torques [7–10].
They can be manipulated with smaller current densities than
that of domain walls [8], with the possibility to be used in
racetrack memory [11].

In the last decade there has been an emergence of research
on many B20 compounds due to their possibility to stabilize
skyrmionic crystals [12] where the topological Hall effect
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[13,14] (THE) can be observed [15,16]. The inversion symme-
try breaking in the crystal (see Fig. 1) and the presence of spin-
orbit coupling (SOC) results in the so-called Dzyaloshinkii-
Moriya interaction [17,18] (DMI) manifesting itself, which
prefers neighboring spins to point perpendicular to one another
with a fixed chirality. Many B20 compounds display a helical
ground state due to the competition of the DMI with the
Heisenberg exchange [19,20]. This chiral magnetic texture
drives ground-state spin currents [21] that affect the observable
transport properties in both the THE and the anomalous Hall
effect (AHE). These emergent phenomena are theoretically
connected through the Berry phase physics in real, momentum,
and phase space, that correspond to the THE, AHE, and DMI,
respectively [22].

The B20 compounds have been extensively studied exper-
imentally, however, the connection between the Berry phases
is still obscure. MnSi was the first B20 compound shown to
display a stable skyrmion crystal [15] below the magnetic
transition temperature of 29 K. Experimental measurements
of MnGe show the largest THE for any skyrmionic lattice
[23], which is due to the small skyrmion size of 3–6 nm.
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FIG. 1. Chiral crystal structure of Fe1−yCoyGe. B20 unit cell
diagrams for (a) left-handed and (b) right-handed chiral crystals
where the helical ground state propagates along the dashed line.
The dark colored ion magnetic moments belong to Fe1−yCoy and the
light colored ions to Ge. (c) Diagram of magnetic helix structure for
left-handed and right-handed chirality. (d)–(i) Transmission electron
micrographs taken from Fe1−yCoyGe samples with y = 0 and 0.5.
Dark-field images from (d), (g) (11̄1̄) and (e), (h) (1̄11) reflections
corresponding to the left-handed and right-handed chiral grains,
respectively. (f), (i) False color composite of both dark-field images
from each y value showing the coverage of grains across the film. Red
(blue) grains have left- (right-) handed crystal chirality.

Furthermore, the THE does not depend on the chirality of
Bloch skyrmions but changes sign and magnitude as a function
of external field and as a function of temperature, suggesting a
change in the skyrmion lattice [24] or shape [25]. The chirality
of the skyrmion in the simplest case is determined by the sign of
the DMI, where substituting Fe into MnGe caused a change in
sign of the skyrmion at a critical concentration of x = 0.8 and
the skyrmion’s texture becomes a trivial ferromagnet [26–29].
There have also been studies on thin films of FeGe, which
show skyrmions close to room temperature with a helix pitch
of 70 nm [30] that can be driven at low current density [31].
Topological Hall effects have been observed in a variety of
different FeGe films [32–34], which can be discretized in small
geometries comparable to the skyrmion size [35]. FeGe shows
an AHE that is due primarily to the intrinsic mechanism [33].
An enhanced ordering temperature has been seen in FeGe films
grown on MgO [36].

In addition to Mn1−xFexGe, substituting Co into FeGe
shows that the helix pitch also changes magnitude as a
function of y in polycrystalline samples of Fe1−yCoyGe [37].
However, CoGe with the same crystal symmetry displays
paramagnetism in the ground state, with no net magnetization
to observe AHE, THE, or any phenomena induced by DMI. We
grew Fe1−yCoyGe films by molecular beam epitaxy (MBE)
to observe the helical pitch and Hall effects as a function
of Co concentration. As the magnetization is quenched as

y → 1 we also see the suppression of all spin-orbit effects.
Our experimental results are directly compared with density
functional theory (DFT) methods in two approximations of
disorder, the virtual crystal approximation (VCA) and the
coherent potential approximation (CPA) [38–41].

We find experimentally that the substitution of Co into
FeGe at concentration y leads to changes in all the magnetic
and magnetotransport properties. The magnetization declines
smoothly from roughly one Bohr magneton per Fe for y = 0 to
zero for nonmagnetic CoGe (y = 1). The helix pitch diverges
at y ≈ 0.45, indicating a change of sign in the DMI, which
is reproduced in our DFT results. Experimentally, we also
find a range of of unusual transport properties for intermediate
values of y, including peaks in the anomalous and topological
Hall resistivities around y ∼ 0.5. These are related to the
very high degree of spin polarization we find theoretically for
such values of y, including the prediction of a half-metallic
state for y = 0.6, with which the observation of a linear
high-field magnetoresistance at that composition is consistent.
Nevertheless, while the topological Hall constant is calculate
to show a peak in this regime, the measured topological Hall
resistivity is found to be much in excess of the theoretical upper
limit based on the assumption of a fully dense skyrmion lattice.

In this paper, we begin in Sec. II with the experimental
results, discussing the growth method, magnetometry, mea-
surement of the helical magnetic structure, and the transport
measurements of the resistivity, the AHE, and the THE.
In the second part, Sec. III, of this paper we discuss the
electronic structure methods of full potential linearized aug-
mented plane wave (FLAPW) and spin-polarized relativistic
Korringa-Kohn-Rostoker (SPKKR), showing the calculations
of the DMI, then the transport calculation of the AHE and
the THE. We make a comparison of the experiment and the
computational results for our substituted systems in Sec. IV,
before briefly concluding in Sec. V.

II. EXPERIMENT

A. Sample growth and structural characterization

Molecular beam epitaxy (MBE) was used to grow
B20 Fe1−yCoyGe films on Si (111) substrates with room-
temperature resistivity of 3–5 k� cm. The substrates were
annealed at 1200 ◦C for 2 min to remove the native oxide and
achieve a (7 × 7) surface reconstruction to ensure a clean and
well-ordered surface. This was verified in situ by reflection
high-energy electron diffraction (RHEED) and low-energy
electron diffraction (LEED) and the substrate was allowed
to cool before deposition to <50 ◦C. The Fe1−yCoyGe films
were grown by codeposition from individual Fe, Co, and Ge
electron beam sources and quartz crystal monitors were used
to measure and regulate the flux from each source. To start
the growth, approximately 1 nm of material (thickness of film
before crystallization) was deposited. The sample was then
heated to 230 ◦C to allow the layer to crystallize, forming
a seed layer for growth. A further four 1 nm layers were
then deposited with intervals of 15 min in-between each layer
to allow for crystallization, which was verified by RHEED.
The films were then coevaporated with a net rate between
0.3–0.6 Å/s using RHEED to monitor the structure during
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FIG. 2. X-ray diffraction data for the Fe1−yCoyGe films for all
concentrations of y. Spectra have been offset for clarity. Inset: lattice
constant a measured from the position of the B20 Fe1−yCoyGe (111)
peak.

growth. After deposition, a second LEED image was taken to
verify (111)-oriented epitaxial growth. Finally, after cooling to
room temperature a cap layer of Ge was deposited to prevent
oxidation.

To verify the crystal phases present in the films, x-ray
diffraction (XRD) measurements with CuKα radiation were
used. The XRD spectra for each film composition y are shown
in Fig. 2. A single peak in the vicinity of 2θ = 33◦ indicates
the B20 (111) reflection in Fe1−yCoyGe. The additional peaks
correspond to the Si substrate (111) and (222) reflections,
respectively. A single peak for the film demonstrates the
epitaxial and single-phase character of our films.

