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Magnetic structures and magnetocaloric effect in RVO4 (R = Gd, Nd)

E. Palacios,1,2 M. Evangelisti,1,2 R. Sáez-Puche,3 A. J. Dos Santos-García,4 F. Fernández-Martínez,4 C. Cascales,5

M. Castro,1,6 R. Burriel,1,2 O. Fabelo,7 and J. A. Rodríguez-Velamazán7

1Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC, Universidad de Zaragoza, 50009 Zaragoza, Spain
2Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain

3Departamento de Química Inorgánica, Universidad Complutense de Madrid, 28040 Madrid, Spain
4Departamento de Ingeniería Mecánica, Química y Diseño Industrial, ETSIDI, Universidad Politécnica de Madrid, 28012 Madrid, Spain

5Instituto de Ciencia de Materiales de Madrid, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
6Departamento de Ciencia y Tecnología de Materiales y Fluidos, Universidad de Zaragoza, 50018 Zaragoza, Spain

7Institut Laue-Langevin, 38042 Grenoble Cedex 9, France

(Received 16 March 2018; revised manuscript received 16 May 2018; published 1 June 2018)

We report the magnetic properties and magnetic structure of the zircon-type compound GdVO4, together
with the magnetic structure of the isostructural NdVO4. At T � 2.5 K, GdVO4 undergoes a phase transition to
antiferromagnetic Gz, driven mainly by the exchange interactions, while the magnetic anisotropy and dipolar
interactions are minor contributions. Near the liquid-helium boiling temperature, the magnetocaloric effect of
GdVO4 is nearly as large as that of the structurally closely related GdPO4. It is noteworthy that GdVO4 has been
recently proposed as a good passive regenerator in Gifford-McMahon cryocoolers, since adding a magnetization-
demagnetization stage to the cryocooler refrigeration cycle would increase its efficiency for liquefying helium.
NdVO4 is a canted Gz-type antiferromagnet and shows enhancement of the magnetic reflections in neutron
diffraction below ca. 500 mK, due to the polarization of the Nd nuclei by the hyperfine field.

DOI: 10.1103/PhysRevB.97.214401

I. INTRODUCTION

Adiabatic demagnetization was the first procedure used to
attain temperatures close to absolute zero. The best-suited
materials for this task are inorganic salts with a very low
magnetic density, to prevent magnetic ordering to occur. Using
demagnetization from low applied fields or at relatively high
temperatures, the refrigeration capacity of a paramagnet is
roughly inversely proportional to the square of temperature,
therefore these refrigerant materials are only relevant below
1 K. Magnetic refrigeration lost popularity some years ago
because of the development of 3He/4He dilution refrigerators.
However, that technique is very efficient thermodynamically,
leading to an energy saving that is of paramount importance for
large-scale applications. Such an efficiency has been further
maximized by developing refrigeration procedures based on
the Carnot cycle [1]. Slowly but constantly, magnetic re-
frigeration is regaining interest as the physical principle of
choice for, e.g., liquifying helium and hydrogen, cooling in
space-borne missions, and other applications [2]. Besides,
several companies are currently operating in the market of
adiabatic demagnetization refrigerators. A recent and extensive
review of foundations, materials, and systems for magnetic
refrigeration can be seen in Ref. [3] and specifically for
cryogenic purposes in Ref. [4].

Magnetic refrigeration exploits the magnetocaloric effect
(MCE), whose main parameters are the adiabatic temperature
increment �Tad and the isothermal entropy increment �ST

(<0, usually) following any applied field increment �B.
Moreover, prototypes of magnetic refrigerators for liquefying
helium, hydrogen, or other natural gases have been pro-
posed [5–7]. In the 4 � T � 50 K temperature range, typical

paramagnetic salts are no longer very efficient and other types
of materials have been explored for achieving a stronger
MCE [1]. The most evident among them are ferromagnets
with the Curie temperature in the working temperature range,
and Er(Co1−xNix)2 with TC = 13–35 K, depending on x,
represents an outstanding example. This alloy can show a
large MCE, e.g., �ST � −10 J kg−1 K−1 for �B = 0–5 T,
though only for a narrow temperature range near TC . Recently,
the polarization of a rare-earth atom by the exchange field
produced by a transition metal has revealed itself as an
interesting mechanism to increase the MCE over a much wider
T span, as reported for GdCrO4 [8,9].

A different approach consists of combining a high magnetic
density with a frustrating spin spatial arrangement, which
ultimately inhibits the magnetic ordering. The most studied ex-
ample is Gd3Ga5O12 (gadolinium gallium garnet, abbreviated
as GGG) that shows −�ST > 25 J kg−1 K−1 below 10 K, for
�B = 0–8 T. [1] Recently, we reported the interesting GdPO4

that, for �B = 0–7 T, shows −�ST > 30 J kg−1 K−1 between
1 and 10 K and a maximum −�ST,max = 63 J kg−1 K−1 at
T = 2.1 K [10]. This compound has the frustrating monazite
structure and is an electrical insulator, which prevents the
Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism for ex-
change interactions. In competition with the weak magnetic
anisotropy, dipole-dipole interactions promote spin ordering
below TN = 0.77 K in a noncollinear arrangement.

Hereafter, we focus on RVO4, where R is either Gd or Nd.
Gadolinium orthovanadate is somewhat similar to GdCrO4

and GdPO4 alloys previously studied [8–10]. However, it
significantly differs from GdPO4 since GdVO4 has a more
symmetric, nonfrustrating, zircon (ZrSiO4-type) structure, in
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which each Gd3+ ion has four nearest neighbors of the same
type at 3.93 Å, forming a distorted diamond lattice shown
below. Consequently, GdVO4 orders at a relatively higher
temperature TN = 2.5 K, more than three times higher than
for GdPO4, and which is clearly too high to be produced
by the dipolar interaction. The present study on GdVO4 also
sheds light on the analysis of the GdCrO4 data reported in
Ref. [8]. There, the Gd-Gd exchange interaction was neglected
because of the much stronger and dominating Gd-Cr and
Cr-Cr interactions. From GdVO4, where Cr is replaced by the
nonmagnetic V, we now obtain an estimate of the strength of
the Gd-Gd exchange interaction. Its (∂T /∂B)ad, deduced by
an interesting ac technique, was reported in 1991 [11] and
applied to the determination of the magnetic phase diagram,
in a single crystal with the field parallel to the c axis. More
importantly, the magnetic properties of GdVO4 have been
reported very recently [12]. Nevertheless the thermal prop-
erties under magnetic field and its magnetic structure have not
been studied, even though these properties are technologically
relevant, as proven by the fact that this material is already
proposed as a good passive regenerator in cryocoolers based
on the Gifford-McMahon (GM) cycle. [13] The efficiency
of the GM cycle can be enhanced by replacing the passive
regenerator by an active magnetic regenerator and by including
magnetization and demagnetization steps in the cycle [1,15].