The inset in Fig. 2 shows the lattice constant a as a function
of y determined from the position of the Fe1−yCoyGe (111)
peak assuming that cubic crystal symmetry is retained. For
FeGe, a = 0.4691 ± 0.0001 nm which is approximately 0.2%
less than bulk value of 0.4700 nm [42] and compares well
with other reported films [32,33]. This is due to the excellent
lattice match between FeGe and Si. In Fig. 2, the bulk value of
0.4631 nm for CoGe [43] is matched to within the uncertainty
by the measured value of a = 0.4630 ± 0.0001 nm. Between
these end members there is a good agreement with Vegard’s
law as y varies, showing a consistent B20 crystal structure
throughout the group. We conclude that our films have close to
cubic lattice vectors, due to the small strain (<−0.5%), which
decreases with concentration y.

The film thickness and layer structure were examined using
x-ray reflectometry (XRR), also with CuKα radiation. Each
film was grown to a nominal thickness of 70 nm with a 4-nm
Ge cap. In Fig. 3, the measured XRR data (open circles) and
fits (solid line) are shown. Each fit, performed using the GENX

software [44], showed the films model a single continuous
Fe1−yCoyGe layer and cap which shows uniformity throughout
the film. For each film the thickness t was found to be within
10% of the nominal value, with a top surface roughness of
between 1 and 2 nm. A summary of the measured values for a

and t for each sample is given in Table I in Appendix A.

FIG. 3. X-ray reflectometry data for Fe1−yCoyGe (open symbols)
and fits (line). Data sets have been offset for clarity.

Plan-view transmission electron microscopy (TEM) was
used to examine the chiral grain structure found in the films
produced. The images were taken using a FEI Titan Themis
300 operated at 300 kV and collected using a Gatan OneView
16 Megapixel CMOS digital camera. For films grown on Si
(111) neither grain chirality is favored and the film is expected
to be composed of both left-handed (LH) and right-handed
(RH) chiral grains [45–48]. The grains belonging to each
chirality can be identified by using dark-field TEM, as shown
in Ref. [45], here we align to the [321] zone axis of the film and
the resulting dark-field images from the (1̄11) (RH) and (11̄1̄)
(LH) reflections are shown for y = 0 and 0.5 in Figs. 1(d), 1(e)
and 1(g), 1(h), respectively. In each image, the grains with
associated chirality appear bright and the two images from
each chirality form an interlocking pattern showing the grains
cover the film with apparently even size (∼100–200 nm) and
probability. False color images produced using the LH and RH
images for y = 0 and 0.5 are shown in Figs. 1(f) and 1(i),
respectively.

B. Magnetometry

The magnetic properties of the films were characterized
using a superconducting quantum interference device vibrating
sample magnetometer (SQUID-VSM). The temperatures were
varied from 5 K up to room temperature with applied fields
up to ±6 T. The magnetization for each sample with fields
applied in plane (IP) Fe1−yCoyGe [110] and out-of-plane
(OOP) Fe1−yCoyGe [111] are shown in Figs. 4(a) and 4(b),
respectively. All films showed easy-plane anisotropy.

The in-plane saturation magnetization Ms at 5 K, deter-
mined from these hysteresis loops at high field, is given in
Fig. 5 as a function of y. For FeGe, a magnetization of 360 ± 10
kA/m was found, which corresponds to a moment per Fe atom
of 0.982 ± 0.007 μB . This agrees with previously measured
bulk [42] and thin film values [32,48,49]. For the Fe1−yCoyGe
samples, the Ms is found to decrease with increasing y which is
consistent with previous bulk measurements [50]. The density
functional theory (DFT) results compared to experimental val-
ues show an overestimation of the moments due to exchange-
correlation approximation and the half-metallic nature at y =
0.6 and 0.7, which will be discussed in subsequent sections.
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FIG. 4. Magnetization for (a) in-plane and (b) out-of-plane ap-
plied fields at 5 K (data shown for y = 0.5 in plane is at 10 K).

To determine the magnetic ordering temperature Tc we used
both dc and ac susceptibility (χdc, χac) measurements. The
results for each sample are shown in Fig. 6 with 6(a) and
6(b) showing the magnetization and χac measurements as a
function of temperature, respectively. For χdc an IP field of

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2  SQUID-VSM
 PNR
 VCA DFT

M
s (

μ B
 / T

M
 a

to
m

)

y

FIG. 5. Experimental values of saturation magnetization Ms

as a function of y for measurements taken using SQUID-VSM
(squares) and PNR (circles), and the results of VCA DFT calculations
(triangles).
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FIG. 6. Magnetization and magnetic susceptibility measurements
for Fe1−yCoyGe as a function of temperature. (a) Magnetization M

for each y at 10 mT. (b) χac for y = 0 to 0.6 with a static field at 2 mT
and ac field at 1 mT at 23 Hz. Inset: magnetic ordering temperature
Tc taken using χdc (squares) and χac (circles) as a function of y.

10 mT was applied at room temperature and the moment was
measured as the temperature was swept down to 5 K. The Tc

value was estimated from the peak found indM/dT at the onset
of magnetic ordering. For χac the same temperature procedure
was used with an applied IP static field of 2 mT and an ac field
of 1 mT at 23 Hz. From these measurements Tc was determined
from the initial peak as temperature was decreased. For FeGe, a
sharp peak can been seen at the onset of magnetic ordering and
as y increases the peak becomes broader and a more complex
behavior develops. For FeGe, the Tc is found to be 280 ± 2 K,
which is again bulklike [42]. The inset in Fig. 6(b) shows the
ordering temperatures and reveals a monotonic dependence on
the concentration y, which agrees with previous experiments
[50].

C. PNR studies of the helical magnetic structure

To investigate the helical magnetic structure of these films,
we used polarized neutron reflectometry (PNR), which allows
the magnetic depth profile of a film to be determined [51].
The PNR measurements of our compounds were taken at ISIS
using PolRef, a time-of-flight reflectometer. Nominally, 20 mm
× 20 mm samples were mounted in a helium flow cryostat. A
magnetic field was applied normal to the scattering plane and
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parallel to the Fe1−yCoyGe [110] direction (in the plane of
the sample). A beam of polarized neutrons were then reflected
from the sample and the neutron spin-up (I+) and spin-down
(I−) reflected intensities were measured as a function of out-
of-plane scattering vector qz = (4π/λ) sin θ , where θ is the
incident angle and λ is the wavelength of the incident neutron.
The spread of neutron velocities and two values of θ were

used to provide a range for qz of 0.01–0.15 Å
−1

. As there is
limited information at the higher wave-vector transfers and
for experimental expediency the PNR data presented here are

shown with a range of qz up to 0.1 Å
−1

. Finally, the data were
rebinned to a constant resolution of �qz/qz of 3%, consistent
with the selected measurement resolution.

Before studying the helical structure, it was important
to verify the chemical structure and to check the magnetic
properties of the films. First, each sample was measured at
room temperature (above Tc) and at the maximum available
field (667 mT) to determine the structure of the sample without
any magnetic component and to compare this with the XRR
results. The PNR values for Fe1−yCoyGe layer thickness were
found to agree within 3% of the XRR values (see Table I
in Appendix A). The sample was then cooled to below Tc

and another measurement was taken to obtain the saturation
moment. The Ms values found using PNR are shown in Fig. 5
and agree well with the SQUID-VSM data to within error.

To observe the helical magnetic structure in these films, the
method shown by Monchesky et al. in MnSi [52–54] was used.
The magnetic depth profile provided by PNR is the sample
averaged component of magnetization in the field direction as
a function of depth z analogous to a transverse spin density
wave. Due to the growth method used, there is no influence
on the chirality of the film produced, and so this results in the
inevitable presence of chiral twinning in B20 thin films [46,52],
which contain left- and right-handed helix structures (see
Fig. 1). This leads to cancellation of the moments perpendicular
to the applied field, and thus the measured depth profile is a
two-dimensional (2D) representation of the helix structure. As
an applied field is increased, this profile becomes distorted
into a helicoid [48,54]. The magnetization profile, using this
helicoid model, is given by

M(z) = M0 + M1 sin

(
2πz

	h
+ φ

)

+M2 cos2

(
2πz

	h
+ φ

)
, (1)

where M is the magnetization, M0 is an offset of the magne-
tization, M1 and M2 are fitting parameters, 	h is the helical
wavelength, and φ is a fitting parameter allowing adjustment of
the phase of the helicoid. This profile was used in conjunction
with the GENX software [44] to fit the data. To fit the magnetic
structure, the structural fitting parameters that were determined
at room temperature were kept constant and only the magnetic
parameters in Eq. (1) were altered.