Also NdVO4 has the zircon structure and, from magnetic
susceptibility, it was deduced that it orders magnetically at
TN = 820 mK, possibly in a canted antiferromagnetic struc-
ture [14,16]. The ac susceptibility for the applied field along
the crystal a direction was reported to show a peak at 840
mK [16,17]. This compound offers the possibility to study
the polarization of the Nd nucleus exerted by the electronic
magnetic field. Although the nuclear magnetic moment is by
far too small to be observed by neutron diffraction, nuclear
polarization is seen to modify the nuclear scattering length,
which is an average over the nuclear spin states [18]. The
effect is particularly strong for 143Nd and 145Nd, amounting
to 20.47% of natural Nd, due to the large incoherent scat-
tering cross sections of both isotopes. Several studies on the
polarization of the Nd nucleus were reported for a number of
compounds already in the 1990s. However, conclusive results
were not always obtained either because the experiments were
performed on powdered samples [19,20] or twinned crystals
[21,22] or on crystals whose magnetic structure could not be
solved [23]. For NdFeO3, the results are very much affected
by the strong exchange field of the Fe3+ ions, making difficult
the analysis on the polarization of the Nd nuclei.

Below, we investigate the heat capacity (Sec. II) and the
magnetocaloric effect (Sec. III) of GdVO4 between 300 mK
and 30 K, and the magnetic structures (Sec. IV) of GdVO4

and NdVO4, as determined by neutron diffraction experiments,
carried out between ca. 60 mK and 4 K on single crystals.

II. HEAT CAPACITY OF GdVO4

The heat capacity of GdVO4, CB , has been measured
on a pressed powder wafer-shaped sample of 3.54 mg and
about 3 mm diameter by the standard relaxation method in
a Quantum Design Physical Properties Measurement System
(PPMS) setup, at constant magnetic fields up to B = 7 T.

FIG. 1. Heat capacity at constant field, normalized to the gas
constant, CB/R, vs temperature at several values of the applied
magnetic fields for GdVO4, in a double-log scale. Black continuous
line was obtained from Ref. [25]. Red line is the phonon contribution,
estimated as C of ZrSiO4 for T × f , where f = 1.6 (see main text).
Black dashed line corresponds to the simple estimation Cph/R � AT 3

(see main text). Numerical data are accessible in the Supplemental
Material [26].

The results are plotted in a double log scale in Fig. 1. For
B = 0, they agree very well with those reported in Ref. [24],
also plotted in Fig. 1 of Ref. [25]. There is a peak at TN =
2.50 K attributable, according to susceptibility data [16,17],
to an antiferromagnetic ordering. The phonon contribution,
Cph, can be estimated from the isostructural nonmagnetic
compound ZrSiO4, applying a temperature scale factor of
f = 1.6[Cph(GdVO4,T ) � Cph(ZrSiO4,T × f )], due mainly
to the different molar mass but also to different bonding of
both compounds. The so-obtained phonon contribution fits
well, below 30 K, to a Debye Cph/R � AT 3 law, with A =
2.9 × 10−5 K−3. In any case, Cph is only a small contribution
over the peak T range. The total entropy can be computed from
the thermodynamic relation

S(T ,B) = S(T0,B) +
∫ T

T0

CB(T ′,B)

T ′ dT ′, (1)

from which we obtain the magnetic contribution to the en-
tropy, Sm(T ,B) = S(T ,B) − AT 3/3. The most direct way of
computing Eq. (1) is to take T0 = 0, since S(T0 = 0,B) = 0,
according to the Third Law of Thermodynamics. Ideally, low
enough temperatures should be reached in order to do a
proper extrapolation of the experimental data down to T → 0.
However, this is not always feasible and, in the present case,
the extrapolation of the entropy from ca. 300 mK is obvious
only for the data collected at high fields. We did so for B = 7 T.
For other field values, we have adopted a different procedure,
as follows.

The highest experimental temperature, T ≈ 30 K, is more
than ten times TN . Therefore, the magnetocaloric properties
of GdVO4 at such a high temperature can be confidently
estimated from mean-field theory for a simple two sublattices
antiferromagnet with spin s = 7/2. The magnetic entropy
for a pure paramagnet in an external field B is exactly
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FIG. 2. Isofield curves in an S/T diagram obtained by integration
of CB/T . Red dashed line: mean field (MF) approximation for the
magnetic contribution at B = 7 T and T > TN , Eq. (2). Black dashed
line: High T approximation, Eq. (4). Blue dashed line: Expected value
of the molar magnetic entropy for s = 7/2 at T → ∞. Continuous
blue line: Fit of the experimental entropy, with S = 2.04 + AT 3/3
for B = 0 in the high-T range. The vertical arrow depicts how to
compute �ST , for the largest applied field change �B from 0 to 7 T.
The horizontal arrow shows the computation of �Tad for the same
initial temperature and field variation. Numerical data are accessible
in the Supplemental Material [26].

given by [1,27]

Sm

R
= ln

sinh[x(2s + 1)/(2s)]

sinh[x/(2s)]
− xBs(x), (2)

where Bs(x) is the Brillouin function for spin s and x =
gμBsB/kBT .