The samples were field cooled in a field of 5 mT to 50 K
for y = 0 and 0.6 and 5 K for y = 0.7 and 0.8. Once cooled,
the field was reduced to 1 mT (the smallest possible field
that maintains the polarization of the neutron beam) to reduce
distortion of the magnetic profile, before the measurements

were taken. The results are shown in Fig. 7, plotted as a spin
asymmetry (SA) defined as (I+ − I−)/(I+ + I−), although the
simultaneous fits were to the separate I+ and I− curves. The
data are shown as points and fits as solid lines, shown in the
left panels [Figs. 7(a)–7(g)], and the magnetic depth profiles
that led to the fits are shown on the right in Figs. 7(h)–7(n).

From these fits the helix wavelength 	h was measured and
the extracted values for each film are shown later in Fig. 15,
where they will be discussed in detail in comparison with the
results of ab initio calculations. Nevertheless, a brief qualitative
discussion is useful at this point. For FeGe the bulk value
of 	h ≈ 70 nm, motivating our choice for a nominal film
thickness t of the same value. The FeGe film can indeed be seen
to contain one whole turn of the helix. Thus, the helix pitch
that the film has is the same value as in the bulk. Measurements
of kh = 2π/	h in a series of Fe1−yCoyGe bulk crystals by
small-angle neutron scattering revealed a sharp minimum with
kh ∼ 0 for y ∼ 0.6 [50], implying another zero crossing for the
DMI at that composition. Our PNR data are consistent with this
picture: the magnetic depth profile is almost uniform around
that value of y.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

FIG. 7. PNR results for Fe1−yCoyGe. (a)–(g) Spin asymmetry
data (circles) and fit (line) for films with varying y. (h)–(n) Magnetic
depth profiles of each film leading to the corresponding fit.
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D. Magnetotransport

To study the electron transport properties, Hall bar devices
were fabricated using ultraviolet light photolithography. An
8-contact bar of 20 μm width and 10 μm contact spacing was
chosen. The measurements presented here were taken using a
dc current reversal method at ±100 μA for temperatures from
5 K up to 300 K, which is above the magnetic ordering temper-
ature for all values of y. This setup allows for measurement of
the temperature dependence of both the longitudinal resistivity
ρxx and transverse (Hall) resistivity ρxy simultaneously, along
with any variation with field.

Ferromagnetic materials with nontrivial spin textures give
rise to three contributions to the Hall resistivity [5]:

ρxy = ρOHE
xy + ρAHE

xy + ρTHE
xy . (2)

The first contribution, from the ordinary Hall effect (OHE),
ρOHE

xy = R0μ0H , arises due to the Lorentz force and is directly
dependent on the external magnetic field H . The second term,
ρAHE

xy = Rsμ0Mz, is due to the anomalous Hall effect (AHE)
and is proportional to the component of magnetization along
the field direction Mz through the anomalous Hall coefficient
RS (Ref. [5]). The third term, ρTHE

yx = RTHE
xy Beff , is the topo-

logical Hall effect (THE), which arises from Berry phases
due to topologically nontrivial spin textures appearing as an
effective magnetic field Beff , transversely accelerating elec-
tron quasiparticles with opposite spins in opposite directions
[13,55]. Beff is determined by the skyrmion winding number
density Beff = �0

1
4π

∫
m̂ · (∂xm̂ × ∂ym̂), and �0 = h

e
. This

has previously been detected in FeGe, MnGe, and MnSi, both
in films and bulk [15,23,35,56,57]. In principle, there are other
contributions in the OHE that can lead to a nonlinearity in the
Hall signal [33]. In this work, we do not focus on the OHE,
but (along with the resistivity) on the AHE and THE, which
arise from momentum-space and real-space Berry curvature,
respectively.

1. Resistivity and magnetoresistance

The temperature-dependent longitudinal resistivity ρxx(T )
at zero field is shown in Fig. 8 for each composition y. The
vertical line on each graph shows the ordering temperature
Tc for that composition. FeGe (y = 0) and CoGe (y = 1) both
show metallic behavior with resistivity rising with temperature.
However, the intermediate compositions all deviate and show
a broad peak superimposed on this rise. For most intermediate
values of y, the peak is large enough to make ρxx(T ) nonmono-
tonic. The temperature at which the peak occurs is related to the
magnetic ordering temperature, which appears at or close to
an inflection point where d2ρxx/dT 2 = 0. Solid vertical lines
are used to show the value of Tc for each value of y determined
from the susceptibility data shown in Fig. 6. Tc coincides with
an inflection point on the falling edge of the peak ρxx(T ).
The deviation from the metallic behavior in the Co-substituted
compounds in the intermediate range of Co concentration can
be attributed to spin disorder, which is apparent in the DFT
band structure calculations shown in Appendix C.

Anomalies in the resistivity are expected upon approaching
Tc and have been shown for ferromagnetic materials to be
caused by additional scattering due to spin fluctuations near
the critical temperature [58]. Fisher and Langer [59] showed
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FIG. 8. Temperature-dependent resistivity ρxx(T ) at zero mag-
netic field for all concentrations y. The data are separated into two
panels to highlight details in ρxx(T ). The bottom panel shows y = 0
to 0.3 and y = 1 and top panel shows y = 0.4 to 0.8. Vertical lines
show Tc for respective concentration y as determined from the data in
Fig. 6. Data points for 0 � y � 0.8 show measurements taken at fixed
temperature and lines are guide for the eye, data shown for y = 1 were
taken using a sweeping temperature. Note change in scale between
panels.

that in the case of short-range interactions, the derivative of
the resistivity dρxx/dT should vary as the magnetic specific
heat, which has been seen to be the case in MnSi [60,61]. While
FeGe shows a conventional cusp in the specific heat [62], there
is no corresponding peak in dρxx/dT here or in previous work
on thin films [32,33]. An alternative theoretical approach is to
look at the long-range interaction contribution, which has been
used to describe the resistivity anomalies found in periodic
magnetic structures, with spin-spiral rare-earth systems given
as an example [63]. In this description, a peak in the resistivity
at a temperature below Tc is predicted under certain conditions,
which is what we observe in our data with the most pronounced
effect at y = 0.5.

Magnetoresistance (MR) measurements were taken using
an applied field perpendicular to the sample plane. The data at
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(a)

(b)

FIG. 9. Magnetotransport measurements with applied field out of
plane at 5 K for (a) magnetoresistance and (b) total Hall resistivity,
as a function of field strength for all concentrations of y.

5 K up to ±8 T are shown for y = 0 to 1 in Fig. 9(a). In this
orientation, the applied field is parallel to the helix axis and the
low field (�1 T) acts to distort the helix into the conical phase.
On the increasing field, magnetic saturation is reached at Hc,
and the sample becomes uniformly magnetized. Below Hc the
change in resistivity is due to a GMR-like mechanism where
there is rotation of the moments in the conical phase, while
at higher fields a variety of different mechanisms are at play,
depending on the temperature regime [33]. It is noteworthy
that the high-field MR takes on an unusual linear form for
values of y at and around 0.5. Such linear magnetoresistance
in the Fe1−xCoxSi system has been associated with its half-
metallicity [64–66].

2. Anomalous Hall effect

The measured total Hall resistivity ρxy for each concentra-
tion of y at 5 K is shown in Fig. 9(b). For FeGe, a positive
OHE is seen with a small AHE at 5 K consistent with previous
measurements [33]. With the introduction of Co the OHE
becomes negative and a sudden increase in the AHE is seen.
As y → 0.5, the OHE is found to increase to a maximum
at y = 0.5 and with further addition of Co as y → 0.7 the

(a)

(b)

FIG. 10. Temperature dependence of the (a) ordinary Hall coeffi-
cient R0 and (b) anomalous Hall resistivity ρAHE

xy for all concentrations
of y up to 200 K. Inset: R0 for y = 1 as function of temperature.

OHE decreases. At y = 0.8, the OHE becomes positive and
for CoGe a large positive OHE is seen with no sign of any
other contributions to the Hall effect. The OHE coefficient R0,
determined from the high-field Hall slope, is shown for all
concentrations up to 200 K in Fig. 10(a).

One of the key features of ferromagnetic materials is the
AHE, which arises due the spontaneous breaking of time-
reversal symmetry and the presence of spin-orbit coupling.
This causes electrons to undergo a spin-dependent transverse
acceleration in the absence of an external magnetic field.
Spin polarization then leads to a charge imbalance and a
measurable Hall voltage. The anomalous Hall resistivity can
be extracted from the measurement of the total Hall resistivity
by extrapolating the high-field (saturated) data to zero applied
field in order to take into account the presence of the OHE.
In Fig. 10(b), the AHE resistivity ρAHE

xy is shown for all
concentrations y as a function of temperature up to 200 K.

The AHE is known to have three contributions that arise
from three separate mechanisms [5]. In the state where Mz is
saturated, these can be decomposed as

Rs = [α + βρxx + bρxx]ρxx. (3)

214406-7



CHARLES S. SPENCER et al. PHYSICAL REVIEW B 97, 214406 (2018)

FIG. 11. Plots of experimental data (red circles) for
(ρAHE

xy /μ0M)/ρxx vs ρxx for (a) FeGe, (b) Fe0.6Co0.4Ge, (c)
Fe0.4Co0.6Ge, and (d) Fe0.2Co0.8Ge. Linear fits are shown by dashed
black lines. The skew scattering contribution (α) is shown as a dashed
blue line, and the side-jump and intrinsic contribution (β + b) as a
solid red line.

The first two terms, with prefactors α and β, are the extrinsic
scattering contributions to the AHE, termed the skew and
side-jump scattering, respectively. The skew scattering arises
due to an asymmetry in scattering rates for each spin that results
in a net current traverse to the applied field and dominates
in the very clean metal regime. Meanwhile, the side-jump
scattering, which is impurity density independent, is due to
a transverse shift of the electron trajectory upon scattering at
the center with SOC, and becomes relevant in the moderately
dirty metal regime. Nevertheless, the dominant contribution in
the moderately dirty regime is that arising from the intrinsic
mechanism bρ2

xx , which is due to the k-dependent topology of
the electronic band structure arising from effective magnetic
monopoles in momentum space.

The different dependencies on ρxx can be used to separate
out the skew scattering contribution (∝α) by fitting a straight
line with the form(

ρAHE
xy

/
μ0Mz

ρxx

)
= α + (β + b)ρxx (4)

to the data and determining its intercept, with Mz taking its
saturated value. The slope (β + b) corresponds to a combina-
tion of the side-jump (∝β) and intrinsic (∝b) contributions.
In Fig. 11, this separation of the scattering density-dependent
and -independent terms is shown for selected Fe1−yCoyGe
concentrations y by plotting the relationship between these
two quantities as T is varied and fitting Eq. (4). In the case
of FeGe, the anomalous Hall effect is dominated by scattering
density-independent mechanisms, i.e., those determined by β

and b, which agree with previous work [33]. However, for
other concentrations the skew scattering term changes sign
and magnitude as a function of concentration y.

3. Topological Hall effect

It is well known that skyrmions can be stabilized in
helimagnetic systems by an external magnetic field. These

skyrmions produce an effective magnetic field Beff in real
space that results in the topological Hall effect. To find the
THE contribution, the OHE and AHE can be found at high
fields (>1 T), where any topological structure is destroyed by
magnetic saturation, and subtracted from the total Hall effect,
as per Eq. (2) [15,23,32–34]. This leaves only the topological
Hall contribution given by

ρTHE
xy (H ) = ρxy(H ) − [R0μ0H + Rsμ0Mz(H )], (5)

where, as per Eq. (3), Rs = [α + (β + b)ρxx]ρxx . For FeGe, it
has been previously shown that the skew scattering term α is
negligible [32,33] which is also seen here in Fig. 11, and so
for simplicity a form of Rs = bρ2

xx is used where both the side-
jump and intrinsic scattering contributions are combined into
one parameter b as they cannot be determined separately. By
comparing ρxy(H )/μ0H against [bρ2

xx(H )Mz(H )]/H above
saturation, with Mz(H ) taken from the data in Fig. 4 and
ρxx(H ) from the data in Fig. 9, a linear fit is used to determine
the parameters R0 and RS for the OHE and AHE contributions
above saturation. For Fe1−yCoyGe, although we see an increase
of α with increasing y, the inclusion of an α term is found to
be negligible and the form of Rs = bρ2

xx can be used across the
group without introducing any significant error.

In Fig. 12, the ρTHE
xy (H ) obtained by this method for the

positive field quadrant is plotted for 0.1 � y � 0.8, where
the average ρTHE

xy (H ) between the increasing and decreasing
field sweeps is shown. (A detailed account of the analysis
of the data for y = 0 FeGe is given in Appendix B.) In all
cases, the signal is close to zero for fields larger than ∼1 T,
implying that any skyrmion structure is completely unwound
for all concentrations of y. The saturation fields in these
signals are broadly in agreement with those obtained from the
magnetometry (Fig. 4) and MR (Fig. 9). At lower fields, the
usual shape is a broad excursion with its extremum occurring
at μ0H ≈ 0.1–0.2 T. In most cases, this is a negative-going
peak, but it is positive going for y = 0.7 and 0.8. The sign and
magnitude of the THE signal for FeGe, negative going and a
few tens of n� cm, is consistent with previous studies [32–34].

III. THEORY

This rich set of effects of adjusting the Co content y of the
compound on the magnetic and magnetotransport properties
require interpretation through first-principles theory. We car-
ried out density functional theory (DFT) calculations using the
full potential linearized augmented plane-wave method within
the generalized gradient approximation (GGA) exchange-
correlation (XC) functional for bulk crystals of Fe1−yCoyGe.
We calculated the magnetic properties of the compound mate-
rials using the virtual crystal approximation (VCA) [67] along
with the Vegard’s lattice constant from the experimental lattice
constants of pure CoGe and FeGe. The VCA averages the
nuclear number of the Co and Fe ions with the weighting of the
concentration of y. Our collinear calculations were converged
with a plane-wave cutoff of 4.0 a.u.−1 and 512 k points
in the full Brillouin zone as a starting point for spin-spiral
calculations. We have found that the Perdew-Burke-Ernzerhof
(PBE) [68] XC functional gives good results for collinear
calculations and magnetic moments for the B20 compounds
in the equilibrium XC-functional lattice constant. The PBE

214406-8



HELICAL MAGNETIC STRUCTURE AND THE ANOMALOUS … PHYSICAL REVIEW B 97, 214406 (2018)

FIG. 12. Measured Hall resistivity ρxy , fitted data R0μ0H + bρ2
xxμ0Mz and the topological Hall resistivity ρTHE

xy as a function of magnetic
field at 5 K, for Fe1−yCoyGe with concentrations 0.1 � y � 0.8 shown in (a)–(h). ρTHE

xy results as a subtraction of fitted data from ρxy .

collinear calculations yielded magnetic moments of 1.2 and
0 μB in FeGe and CoGe, respectively, at the experimental
lattice constant which can be compared with the experimental
values of 1.0 μB and 0.0 μB , respectively (see Fig. 5). The
hybridization of the transition metal d orbitals with the Ge
p orbitals induces a small moment of less than 6% on the Ge
atom. We used the collinear calculations as a starting point
to converge the spin-spiral calculations. Figure 5 shows the
effect of using the VCA approximation with the Vegard lattice
constant on the magnetic moment of the transition metal ion
at different concentrations of y. The trend is correct, but this
method of calculation tends to overestimate the moment by a
small amount with respect to our experimental results. This is
due to the GGA correction to the local density approximation,
which causes a large moment due to an underestimation of the
atomic binding.