For x << 1, Bs(x) � x(s + 1)/(3s) and the first term in
Eq. (2) is ln(2s + 1). Therefore the above expression can be
approximated by

Sm

R
= ln(2s + 1) − (s + 1)x2

3s
= ln(2s + 1) − 1

2

CsB
2

RT 2
, (3)

with the Curie constant for spin s, Cs = NAμ2
Bg2s(s + 1)/3kB ,

NA being the Avogadro’s constant.
For an antiferromagnetic substance, within the mean-field

approximation, and for T � TN , the same expression (3) can
be used, replacing the external field B by the mean field Bmf =
BT/(T + θ ), which gives, when T >> TN ,

Sm/R � ln(2s + 1) − 1

2

CsB
2

R(T + θ )2
. (4)

The value θ = 0.7 K has been adjusted to get a good fit of
Eq. (2), between 5 and 10 K, with the experimental absolute
entropy determined for B = 7 T by integration of CB/T . In
this range the phonon contribution is negligible and the mean-
field approach very precise. Figure 2 shows the experimental
entropy at 7 T along with the magnetic entropy computed with
Eq. (2) and the high-temperature approximation, Eq. (4). Fi-
nally the high-temperature approximation is used to determine
the entropy differences for 0, 1, and 3 T, with respect to the

absolute entropy for 7 T, at the highest temperature, T0 = 30
K. These values allow determining the entropy at any other
temperatures via Eq. (1).

The so-obtained isofield curves extrapolate indeed to zero
for T → 0, in an S-T diagram, Fig. 2. The magnetic entropy,
computed as the difference of the total entropy minus the
phonon contribution at 30 K, Sm(T → ∞)/R = 2.04 ± 0.05
agrees well with the expected value for a spin s = 7/2,
ln(2s + 1) = 2.08.

III. MAGNETOCALORIC EFFECT OF GdVO4

The characteristic magnetocaloric values of �ST and �Tad

can be deduced from the heat capacity data. According to
Eq. (1), we have

�ST ≡ S(T ,B) − S(T ,0) = S(T0,B) − S(T0,B = 0)

+
∫ T

T0

CB(T ′,B) − CB(T ′,0)

T ′ dT ′. (5)

Furthermore, from S(T ,B) the temperature differences can be
computed for any given entropy,

�Tad = T (S,B) − T (S,B = 0), (6)

as sketched in Fig. 2. As explained above, �ST has been
estimated at T0 = 30 K, where it is small anyway, by the
mean-field approximation for every field and deduced via
Eq. (5) at other temperatures. Figure 2 shows graphically these
procedures, while Fig. 3 shows the so-obtained results for
�ST (top panel) and �Tad (bottom panel). It can be seen
that −�ST reaches the maximum value of 48 J kg−1 K−1 at
T � 3 K, which is somewhat lower than for GdPO4, due to the
relatively stronger antiferromagnetic correlations in GdVO4,
and also due to the smaller molar mass of the orthophosphate.
Nonetheless, the MCE of GdVO4 is very high, overcoming that
of the reference magnetic refrigerant GGG at any temperature
above TN (see Fig. 3; note that the difference is even larger
than depicted since the GGG data shown in the figure are
collected for �B = 8 T). The reported data [28] for GdVO4,
with �B = 5 T, agree with the present determination except
at higher temperatures, when those values nearly overlap with
ours for 3 T. In any case, in this temperature range |�ST | is
small and has large relative errors. The values of �Tad for
GdVO4 are similar to those of GdPO4 for T > 5 K. We finally
mention that recent data of �ST deduced from isothermal
magnetization [12] via the Maxwell relation agree with the
present ones, −�ST,max = 41.1 J kg−1 K−1 at T � 3 K for
�B = 5 T, higher than that reported in Ref. [28], and they also
agree with the data for �Tad, �Tad,max = 18 K at T � 5 K for
the same applied field change.

IV. NEUTRON DIFFRACTION

A. Experimental details

The neutron diffraction experiments on GdVO4 and NdVO4

single crystals were performed at the D9 instrument of the Insti-
tute Laue-Langevin (Grenoble). The experiments were carried
out between ca. 60 mK and 8 K to determine the magnetic
structures and to collect data on the nuclear contribution in
the magnetically disordered phase. This temperature range
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FIG. 3. Magnetocaloric effect of GdVO4 for magnetic field
changes from 0 to 1, 3, and 7 T, respectively, as obtained from heat
capacity data. Top panel: Isothermal entropy change −�ST . Data
for 5 T from Kimura et al. [28] and for GdPO4 (Ref. [10]) and
GGG (Ref. [1]) are also included for comparison. Bottom panel:
Adiabatic temperature change �Tad. Numerical data accessible in
the Supplemental Material [26].

was explored using a 3He/4He dilution cryostat. For both
experiments, a single-crystal sample with needle shape was
glued having the longest axis (c crystal axis) oriented vertically.
This setup imposes the Weissenberg normal beam geometry,
when the cryostat and detector can be turned around z and the
detector has also a short range of motion away of the horizontal
plane. Considering the cell dimensions of the crystals, the
accessible reflections are indexed as (h,k,l) with l = 0,1, for
the wavelengths λ = 0.5130 Å and 0.8347 Å. These values
were refined in an independent experiment, hereafter shortened
as 0.5 and 0.8 Å, respectively.

The GdVO4 single crystal was a needle of 0.25 × 0.25 ×
4 mm3, having the c axis oriented along its length. Note that
too wide a needle is not adequate due to the huge absorption
of natural Gd for thermal neutrons. Although the use of hot
neutrons, of shorter wavelengths, reduces the absorption to
bearable values, the single-crystal sample should be thin and
its diameter should allow giving a correct balance between
intensity and absorption. In general, for a given crystal volume,

the needle shape habit has lower diffracted/absorbed intensity
ratio than the platelet habit. The absorption was corrected
assuming a cylindrical crystal, using the parameters given in
the International Tables for Crystallography (ITC) [29]. For
the available crystal and λ = 0.8 Å the absorption is roughly
ten times higher than for λ = 0.5 Å, but also the neutron flux
is about four times higher and, therefore, the observed count
number could be observed for both wavelengths with similar
collection times. The higher wavelength allows scanning the
low-angle reflections (1,0,0) and (0,1,0), to check if they are
actually absent. Besides, some reflections were observed as
strong with λ = 0.5 Å and as weak with λ = 0.8 Å, or vice
versa, thus allowing us to exclude fake reflections produced
by the very low temperature experimental environment. The
NdVO4 single crystal was a needle of 0.5 × 0.5 × 4 mm3,
oriented in the same way as GdVO4. In this case, only the
relatively longer wavelength λ = 0.8395 Å was used, since
there were no issues with the absorption.