In the absence of spin-orbit coupling, the homogeneous
spin-spiral systems can be described using the general-
ized Bloch theorem, without the expense of large supercell
calculations. Homogeneous spin spirals with a specific direc-
tion can be described by a reciprocal lattice vector q with the
rotation angle ϕ = q · Rn at a given atomic site. The unit vector
of the magnetization at each basis site is best described by

m̂n = [sin θ cos(ϕ + τi)êx

+ sin θ sin(ϕ + τi)êy + cos θ êz], (6)

where θ is the cone angle and τi is the phase at site i. The
exchange-correlation field BXC has the same form. When spin
and real space are decoupled, all atoms of the spin spiral are
equivalent. The angle between the local moment and the lattice
differs at each atomic site, leading to a generalization of Bloch
theorem [69–72]. This generalized Bloch theorem allows one
to solve for the eigenstates of a variation of the Schrödinger
Hamiltonian where BXC rotates from one unit cell to the next.
The eigenstates from this Hamiltonian take a similar form to
the Bloch eigenstates, with an extra phase factor:

ψk,j (r,q) =
(

ei(k−q/2)·rαk,j (r)
ei(k+q/2)·rβk,j (r)

)
. (7)

Here, α(r) and β(r) are the periodic spinor functions. These
Bloch functions become very useful in treating spin-spiral
states ab initio, avoiding expensive supercell calculations.

If the magnetization rotates along a high-symmetry
line for a homogeneous spin spiral, one can adopt a
quasi-one-dimensional model [73] in which the energy is
only a function of one variable, the spatial period length
	h = 2π/|q|. In this micromagnetic model, the discrete spins
of a classical Heisenberg-type Hamiltonian are mapped to the
continuum limit where the magnetization changes smoothly
with a given parameter. When the magnetization vector field
is constant in magnitude, the total energy is only dependent
on the parameter q:

E(q) = Aq2 + Dq + K̄. (8)

From the micromagnetic model, K̄ is the magnetocrystalline
anisotropy (MCA) tensor, which we neglect for the cubic B20
compounds. Here, A is the spin-stiffness parameter that stems
from the isotropic and nonrelativistic exchange parameter
Jij from the Heisenberg model. Parameter D stands for the
strength of the DMI, whose contribution to the energy is linear
and antisymmetric around q = 0 with respect to D.

We converged the spin-spiral calculations starting from
collinear calculations to 243 k points in the full Brillouin
zone for small values of the reciprocal spin-spiral vector and
including the ferromagnetic state q = 0 for the Fe1−yCoyGe
systems. The spin-spiral vector q = (q,q,q) is chosen along
the [111] direction and due to symmetry the DMI vector
points parallel or antiparallel to the chosen q vector. Results
are similar for q in the [001] and [110] directions. We use
the micromagnetic model to approximate the symmetric and
antisymmetric exchange parameters for the B20 compounds
under consideration. Here, it is assumed that the exchange
parameters are independent of the magnetic moments at the
atomic sites. We made use of the Jülich FLEUR code to calculate
the ground state of Fe1−yCoyGe and to calculate the DMI,
AHE, and THE in these materials. In the cubic B20 compounds,
the DMI and exchange are seen to be isotropic. We calculated
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long-wavelength spin spirals in the (q,q,q) direction and
applied perturbation theory to calculate the DMI.

A. Dzyaloshinkii-Moriya interaction

The DMI favors a noncollinear state in which the interaction
energy is minimized when the angle ϕ between spins at
neighboring sites i and j is π/2. In addition to spin-orbit
coupling being necessary for the DMI, inversion symmetry
must be broken in the real-space environment of the lattice.
When spin-orbit coupling is treated along with a spin-spiral
configuration, the generalized Bloch theorem fails and the
system cannot be solved within the chemical unit cell. Within
DFT one can apply first-order perturbation theory [74] with
respect to spin-orbit interaction

HSO =
∑

i

ξi(ri)σ · Li (9)

to the solutions of the q-dependent Kohn-Sham orbitals.
Here, the spin-orbit operator must be transformed by a
unitary spin-rotation matrix to satisfy the spin-spiral boundary
conditions. We take advantage of the Andersen force theorem
where the small perturbation from the spin-orbit operator
causes a change in the single-particle energies. The energy
with respect to q = 0 at small q is linear with the slope and
determines the strength of the DMI.

The perturbation energy of the spin-spiral state is given by

�Ek,n(q) = 〈ψk,n(q,r)|HSO|ψk,n(q,r)〉 (10)

at each q, where ψk,n(q,r) is the unperturbed spin-spiral state
without spin-orbit coupling. The expectation value of the
expression in Eq. (10) goes to zero in the collinear state, and
results in the calculation of the DMI for small finite values of q.
It can be shown that the solutions to Eq. (10) are antisymmetric
in q with respect to the ferromagnetic state q = 0.

The DMI energy can be calculated as the sum of the energy
bands of the perturbed spin-spiral states

EDMI(q) =
∑
k,n

�Ek,n(q)f (Ek,n(q)), (11)

where f (En) = [e(En−EF )/kBT + 1]−1 is the Fermi-Dirac distri-
bution function. The DMI for all these different compositions
goes to a constant value of −1 meV Å for large temperatures.
The Fermi broadening smears the energy eigenvalues making
different concentrations indistinguishable (see Fig. 15). As the
Fermi broadening goes to zero, the DMI for all concentrations
approaches different constant value in each case. The largest
value is seen for y = 0 in the FeGe clean case. However, the
FeGe seems to show two sign changes as function of the Fermi
broadening, whereas only concentrations greater than y = 0.5
show a sign change from positive to negative.

B. Hall effects

1. Anomalous Hall effect

For the calculation of the AHE we used 64 Wannier
functions with spin-orbit coupling for each unit cell. With the
s states lying far below (∼1–3 eV) the occupied p states, we
neglect any contribution from the s states. The calculations
of the anomalous Hall conductivities are converged on a 5123

k-point interpolated grid in the full Brillouin zone.

The calculation of the intrinsic contribution to the anoma-
lous Hall conductivity (AHC) is straightforward using the
Kubo formalism with Wannier function interpolation:

σij
�→0= 2e2h̄

N

occ∑
k,n

∑
m	=n

Im

[ 〈ψk,n|vi |ψk,m〉〈ψk,m|vj |ψk,n〉
(Ek,m − Ek,n)2

]
.

(12)

We introduce a disorder parameter to account for degenerate
energy crossings in momentum space. This disorder parameter
is well converged at 0.1 meV, for all VCA concentrations. In the
absence of impurity scattering, the intrinsic AHE mechanism
originates in the momentum space Berry curvature which can
be determined based solely on the electronic structure of the
pure crystal. Equation (12) is the intrinsic contribution to the
AHE in the � → 0 limit where a finite broadening � is added
to (Ek,m − Ek,n)2 for convergence. However, one can start from
the Bastin formula [75,76] in the eigenstate representation and
the constant � approximation for a more accurate description
of the Kubo formula [77]

σij = e2h̄

2N
∑

k,n	=m

Im[〈ψk,n|vi |ψk,m〉〈ψk,m|vj |ψk,n〉]

×
{

�(Ek,m − Ek,n)

[(EF − Ek,n)2 + �2][(EF − Ek,m)2 + �2]

+ 2�

[Ek,n − Ek,m][(EF − Ek,m)2 + �2]

+ 2

[Ek,n − Ek,m]2
Im ln

Ek,m − EF − i�

Ek,n − EF − i�

}
. (13)

Equation (12) can be recovered from Eq. (13) in the � →
0 limit. The two equations completely agree in the � → 0
limit. However, they tend to diverge for finite broadening with
different signs and magnitudes that differ by more than 50%. It
can also be seen that the AHC is suppressed for large disorder
>0.4 eV. In the large-� regime, the AHC becomes positive for
all concentrations but approaches zero as � → ∞.