For both compounds some additional reflections were found
below TN , which are forbidden for conventional nuclear
diffraction, indicating an antiferromagnetic spin configuration.
A systematic search for satellites in the high-symmetry direc-
tions (q scans) of the reciprocal space gave no results with
fractional wave vector k. Therefore, k = 0 was assumed for
the spin configuration of both compounds.

B. Symmetry analysis

The possible magnetic symmetries have been analyzed in
the frame of Bertaut’s theory of spin configurations [30]. As
discussed below, the crystal symmetry is zircon-type (ZrSiO4-
type), space group (s.g.) I41/amd, no. 141 in the ITC, with
Z = 4 chemical units per cell. In the setting 1 of the ITC for
this s.g., Gd atoms are located at the 4a sites Gd1 (0,0,0), Gd2
(0,1/2,1/4), Gd3 (1/2,1/2,1/2), and Gd4 (1/2,0,3/4). V is at the
4b site and O at a 16h site, (0,y,z) with y = 0.069(3), z =
0.179(7), as refined at 8 K, in paramagnetic phase. For NdVO4

the crystal structure is of the same type, with similar y and z

parameters, which do not affect the discussion of the magnetic
symmetry.

Let us consider first the combinations of the four spins
F = s1 + s2 + s3 + s4, G = s1 − s2 + s3 − s4, A = s1 + s2 −
s3 − s4, and C = s1 − s2 − s3 + s4. The full space group is
generated (in addition to the integer translations) by the pure
translation t = (1/2,1/2,1/2) and the symmetry elements 1,
2x , 2y , 41z, and 1̄, respectively, identity, two-fold axes parallel
to a and b, a four-fold screw axis parallel to c, and the space
inversion. If 41z did not exist, but simply 21z = (41z)2, the
symmetry would be orthorhombic, s.g. Imma. Under this
lower symmetry, any component of the cited combinations,
F , G, A, and C, forms a one-dimensional irreducible repre-
sentation. The 41z symmetry operation mixes some x and y

components. Table I lists the actions of the symmetry elements
on the F , G, A, and C combinations of each component
of the spins. When considering 41z, the z components still
make four single-dimensional representations. Ax,y and Cx,y

give also rise to the one-dimensional representations Ax ± Cy

and Ay ± Cx . Each of these representations corresponds to
a noncollinear antiferromagnetic configuration with equal x

and y components. Finally, the action of 41z on Fx,y and
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TABLE I. Transformation of the spins under the symmetry op-
erations of the space group I41/amd for k = (0,0,0). The atom 1
is at (x,y,z) = (0,0,0). Atoms 2, 3, and 4 are obtained by the sym-
metry operations 2x = x, 1/2 − y, 1/4 − z; 21z = 1/2 − x, 1/2 −
y, 1/2 + z; and 2y = 1/2 − x, y, 3/4 − z, respectively, also drawn
in Fig. 5. The given combinations follow conventions similar to
those of Bertaut [30]: F = s1 + s2 + s3 + s4, G = s1 − s2 + s3 − s4,
A = s1 + s2 − s3 − s4, and C = s1 − s2 − s3 + s4.

1 2x 2y 21z 41z 1̄ t

Fz Fz −Fz −Fz Fz Fz Fz Fz

Gz Gz Gz Gz Gz −Gz Gz Gz

Az Az −Az Az −Az −Az −Az −Az

Cz Cz Cz −Cz −Cz Cz −Cz −Cz

Ax Ax Ax Ax Ax −Cy −Ax −Ax

Cy Cy Cy Cy Cy −Ax −Cy −Cy

Ay Ay −Ay −Ay Ay Cx −Ay −Ay

Cx Cx −Cx −Cx Cx Ay −Cx −Cx

Fx Fx Fx −Fx −Fx Fy Fx Fx

Fy Fy −Fy Fy −Fy −Fx Fy Fy

Gx Gx −Gx Gx −Gx Gy Gx Gx

Gy Gy Gy −Gy −Gy Gx Gy Gy

Gx,y is to combine Fx with Fy and Gx with Gy , leading to
two-dimensional representations for both cases. This classifies
the 12 independent components s1i , s2i , s3i , and s4i , i = x,y,z,
in a total of 10 irreducible representations, 8 one-dimensional

and 2 two-dimensional. When considering the space inversion,
one half of the representations are gerade (symmetric, the
spatial inversion does not change the spin, but it does change
the position of the spin) and one half ungerade (antisymmetric).
Namely, F and G combinations are gerade, while and A and
C are ungerade.

C. Data analysis

1. Magnetic structure of GdVO4

For GdVO4, we collected 103 reflections (30 unique) in
the space group I41/amd as a test, by using the four-circle
geometry at room temperature. The observed set of intensi-
ties agreed with the nuclear structure that was obtained by
x-ray diffraction (XRD) [31,32], namely, zircon-type. The
allowed nuclear reflections (h,k,l) obey the s.g. conditions
for (h,k,l), h + k + l = 2n; for (h,h,l), 2h + l = 4n; and for
(h,h̄,0), h = 2n. The average internal consistency of equiva-
lent reflections was Rw,int = 25% over the intensities, which
is similar to the agreement factor with the reported structural
model, Rw = 27%, χ2 = 1.06.

For T = 90 mK, all accessible reflections (h,k,l) with
integer indexes were scanned, without any prior assumption
about the space or magnetic group, i.e., assumingP 1. We found
additional reflections that are forbidden for the nuclear diffrac-
tion. The most intense ones are (±1,±1,0), (±3,±1,0), and
(±1,±3,0). For unpolarized neutrons, their intensity should be
proportional to the squared modulus of the magnetic structure
factor

Fm
hkl = αfm(q)μ⊥{ε1 + ε2 exp[πi(k + l/2)] + ε3 exp[πi(h + k + l)] + ε4 exp[πi(h + 3l/2)]}

= αfm(q)μ⊥{ε1 + ε3 exp[πi(h + k + l)] + exp[πi(k + l/2)]〈ε2 + ε4 exp[πi(h + k + l)]〉}, (7)

where α = 2.695 × 10−13 cm/μB is the magnetic scattering
length, μB the Bohr magneton, fm(q) the form factor for Gd3+,
and μ⊥ the projection of the magnetic moment on the plane
perpendicular to the scattering vector q, and the sum runs over
the four Gd atoms of the unit cell.

The εj factors are εj = 1 for F modes, ε1 = −ε2 =
ε3 = −ε4 = 1 for G modes, ε1 = ε2 = −ε3 = −ε4 = 1 for A

modes, and ε1 = −ε2 = −ε3 = ε4 = 1 for C modes. There-
fore, a magnetic ordering in each mode produces a type of
systematic absences. For each mode, the intensity is zero if at
least one of the following conditions is fulfilled:

F : h+k+l = 2n + 1, 2k + l = 4n + 2, 2h + l = 4n + 2,

G: h + k + l = 2n + 1, 2k + l = 4n, 2h + l = 4n,

A: h + k + l = 2n, 2k + l = 4n + 2, 2h + l = 4n + 2,

C: h + k + l = 2n, 2k + l = 4n, 2h + l = 4n,
where n is any integer.

Note that A and C modes would produce reflections with
h + k + l = 2n + 1 but none of those have been observed.
Thus, we either discard these modes, or we assume that the
intensity is beyond observable. F modes would increase the
intensity of the nuclear reflections. The reflection (2,2,0) has
very small nuclear intensity. However, at 90 mK (2,2,0) should
be intense due to the magnetic diffraction if the ordering
was in any of the Fx, Fy , or Fz modes, in disagreement

with observations. So, we discard F modes. Lastly, all of
the observed non-nuclear reflections fulfill the aforementioned
conditions for G modes, leading us to conclude that the
ordering is a G mode.

Considering the direction of the moments, there are a
few possibilities that need to be discussed, because only
reflections with q very near the a∗b∗ reciprocal plane can
be scanned. The best fit to the experimental data was found
for Gz. For this mode, all (h,k,0)-type reflections have the
same μ⊥ = μ and the intensities are different due to the
form factor only. The most intense reflections would be the
equivalent (±1,±1,0) reflections with maximum form factor,
and |Fm

±1,±1,0| = |4αfm(q)μ|, with ε1 = −ε2 = ε3 = −ε4 =
1. The complete set of data has been analyzed with the
FULLPROF suite of software [33] in the single-crystal mode.
A fair agreement is observed for other magnetic reflections
as depicted in a plot of observed-calculated squared structure
factors (Fig. 4). The refined moment of Gd is μ = 7.2(3)μB

for λ = 0.5 Å and μ = 6.8(3)μB for λ = 0.8 Å, both fully
consistent with the expected value of μ = 7μB , corresponding
to a spin-only atom with L = 0 and J = s = 7/2, where s is
the spin, as in Gd3+, and also in perfect agreement with the total
magnetic entropy Sm = R ln(2s + 1). Details of the refinement
can be found in the Supplemental Material [26].
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FIG. 4. Calculated vs observed squared structure factors for
GdVO4 at T = 90 mK. Red circles: Magnetic reflections. Triangles:
Nuclear reflections, collected with λ = 0.5 Å and λ = 0.8 Å, as
labeled.

Let us consider now the Gx or Gy modes to discard these
possibilities. These modes form a two-dimensional irreducible
representation. According to Landau theory, for the present
crystal symmetry the lowest free energy should occur with the
moment of Gd1 aligned along the a or b axes, or along one
main diagonal of the ab plane. In the first case, |Fm

±1,±1,0|2cal
would be one half of the observed value for a moment of 7μB ,
or the refined moment would be

√
2 × 7μB to fit the observed

intensity. In the second case, (1,1,0) would not be equivalent
to (−1,1,0), one of them being absent, but the intensity is the
same within the experimental precision. Even in the case of
a domain decomposition in such a small crystal, the average
intensity of the set (±1,±1,0) would be one half of the one
observed. Therefore, the Gz mode not only fits the experiments
better, but also is the only possible mode from physical
considerations. The inclusion of small x, y components with
other magnetic modes, does not improve the fit. We conclude
that the simplest and best magnetic configuration, compatible
with the observations, is the collinear antiferromagnetic Gz, in
which each magnetic moment is antiparallel to its four nearest
neighbors.

Figure 4 shows the agreement between the observed and
calculated squared moduli of the structure factors. Since most
reflections have both nuclear and magnetic contributions, we
label each reflection as “magnetic” or “nuclear,” according
to its highest contribution. There are some experimentally
weak reflections, which are not symetry allowed neither for
the nuclear nor for the magnetic structure, that we label as
“nuclear.” Furthermore, there are no reflections with a high
calculated |Fhkl| and actually scanned but unobserved (i.e.,
at the y axis in Fig. 4). The largest discrepant reflections
have been “observed” with only one wavelength, they show
|Fhkl|obs >> |Fhkl|cal and are attributed to spurious scattered
neutrons by the low-temperature environment. In any case, the
scattering length of Gd changes with λ and the nuclear structure
factors do not need to be the same for both wavelengths. The
resulting nuclear and magnetic structures are shown in Fig. 5,
where one can see that the Gd atoms form a distorted diamond-

FIG. 5. Crystal and magnetic structure of GdVO4 at T = 90 mK,
from neutron diffraction. Red: O, blue: V, pink: Gd, green: Gd at
(1/2,1/2,1/2) and its four nearest neighbors. The base atoms to obtain
the magnetic irreducible representations in Table I are labeled as
Gd1,..., Gd4. This structure corresponds to the Gz mode or the
magnetic group I4′

1/a
′m′d .

type sublattice, with four nearest neighbors, indicated by green
spheres.

2. Magnetic structure of NdVO4

Based on heat capacity and magnetic susceptibility mea-
surements, it was reported that NdVO4 orders at TN = 820 mK
in an undetermined antiferromagnetic mode, with moments
parallel to the c axis [16]. A peak in the ac susceptibility was
reported to occur at TN for the orientation parallel to the a axis,
which was ascribed to a weak ferromagnetism.