In Figs. 13(a) and 13(b), we show the calculated band
structures of FeGe and Fe0.4Co0.6Ge, respectively. Spin-orbit
coupling was included in the calculation. The right panel for
each of the figures shows the energy-dependent intrinsic AHE
plotted in red, along with the spin-projected density of states
(DOS), where the majority spin is plotted for positive values
and the minority spin for negative values. The green bar in
both figures shows the case where the minority DOS goes
to zero, effectively showing a half-metal behavior. In FeGe,
the half-metallicity occurs around 0.5 eV above the Fermi
level and so plays little role in the experimental properties. On
the other hand, in Fe0.4Co0.6Ge this minority-spin gap spans
the Fermi level, consistent with the linear magnetoresistance
observed experimentally for values of y close to this one. This
change in the band structure is due to the shift of the minority
states caused by VCA approximation, and is only seen in
our calculations at y = 0.6. In all cases, the AHE calculated
within the VCA approximation is constant in this gap. In this
regime, spin-flip transitions play an important role for ladder
transitions across the Fermi energy, which may also influence
the THE [78]. In experiments, the AHE is more complex, where
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(a)

(b)

FIG. 13. Band structure of (a) FeGe and (b) Fe0.4Co0.6Ge with
spin-orbit coupling. Dispersion relations are shown on the left. On the
right, the intrinsic anomalous Hall conductivity from first principles
as a function of the Fermi energy is shown in red. In addition, the
black lines show the minority (↑) and negative majority (↓) density
of states in black on an arbitrary scale. The green bar shows the range
of energies in which the half-metallic state is present where there are
no minority states. In the case of (b), the Fermi level lies within this
range.

random substitution can cause a significant amount of disorder.
Our CPA calculations of the electronic structure, shown in the
Appendix, reveal that the scattering for the majority states is
strongly suppressed upon Co substitution, which in turn will
also influence the AHE and even more so the THE.

2. Topological Hall effect

For the calculation of the THE we used 32 Wannier
functions in a collinear system without spin-orbit coupling
for each spin channel in the unit cell. Again, we neglect
any contribution from the low-lying s states. To calculate the
conductivity tensors we used the interpolation technique based
on the Wannier functions [57], using 5123 k points in the full
Brillouin zone. We used a lifetime broadening of 1 meV which
resulted in converged values for the THE.

The calculation of THE requires semiclassical methods,
where the approximation of the emergent magnetic field pro-
duced by the skyrmion lattice is valid for a slowly varying mag-

netization. In this limit, the electron quasiparticles experience
a Lorentz-type Hall force that is opposite in direction for each
spin. We begin by calculating the ordinary Hall conductivities
for each spin channel

σ OHE,s
xy (Bz) = −e3Bz

VN
∑
k,ns

τ 2
s δ(EF − Ek,ns)

× [(
vx

k,ns

)2
m

yy

k,ns − vx
k,nsv

y

k,nsm
xy

k,ns

]
, (14)

along with the diagonal conductivities

σ s
xx = e2

VN
∑
k,ns

τsδ(EF − Ek,ns)
(
vx

k,ns

)2
, (15)

where τs is the spin-resolved relaxation time,V is the volume of
the unit cell, and vi

k,ns is the group velocity in the i direction. We
assume τs = αg(E)−1

s with α being constant and g(E) being the
spin-dependent density of states, and with m

ij

k,ns as the inverse
effective mass tensor.

The THE constant RTHE
yx can be computed as the difference

in the spin-resolved ordinary Hall conductivities divided by
the square of the sum of the diagonal conductivities:

ρTHE
yx = RTHE

yx Beff =
[

σ
OHE,↓
xy − σ

OHE,↑
xy

(σ ↓
xx + σ

↑
xx)2

]
Beff . (16)

Here, we assume the THE is due to a Lorentz-type force
acting oppositely on differing spins with an emergent magnetic
field Beff . Using this formalism, one is able to calculate the
contribution that a nontrivial magnetic structure makes to
the Hall effect from an electronic band structure [Eq. (16)].
The topological constant that we calculate is independent of
the relaxation time since the OHE depends on the square of the
relaxation time and the diagonal conductivities depend linearly
on it.

In Fig. 14 we plot the topological Hall constant as a function
of the Fermi energy in the third panel from the left for (a) FeGe,
(b) y = 0.5, (c) y = 0.8, and the ordinary Hall constant for (d)
CoGe. The figures also show the longitudinal conductivity,
the spin-resolved OHE conductivity, and spin-resolved band
structure in the left, middle left, and right panels, respectively.
In the spin-polarized cases, the sign of the topological Hall
constant is determined by the OHE conductivity of ↑-spin
states being an order of magnitude larger than the ↓-spin
states. The magnitude of the topological Hall constant is
determined by the low longitudinal conductivity. Therefore,
the THE is maximized in the vicinity of the half-metallic gap
for concentrations 0.4 � y � 0.6. The ordinary Hall constant
is maximized at 1.2 μ� cm/T (experimental value at T = 5 K
is 1.3 μ� cm/T) in the nonmagnetic CoGe in the vicinity of
the Fermi energy which may be due to the low conductivity.
The addition of spin-orbit coupling shows no major change
in the curves of OHE and THE. The trend of the theoretical
results is congruent with that of the experimental OHE, which
shows a peak around y = 0.4 and the largest values for CoGe.
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FIG. 14. Topological Hall effect in Fe1−yCoyGe for (a) y = 0 FeGe, (b) y = 0.5, (c) y = 0.8, and (d) y = 1 (CoGe). In each case, the
leftmost panel shows first-principles diagonal conductivity σxx for the sum of both spin channels. The next panel shows the ordinary Hall
conductivity for a given magnetic field Bz spin minority (↑) in red and majority (↓) in blue. The second to last panel shows the first-principles
calculated topological Hall constant where blue shading is positive and red is negative. In the rightmost panel the bands are plotted showing
the band structure for each spin. For nonmagnetic CoGe in panel (d), the effects are shown for the spin-degenerate case.

IV. DISCUSSION

A. Helical magnetism

Let us now compare the results of the first-principles
calculations with our experimental data. In Fig. 7 we presented
the PNR results from our Fe1−yCoyGe epilayers from which
we can deduce the helical wavelength 	h for each sample at
50 K (y = 0.6 or less) and 5 K (y = 0.7 or greater), which
is plotted in Fig. 15(a). The wavelengths are the largest for
intermediate values of y in the region that the helix wave vector
was found to go to zero in Ref. [37].

It is then necessary to obtain values of the DMI strength
in order to make a comparison with the first-principles cal-
culations of that quantity. To do so we make use of the fact
that the helix wavelength is set by the ratio of exchange
spin stiffness to DMI strength, written as 4π	h = A/D. We
extracted the spin stiffness A from our DFT calculations and
used these to compute the values of DMI strength that are
plotted as blue points in Fig. 15(b). In these results we find the
zero crossing of the DMI to be at y ∼ 0.45, slightly lower
than zero crossing of y = 0.6 found in bulk crystals [37].
Our experimental zero-crossing composition is reproduced by
our DFT calculations, which is also at a slightly lower value
than that calculated by the spin current method [28,79]. The
experimental magnitude of the DMI is best reproduced in the
calculation when the Fermi broadening is small.