The nuclear structure of NdVO4 was tested at T = 1.1 K,
in the paramagnetic state and with the same experimental
conditions at lower temperatures (see below). The observed
unit cell (i.e., zircon-type, with a = 7.25 Å, c = 6.43 Å) and
intensities (Fig. 6) are perfectly compatible with the structure
reported at room temperature from x-ray diffraction. [31]

Two collections of the intensities were performed in the
magnetically ordered phase, at T = 60 and 500 mK, to observe
the very probable change in intensity of the magnetic lines, due
to the nuclear polarization of the 143Nd and 145Nd isotopes via
the hyperfine field [21,22]. We have to consider that since TN is
not much higher than the range where the nuclear polarization
takes place, both the electronic and nuclear contributions
should be studied together. With respect to the reflections
collected at 1.1 K, the new observed reflections at these lower
temperatures are forbidden by the s.g. for the conventional
nuclear diffraction and can be indexed as (h,k,0), with h,k =
2n + 1. The q scans along high symmetry directions did not
show any new reflection with fractional k. Therefore, the
magnetic structure can be described by the wave vector k = 0.
Note that the observed magnetic reflections correspond to a G

mode.
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FIG. 6. Calculated vs observed squared structure factors for
NdVO4 at T = 60 mK and, for some of them, at 1.1 K. Triangles:
A few conventional nuclear reflections scanned at 1.1 K. Circles:
Reflections with the conventional nuclear contribution at 60 mK, com-
puted only for nuclear scattering. Stars: Purely magnetic reflections.
Straight line: Ideal agreement, y = x. Inset: All scanned reflections in
a reduced scale, with the same symbol convention, giving some idea
about the relative magnitude of the conventional nuclear scattering
and the magnetic one, for Nd3+.

To deduce the direction of the momenta from neutron
diffraction is not a trivial task because of the following
two experimental conditions. For now, only as an illustrative
example (although confirmed a posteriori), let us consider the
mode Gz. First, purely magnetic reflections of type (0,0,l) with
l = 4n + 2, e.g. (0,0,2), should be absent for this mode, since
μ⊥ = 0. The systematic absence of these type of reflections
would determine unambiguously the z direction and the Gz

magnetic mode. However, as in the case of GdVO4, the normal
beam geometry allows scanning only for q vectors near the
a∗b∗ reciprocal plane (also the ab direct plane for this s.g.)
and the (0,0,l) reflections are not accessible. Second, the
nuclear polarization of Nd produces diffracted intensity for
all reflections with the indexes allowed for any G mode,
because the factor μ⊥ does not apply to this effect [see Eq. (8)
below]. For instance, if the ordering mode was Gz and if the
reflection (0,0,2) was accessible, its intensity should not be
zero. There is not a temperature at which the magnetic order
parameter is high and the nuclear polarization negligible, since
the nuclear polarization occurs usually below 500 mK and
there is no magnetic order at all above 820 mK. Therefore, the
magnetic ordering and the nuclear polarization arise almost
simultaneously on decreasing temperature.

Let us briefly consider the effect of the moment direction
on the magnetic scattering. For a Gz magnetic ordering
mode, all the reflections of the set {(±1,±1,0)} are symmetry
equivalent, as so are the sets {(±3,±1,0),(±1,±3,0)} and
{(±5,±1,0),(±1,±5,0)}. Moreover, the intensity ratio of two
reflections of different sets is the squared ratio of the magnetic
form factors of Nd3+. For a Gx mode, (±1,±3,0) should be
nine times more intense than (±3,±1,0) due to the different μ⊥
in the structure factor. Besides, (±1,±5,0) would be 25 times
more intense than (±5,±1,0), and likewise for a Gy mode,

exchanging the h and k indexes. Finally, for a G mode with the
moments oriented along one of the two ab plane diagonals (let
us call it Gxy), (1,1,0) and (1,−1,0) are not equivalent, since
one of the two reflections should be absent, depending on the
diagonal.

The experimental data at T = 500 mK give controversial
results. We found that (1,3,0) is only 4 times more intense than
(3,1,0), and (1,5,0) is only 2.5 times more intense than (5,1,0).
The nonequivalency would support a Gx mode; however, the
factors are much lower than expected. Moreover (1,1,0) and
(1,−1,0) are not experimentally equivalent, but related by a
factor of 3. On the other side, none of these last reflections
is absent, hence, excluding a Gxy mode. A different approach
would be to take the average intensity of the above three sets of
reflections as a single observation. By doing so, the calculated
data for Gx , Gy , or Gxy would give the same average, but
for Gz they would exactly be twice as high. Fixing the scale
factor from the nuclear diffraction, one model should fit better
than the others. The intensity ratio of the reflections (1,1,0),
(3,1,0), and (5,1,0) do not follow the squared form factors,
the high q reflections being more intense than expected for
purely magnetic scattering. This fact indicates a contribution
of the nuclear polarization. If we were to neglect the nuclear
polarization, data for the (1,1,0) set (the most intense due
to the larger form factor, when the effect of the nuclear
polarization would be relatively smaller) would fit fairly well
for a moment μ = 0.9μB and Gz mode. This value is consistent
with the Curie-Weiss constant C = 0.29 emu K mol−1 Oe−1,
which corresponds to a paramagnetic moment of μ = 1.2μB

[17]. For a G mode in the ab plane, a value of 0.9
√

2μB would
be deduced. We considered a reflection as “observed” when
the standard error on the integration of the profile is at most
1/4 of the intensity. So the most probable mode is Gz and
the differences are simply due to experimental uncertainties.
In addition to this, a Gz mode agrees with the single-crystal
susceptibility data [16] suggesting that the moments lie along
the c axis. Considering the small moment of Nd, less than 1
μB , weak ferromagnetic components Fx or Fy are far beyond
the experimental limit to be directly observed by neutron
diffraction experiments, when the intensity is superposed to
the much stronger conventional nuclear diffraction (see in
Fig. 6 a comparison of the nuclear and magnetic structure
factors for the main magnetic contribution, Gz). Details of
the conventional refinements and observed and calculated
structure factors can be seen in the Supplemental Material [26].

3. Nuclear polarization of Nd

At T = 60 mK the magnetic reflections are still weak,
though clearly observable. They also obey the extinction rules
for a G mode. Figure 6 shows the calculated vs observed
squared structure factors, using the fit of nuclear reflections
to adjust the scale factor, and the usual expression for the
magnetic structure factor, Eq. (7), as used by the FULLPROF

software [33]. Note that some reflections labeled as “magnetic”
are forbidden for the conventional nuclear scattering in this
space group. These have been computed for a Gz mode
and μ = 0.9μB . Reflections labeled as “nuclear” have been
computed assuming a nonmagnetic nuclear structure (i.e., as
at 1.1 K) and the conventional bound scattering lengths for each
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atom. The nuclear reflections agree very well with the structure
deduced at room temperature from x-ray diffraction. However,
the magnetic reflections do not agree with any of the Gx , Gy ,
Gz, or Gxy modes. In particular |F |obs > |F |cal for all the
magnetic reflections, and the relative difference systematically
increases for smaller |F |obs. In other words, there are clearly
observed reflections that should be very weak (especially due
to the small form factor for high q, which is independent of
the ordering mode) indicating that the model of scattering by
the magnetic moment of the electrons alone cannot explain the
observed intensities.

At low temperatures, the 143Nd and 145Nd nuclei (ca. 20%
of natural Nd) can be polarized by the hyperfine magnetic field
produced by the unpaired electrons. For a nucleus with nuclear
spin I , the incoherent scattering length (i.e., the nuclear spin
incoherence, not the isotopic one) comes from the random
relative orientation of the neutron and nuclear spins, viz., the
bound scattering length depends on the total angular moment
of the system I + 1/2 or I − 1/2. Normally, this value is at
random in different sites, therefore leading to an incoherent
scattering, similar to x-ray scattering when two different atoms
randomly occupy the same crystallographic site. For a system
of fully polarized nuclei, it is no longer at random, and I + 1/2
is selectively in some sites and I − 1/2 in others, whatever
the neutron spin might be. If the polarization came from the
electronic magnetic field, this effect would lead to a new
coherent diffracted intensity, corresponding to the same spatial
periodicity as that of the magnetic moments. The diffracted
reflections obey the same extinction rules as the magnetic ones,
but the form factor is 1, because the nucleus size is much
smaller than the wavelength. This fact allows us to observe
high-angle “magnetic” reflections. Besides, there is no μ⊥
term, this last one coming from the tensorial dipolar neutron-
electron magnetic interaction. The nuclear polarization effect
is strong for nuclei with large incoherent scattering lengths,
like 143Nd and 145Nd, contrary to the magnetic neutron-nucleus
interaction, which can be safely neglected in the case of thermal
neutrons and typical nuclear moments near 1 nuclear magneton
(�1/2000 μB).

When Nd is partially polarized, taking into account the frac-
tion of polarizable isotopes and their experimental incoherent
length, the magnetic plus hyperfine structure factor can be
obtained by replacing the factor αfm(q)μ⊥ with αfm(q)μ⊥ +
beffμNBhf /(kBT ) in Eq. (7). We thus obtain

Fm+h = 4

[
αfm(q)μ⊥ + beff

μNBhf

kBT

]
, (8)

where beff = 0.133(18) × 10−12 cm is determined by a
weighted average of the incoherent scattering lengths of 143Nd
and 145Nd [21,22]. Bhf is the hyperfine field acting on the
Nd nucleus, and μN the nuclear magneton. The factor 4
accounts for the Nd atoms in the unit cell, when all the
positional interference terms εj exp[2πi(hxj + kyj + lzj )] =
1, j = 1 − 4, for the reflections of type (h,k,0) with h,k =
2n + 1, allowed for the G mode. The last term is the high-
temperature approximation of the Brillouin function, valid for
μNBhf/kBT � 1 (a typical value for Nd is Bhf � 100 T, as
computed from first principles in Ref. [22]).

FIG. 7. Observed structure factors for the purely (conven-
tional) nuclear reflections (2,0,0) and (4,0,0), right scale, along
with the purely magnetic reflection (1,1,0), left scale. The scale
factor has been deduced from the refinement of the nuclear
structure.

The reflections (2,0,0), (4,0,0), and (1,1,0) have been
scanned at several temperatures, starting from the lowest T =
60 mK. The scale factor to convert intensities to observed
structure factors, Ihkl,obs = 37.42|Fhkl|2obs(×10−24cm2), has
been deduced from refining the nuclear structure at 1.1 K. The
observed structure factor of these reflections has been plotted
as a function of 1/T in Fig. 7. The intensities of the purely
nuclear reflections (2,0,0) and (4,0,0) remain nearly constant at
any temperature, while the purely “magnetic” reflection (1,1,0)
shows a dependence which is nearly linear at low temperatures
and drops at TN = 820 mK. Note that the linear dependence
can be described by Eq. (8) when the electronic moment
is saturated, which occurs for T � TN , indeed. By taking
a straight line as asymptote, the extrapolation to 1/T → 0
gives 4fm(q)αμ⊥ = 0.78 × 10−12 cm, which corresponds to
an electronic moment of μ = 0.8μB assuming fm(q) = 0.926
for the reflection (1,1,0) [29]. The so-obtained value of the elec-
tronic moment is somewhat lower than that deduced from sus-
ceptibility experiments. Also theory imposes lower and higher
bounds for the Nd3+ (electron configuration: [Xe]4f 3,4I9/2)
moment μ, when 1 μB � μ � 3.27 μB . The lower bound
corresponds to a strong crystal field with a complete quenching
of the orbital moment and the lowest total spin for the three
4f electrons, while the upper bound is the Landé rule for the
free ion. A lower than expected μ value can be explained if
some canting or weak ferromagnetism exists in modes Fx or
Fy . However, its contribution to neutron diffraction should be
very minor and superimposed onto the conventional nuclear
diffraction, thus well beyond the experimental limit. Note that
a moment of 1μB is already difficult to observe even for an
antiferromagnetic mode, as can be seen by, e.g., comparing
the magnetic and nuclear scattering intensities in the inset
of Fig. 6. Finally, we observe in Fig. 7 that the slope of the
asymptote gives the hyperfine, Bhf = kB/(4beffμN ) = 55 T,
which is close to the value observed in NdAlO3,Bhf = 66 T, but
below the theoretical calculation giving Bhf/μ � 113 T/μB

[22], or Bhf � 90 T for this compound.
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FIG. 8. Calculated vs observed squared structure factors of purely
magnetic reflections for NdVO4 at T = 60 mK and Gz mode. Tri-
angles: Purely magnetic scattering computed for μ = 0.9μB . Stars:
Magnetic and nuclear polarization, both included. Indexes in braces
correspond to sets of equivalent reflections (all at the same horizontal
line), as defined in the main text.