B. Hall effects

We now turn to our results for the Hall effects, starting with
the ordinary Hall effect. In Fig. 16(a) we plot the calculated
values for the ordinary Hall coefficient R0 as a function of y

alongside those measured at 5 K. There is good quantitative

agreement between the two curves for the end members FeGe
and CoGe. Both data sets also show a broad negative minimum
centered around y ∼ 0.5, and a change of sign as y approaches
1: there is again agreement between experiment and theory in
the zero crossing at y ∼ 0.8. Nevertheless, the experimental
results are roughly 2–3 times larger than the DFT values in the
central range of values of y.

FIG. 15. Comparison of experimental and theoretical helical
magnetic structures. (a) Experimental helical wavelength 	h as a
function of concentration y, as determined by PNR. (b) Experimental
DMI strength calculated from D = (4πA)/	h in blue. The contour
plot shows the DMI value that resulted from the first-principles
calculations, plotted as a function of concentration y on the abscissa
axis and Fermi broadening on the color axis. The vertical dotted line
shows the position of the zero crossing of the DMI strength. Blue
solid lines are guides to the eye.
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(a)

(b)

FIG. 16. Comparison of experimental and first-principles Hall
effects. (a) Experimental (circles) and theoretical (squares) ordinary
Hall coefficients. (b) Experimental measurements and fits of the
total anomalous Hall conductivity (blue dots) and the sum of the
intrinsic and side-jump terms (green squares). The first-principles
calculation of the intrinsic anomalous Hall conductivity as a function
of concentration and disorder is shown using the color axis. In both
cases, experimental values were measured at 5 K.

Next, we address the anomalous Hall effect. In Fig. 16(b)
we plot the experimental anomalous Hall conductivity σ AHE

xy

at 5 K as a function of y, determined from the Hall resistivities
ρAHE

xy in Fig. 10(b) by inverting the resistivity tensor. Broadly,
the trend is a gentle decline in σ AHE

xy as y increases. In the fits
in Fig. 11, we separated out the skew scattering contribution
from those arising from side-jump scattering and the intrinsic
Berry phase mechanism. In Fig. 16(b) we also plot the sum of
these two scattering density-independent parts of the AHC, as
obtained from those fits. This has a more complex behavior,
oscillating and changing sign as y increases from zero before
arriving at a value of zero for y = 1. Since we expect that
these will be dominated by the intrinsic contribution, they can
be compared to the results of the first-principles calculations
of the intrinsic AHC calculated through the Kubo formula in
Eq. (13). This also displays sign changes, particularly for low
disorder, although they occur at somewhat different values of
y to those in the experimental data. The discrepancy in the
intrinsic values can be attributed to the disorder that can not
be captured by the VCA approximation, but is seen in the
CPA calculations. The latter calculations also reveal that the
spin-down states in the vicinity of the Fermi level are strongly
localized by disorder, whereas the spin-up states remain almost
Bloch type. In this situation, the total conductivity of a material
is defined solely by the spin-up states. This spin-selective
localization leads to a high-spin polarization of the longitudinal
electric current [80–82].

Last, we discuss the topological Hall effect. We extracted
the extremal values of ρTHE

xy at 5 K from the data in Fig. 12
and plot them as a function of y in Fig. 17(b) at various
temperatures (circles). The dashed line shows the estimated
THE,ρTHE

yx ≈ PR0Beff , whereP = −1 is assumed for the fully
polarized state in the adiabatic limit [15]. In Fig. 17(a) we plot
the theoretical values of the topological Hall constant RTHE

yx

(a)

(b)

FIG. 17. (a) First-principles calculations of the topological Hall
constant RTHE

yx and emergent field Beff as a function of concentration
y. (b) Comparison of experimental topological Hall resistivity ρTHE

yx

(circles) from 5 to 150 K against first-principles calculation values
(squares) using Eq. (16) as a function of concentration y. In both cases,
Beff is estimated for a close-packed skyrmion lattice using the helix
wavelength from the respective source. The dashed line shows the
experimental estimated THE ρTHE

yx ≈ PR0Beff at 5 K with P = −1.

(squares). There is a sharp peak at y = 0.5, reflecting the onset
of the half-metallic nature of the theoretical band structure at
higher composition.

Interconverting using the usual formula RTHE
yx = ρxy/Beff

[Eq. (16)] for a direct comparison between theory and ex-
periment is hampered by the fact that we do not know the
exact value of the emergent field in our experiments. An
upper limit on Beff can be obtained by making use of the
fact that the THE is proportional to the skyrmion winding
number density, which for a fully dense triangular close-packed
lattice of skyrmions is determined only by the helix pitch. For
skyrmions on a hexagonal lattice with helix pitch 	h one can
estimate the emergent field Beff = −�0(

√
3

2	2
h
), where the minus

sign indicates an emergent field antiparallel to the external
magnetic field and �0 is the magnetic flux quantum. The
results of doing so are plotted in Fig. 17(a) (triangles), with
very small emergent fields, as expected, near the zero crossing
of the DMI at y ∼ 0.45. In our case, the experimental emergent
field is likely to be less than this ideal value since the chiral
grain structure seen in Fig. 1 precludes skyrmion formation
around the grain boundaries, preventing a fully dense skyrmion
lattice from forming throughout the entire sample. The results
of calculating the theoretically expected ρTHE

xy from the two
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quantities plotted in Fig. 17(a) using Eq. (16) are shown in
Fig. 17(b) (squares). The small values of Beff near the DMI
zero crossing mean that the predictions for ρTHE

xy in this range
of y are also small.

Nevertheless, the experimental data for ρTHE
xy show a large

negative peak at y = 0.4. However, the maximum size of the
effective field in the regime is two orders of magnitude smaller
than in FeGe, due to the very large helix pitch, implying a large
increase in the RTHE

yx that is two orders of magnitude larger
than the theoretical values. The reason for this discrepancy is
unknown at the present time. Our experimental value for ρTHE

xy

for FeGe is consistent with those previously reported [32–34].
Furthermore, in the adiabatic limit [15] the experimental values
of R0 and Beff determine the maximal THE that follow the
trend in magnitude of the theoretical calculations. Theory
overestimates ρTHE

xy for FeGe, which is expected given that
in the theory we assume a fully dense skyrmion lattice that
will not be present experimentally. Nevertheless, the theory
dramatically underestimates ρTHE

xy in the range of y where
experimentally we see the large negative extremum. It is hard
to imagine that the skyrmion lattice can be overdense by the
two orders of magnitude required to explain this discrepancy.
This disagreement seems even more striking given that in
this regime of very large skyrmions and small emergent field,
the adiabatic picture used for theoretical estimates should be
in principle more valid than for pure FeGe which exhibits
skyrmions of smaller size and faster rotating magnetization.

Understanding the reasons behind this discrepancy presents
a valid challenge, to be addressed in future studies. Given
the overall good agreement between theory and experiment
in describing the ordinary Hall effect around y ≈ 0.5, it seems
reasonable to disregard the influence of the exact details of
the scattering processes as encoded in the k dependence of the
relaxation times, which was omitted in this study by working
in the constant relaxation time approximation, on the overall
magnitude of the THE as seen in experiment. The fact that
the discrepancy exists where the scale of the spin textures is
expected to be large means that the adiabatic approximation
should hold. Possible reasons for discrepancy could be thus
related to following aspects: (i) the fact that the method of
extracting ρTHE

xy from the measured ρxy expressed in Eq. (5)
might, for some reason, not capture all relevant effects for
intermediate values of y in spite of reproducing prior work
for y = 0; (ii) prominence of additional mechanisms to the
transverse Hall resistivity beyond the ones considered here
for the AHE and THE, as expressed by Eq. (16), that stem
from the finite chirality of the magnetization and can be very
sensitive to the details of disorder in the samples (see, e.g.,
Ref. [83]); (iii) grain boundary scattering at the boundaries
of the chiral grains playing some role when the helix pitch is
large compared to the lateral grain size; or (iv) the presence
of exotic chiral spin textures in experiments which deviate
significantly in their shape and properties from conventional
skyrmions, which were taken as the foundation for the analysis
of transport properties observed here. For example, there are a
number of recent studies reporting the observation of so-called
chiral bobbers [84,85] whose key feature is the presence of a
singular Bloch point [86], and which could in principle exhibit
transport properties radically different from those stemming
from the adiabatic description.