Figure 8 shows all the magnetic reflections scanned at T =
60 mK. Taking into account all reflections, together with the
hyperfine and magnetic contributions, the experimental data
have a fair agreement with μ = 0.8μB and Bhf = 110 T, that is,
in much better agreement with the aforementioned theoretical
calculation and previous data. The high-angle set of reflections
(7,1,0) and (9,9,0) have nearly negligible magnetic intensities,
due to the decay of the form factor. Still, they can be measured,
although having an uncertainty that is roughly as large as their
intensities.

V. DISCUSSION

The neutron diffraction data show that the Gd-Gd in-
teraction in the zircon-type phase of GdVO4 undoubtedly
is antiferromagnetic, thus confirming the expected behavior
supported by magnetic susceptibility and heat capacity data
(e.g., the magnetic ordering peak remains up to field values as
high as 1 T) [24,25]. This interaction explains the observed
G-type magnetic ordering, as that of minimum energy, in
which each ion is antiparallel to its four nearest neighbors.
The spin-flop field should likely be larger than 1 T, even for
this highly isotropic ion as Gd3+. A spin-flop field of 1.08 T
at 0.5 K and a transition to a paramagnetic state at 2.18 T
is reported in Ref. [24]. The 4̄m2 symmetry of the Gd site
requires one of the maximum or minimum anisotropy energy
directions to be parallel to the crystal c axis and the other two
parallel to a and b, or to the diagonals a ± b, respectively. The
dipolar interaction energy is relatively small and amounts to
ca. −0.5 K, also favoring the Gz configuration. This fact is
obvious from simple considerations and can also be verified in
the isostructural YbVO4, which has a very small exchange and
orders at 93 mK in the Gz mode, with a magnetic moment of
μ = 3.1μB , being that the dipolar energy scales with μ2 [34].

One of the aims of our work is to analyze how the results
for GdVO4 compare with those for the isostructural GdCrO4,

this is, when Cr5+ replaces the nonmagnetic V5+. For GdCrO4,
Gd3+ ions behave as a practically paramagnetic ensemble of
s = 7/2 spins subjected to a much stronger exchange due to
the Cr5+ ions, which order ferromagnetically at TC = 21 K. [8]
At temperatures much lower than TC , the Cr5+ moments are
nearly saturated, giving rise to an internal field that polarizes
the Gd3+ ions in the same way as if there were an external
field of ca. 7 T. The great advantage is that this field enhances
the MCE, at relatively high temperature (i.e. T >> 1 K),
which in combination with the high magnetic density makes
this system interesting for applications. In GdVO4, we have
the opportunity to study the magnetic behavior of the same
Gd sublattice, though without the influence exerted by the Cr
internal field, viz., only with the presence of the measured
applied field.

Concerning practical applications at low temperatures,
GdVO4 has been proposed as a good material for passive
regenerators in GM cryocoolers, especially close to the liquid-
helium boiling point, where high heat capacity materials are
crucial [13]. GdVO4 is a very interesting candidate also for
another reason. Simulations of a combined GM cycle includ-
ing magnetization and demagnetization steps have shown an
increase of the cooling power by a factor of 1.5 for low
fields (ca. 0.5 T) and using ErNi as the regenerator material
[15]. The use of small fields, though not ideally optimal, is
necessary because of the otherwise unwanted dissipation by
eddy currents. In comparison to ErNi, GdVO4 is an electrical
insulator what allows applying much higher magnetic fields
without dissipation. Moreover this compound has even better
refrigerant capacity because of its broader MCE peak. The
magnetocaloric effect of ErNi reaches relatively higher values
of the magnetic entropy change (−�ST � 0.4 J cm−3 K−1

for 5 T at 10 K), [15] but only for a narrow T range,
decreasing sharply for other temperatures. As a comparison,
for the same field, GdVO4 reaches −�ST � 0.3 J cm−3 K−1

at 3 K but still a reasonably high −�ST = 0.16 J cm−3 K−1 at
10 K.

A further reason for interest lies in the fact that in the
paramagnetic phase of an antiferromagnet, the molecular field
works in opposition to the external field, viz., it tends to
orient the moments against the net polarization induced by
the external field. Therefore, the entropy decrement upon
the field application is smaller with respect to that of a
pure paramagnet, proportionally to M2 for μBB/kBT � 1.
Then it comes as no surprise that zircon GdVO4 in the PM
phase has a lower MCE than monazite GdPO4, which orders
almost exclusively by dipolar interactions at a much lower
temperature. Even though GdPO4 is among the paramagnetic
materials with the largest MCE to date, it is nearly useless as
a passive regenerator in a GM cycle. This is because its very
weak magnetic correlations become relevant only at sub-kelvin
temperatures, resulting in very low values of the zero-field heat
capacity at temperatures near the liquid helium boiling tem-
perature, CB=0(4.3 K) = 0.068 R. [10] The relatively stronger
interactions that characterize GdVO4 yield an overall smaller
MCE, though still larger than the reference refrigerant GGG,
together with a relevant high heat capacity, CB=0(4.4 K) =
0.27R. These features make GdVO4 an ideal regenerator in a
combined magnetocaloric-GM cycle, operating down to a low
temperature of around 4.2 K.
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VI. CONCLUDING REMARKS

In summary, the study of the magnetic structures of the
zircons GdVO4 and NdVO4 prove that the direct R-R exchange
interaction is antiferromagnetic in both, giving rise to a G-type
ordering. The neutron diffraction pattern can be explained as a
Gz mode in agreement with reported magnetic measurements.
In NdVO4, Gz is the main order mode but some canting could
be present. In this last compound the nuclear polarization of
143Nd and 145Nd is observed along with the magnetic ordering
below 500 mK. A relatively small z component of the hyperfine
field of 55 T suggests also a possible canting.

GdVO4 has high capacity and a strong magnetocaloric effect
above 2.5 K and would be a good material for a helium
cryocooler based on the Gifford-McMahon cycle, enhanced
by a magnetic field. This is also the case of the very closely
related GdCrO4, where the Gd-Cr exchange acts as an effective
polarizing field, producing high magnetocaloric effect over a
wide temperature range, and high heat capacity even without

any external field. The study of GdVO4 physics gives valuable
information for other isostructural compounds but this one also
has interesting properties regarding technological applications
at low temperatures.
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