V. CONCLUSION

In summary, we have carried out a comprehensive ex-
perimental study of the magnetic and transport properties
of B20-ordered Fe1−yCoyGe epitaxial films for 0 � y � 1,
complemented by DFT calculations.

The saturation magnetization was observed to decline grad-
ually from the bulklike value of about one Bohr magneton per
Fe for FeGe (y = 0) to zero for nonmagnetic CoGe (y = 1),
reproduced in our calculations. The measured helix pitch
diverges for y ∼ 0.45, reproduced in the calculations as a zero
crossing of the DMI at that composition.

We found several unusual transport properties in our experi-
ments on epilayers with intermediate values ofy. These include
peaks in the anomalous and topological Hall resistivity around
y ∼ 0.5. Our calculations suggest that these are associated
with a high degree of spin polarization in this regime. In
particular, they predict a half-metallic state for y = 0.6, which
is consistent with the observation of a linear magnetoresistance
at high fields in the epilayer with that composition.

The most intriguing feature, which is still not completely
understood is the THE, for which there is a large discrepancy
between experiment and theory for intermediate values of y.
In FeGe, the THE shows reasonable agreement between ex-
periment and theory, given that we assume a perfect skyrmion
lattice in theory that is certain not to exist in our chiral-grain
samples, and so we expect the experimental value of ρTHE

xy to
fall short of the theoretical upper limit by a factor of a few times.
The very large experimental values of ρTHE

xy around the peak at
y = 0.4 far exceed the theoretical estimates. This discrepancy
remains unexplained and presents a challenge for the future.
Cutting edge magnetic tomography techniques are now being
developed [87] that may be able to unravel the details of the
spin textures in such layers. On the other hand, advances in
theoretical methods better able to describe disorder such as
scattering from chiral-grain boundaries and inhomogeneous
emergent fields can also be expected to provide a more accurate
description of such systems.

Our results provide a comprehensive data set for the
magnetic and magnetotransport properties of Fe1−yCoyGe
epitaxial B20 films, and show that DFT calculations can
provide a good description of how the magnetization and
DMI vary with composition y. Our calculations also predict a
half-metallic regime for y ≈ 0.6, corroborated by the experi-
mentally observed linear magnetoresistance. Nevertheless, our
results require more intense investigations into the topological
Hall effect in large nontrivial spin textures.
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APPENDIX A: CHARACTERIZATION OF Fe1− yCo yGe
EPILAYERS

In Table I we display the results of measuring the lattice
constant a by XRD at the (111) out-of-plane Bragg reflection,
as well as the thickness of the Fe1−yCoyGe layer determined
by XRR tXRR and by PNR tPNR fitted using the GENX software
[44]. For y = 0.3 and 0.8, two samples were used in this study
due to insufficient material left for magnetotransport sample
fabrication. The substitute sample was produced using the
same growth procedure and chosen due to the similar a shown
in Table I as well as similar Ms and Tc (not shown).

APPENDIX B: TOPOLOGICAL HALL EFFECT DATA
ANALYSIS

To verify the procedure used to extract the THE resistivity
ρTHE

xy , the method was applied to samples of FeGe (y = 0) with
varying thickness. This method has been used in several reports
on FeGe samples previously [32–34], so the results on our
samples here have a basis for comparison. The measured Hall
resistivity ρxy(H ) for three different thicknesses of FeGe films
at 5 K are shown in Figs. 18(a)–18(c) alongside the scaled mag-
netometry data R0μ0H + (β + b)ρ2

xxμ0Mz based on a high-
field fit to obtain R0 and Rs = (β + b)ρ2

xx . It is worth noting
that there is a hysteretic feature in the center of the Hall effect

TABLE I. Summary of values from XRD for Fe1−yCoyGe lattice
constant a and Fe1−yCoyGe layer thickness from XRR tXRR and
from PNR tPNR measurements for compositions 0 � y � 1 (�sample
used for magnetometry and PNR measurements, †sample used for
magnetotransport measurements).

y a (nm) tXRR (nm) tPNR (nm)

0 0.4691(1) 67.8(2) 67.7
0.1 0.4691(1) 70.6(4)
0.2 0.4680(1) 76.6(8)
0.3� 0.4675(1) 64.1(1) 63.6
0.3† 0.4676(1) 116(4)
0.4 0.4670(1) 63.3(4) 61.6
0.5 0.4662(1) 65.9(2) 66.4
0.6 0.4655(1) 63.6(3) 62.0
0.7 0.4649(1) 61.8(4) 61.9
0.8� 0.4644(1) 64.9(2) 66.4
0.8† 0.4645(1) 62.2(2)
1 0.4630(1) 63.3(4)

loop that is not present in the magnetometry data, indicating
that there is some sort of additional contribution to the Hall re-
sistivity at low fields. This is the topological Hall contribution.
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FIG. 18. Hall resistivity ρxy measurements at 5 K for three FeGe
films with film thickness (a) 23.2 nm, (b) 67.8 nm, and (c) 91 nm
shown with solid lines for increasing (red) and decreasing (blue)
field sweeps. Dashed lines with corresponding color show the fitted
R0μ0H + (β + b)ρ2

xxMz data for each field-sweep direction with
the same color code. The inset in (b) shows a zoomed view of the
low-field data. All three films show a significant deviation between
the measured and fitted data at low fields. (d) Resulting topological
Hall effect ρTHE

xy contribution from subtraction of fitted data from
measured data for each field.
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FIG. 19. The left panel shows the band structure for the spin-
resolved FeGe for ↑ spin in red and the ↓ spin in blue. The right panel
shows the spin-resolved DOS for the same color scheme as the bands.

For each thickness of FeGe, Figs. 18(a)–18(c) show a devi-
ation between the measured data (solid lines) and the predicted
response based on the OHE and AHE alone (dashed lines). For
the 23.2-nm and 91-nm films, ρxy is nonmonotonic at low fields
(−0.5 T < μ0H < 0.5 T), where the gradient changes sharply
from positive to negative (on the increasing field sweep) before
returning, which is characteristic of a THE contribution.

The resulting ρTHE
xy is found by subtracting the fitted OHE

and AHE contributions from the measured data using Eq. (5),
and is shown in Fig. 18(d). Each FeGe film shows a hysteresis
effect that is the result of the hysteresis seen in the resistivity
that is not present in the magnetization. The shape, sign, and

FIG. 20. The left panel shows the band structure for the spin-
resolved Fe0.4Co0.6Ge for ↑ spin in red and the ↓ spin in blue. The
right panel shows the spin-resolved DOS for the same color scheme
as the bands.

order of magnitude of the THE resistivity around the extremum
is consistent with previous literature on FeGe [32–34].

APPENDIX C: FIRST-PRINCIPLES CALCULATIONS

The results of first-principles calculations of the band
structures and DOS for FeGe using the SP-KKR CPA method
are shown in Fig. 19, and the equivalent results for the half-
metallic Fe0.4Co0.6Ge are shown in Fig. 20. Here, we see that in
the half-metallic Fe0.4Co0.6Ge that there is strong spin disorder
on the spin-down states which penetrate the gap. These states
can significantly change the transport properties.
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