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Digital quantum simulators are among the most appealing applications of a quantum computer. Here we propose
a universal, scalable, and integrated quantum computing platform based on tunable nonlinear electromechanical
nano-oscillators. It is shown that very high operational fidelities for single- and two-qubits gates can be achieved
in a minimal architecture, where qubits are encoded in the anharmonic vibrational modes of mechanical
nanoresonators, whose effective coupling is mediated by virtual fluctuations of an intermediate superconducting
artificial atom. An effective scheme to induce large single-phonon nonlinearities in nanoelectromechanical devices
is explicitly discussed, thus opening the route to experimental investigation in this direction. Finally, we explicitly
show the very high fidelities that can be reached for the digital quantum simulation of model Hamiltonians, by
using realistic experimental parameters in state-of-the-art devices, and considering the transverse field Ising model
as a paradigmatic example.
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I. INTRODUCTION

Quantum simulators are being pursued in a number of differ-
ent systems, ranging from cold atoms to trapped ions, impuri-
ties in semiconductors, or superconducting circuits [1]. Among
the various platforms, unprecedented progress is currently
ongoing towards achieving a scalable architecture for quantum
information processing that is based on purely superconducting
qubits [2–5]. These developments are particularly relevant
in view of practically realizing digital quantum simulators,
i.e., systems able to simulate the dynamical evolution of any
model that can be represented as a sum of local Hamiltonian
terms [6]. However, scalability of a digital quantum processor
beyond a few qubits register requires gate fidelities that are still
incompatible with the relatively short coherence times, even in
state-of-the-art superconducting elements [7,8]. Hence, several
proposals have been putting forward the idea of developing hy-
brid quantum circuits, in which superconducting elements are
efficiently and coherently coupled to other degrees of freedom
with possibly longer coherence times [9–11]. Recently, it has
been suggested that hybrid optomechanical devices could also
be used for quantum information processing [12].

Here we envision a novel hybrid architecture to efficiently
implement a digital quantum simulator, which is based on
electromechanical elements coupled to superconducting cir-
cuits. Different from the existing literature, we propose to
use anharmonic and tunable nanomechanical resonators (NRs)
to encode the quantum information, while virtual fluctua-
tions of superconducting elements such as transmons are
only employed to perform two-qubit gates, making their T2

time essentially irrelevant. The proposal is motivated by the
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recent progress in hybrid quantum electromechanical sys-
tems realized in superconducting circuits, with a focus on
investigating transmon-nanoresonator interactions [13–18]. As
model nanoelectromechanical oscillators we consider either
nanomembranes [19,20] and nanotubes [21,22], or graphene
sheets [23–25], which have been shown to display remarkably
low damping and decoherence rates. Large tunability of their
resonance frequencies [23,24,26,27] as well as their nonlinear
properties [27,28] have been experimentally shown. In addition
to the existing proposals to considerably increase the anhar-
monic behavior of mechanical resonators [29,30], we hereby
test an efficient scheme to induce a very large single-phonon
shift of the fundamental vibrational frequency by dispersive
coupling to a superconducting element [31].

As a direct comparison with the currently dominant technol-
ogy based on superconducting qubits, the electromechanical
qubit encoding would not only allow achieving ultrahigh gate
fidelities in excess of 99.9%, as quantitatively shown in the
following with state-of-the-art parameters, but also T2/Tgate >

104, where Tgate represents the average single- and two-qubits
overall gating time. The latter is a key figure of merit in view
of scalability of any proposed platform for the realization of
digital quantum simulation in which a long sequence of con-
catenated operations is required, which represents a sensitive
improvement over previous proposals [32–34] and state-of-
the-art realizations [35–38] in superconducting platforms.

II. HYBRID ELECTROMECHANICAL PLATFORM

The fundamental unit of our architecture is given by a pair
of electromechanical NRs mutually coupled to a nonlinear
circuit element, here assumed to be a transmon. A schematic
representation of this elementary building block as well as
the corresponding circuit model are shown in Fig. 1. Notice
the straightforward scalability of this setup according to a
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FIG. 1. (a) Schematic representation of the circuit building block
for digital quantum simulation proposed in this work: two elec-
tromechanical oscillators (NR) mutually coupled through a transmon
within a superconducting circuit; each element is tunable through
either external voltage bias (the NR) or external magnetic fields (the
transmon), and ground state cooling of the NRs can be achieved by
coupling to a transmission line resonator, or a lumped LC circuit
element; the intrinsic scalability of this setup is sketched below. (b)
Analog circuit model of the elementary building block shown in (a).

sequential repetition of the building block. A superconducting
resonator or a lumped element (schematically illustrated in
the figure) can be taken into account as a further element to
be weakly coupled to the NR for ground state cooling [19]
(i.e., qubit initialization), while the transmon could also be
employed for read-out of each qubit state. In the following cal-
culations we will assume the NRs to be cooled to their ground
states, without explicitly including the LC circuit in the model.

A. Basic model

The elementary unit of the electromechanical platform can
then be modeled through a second-quantized Hamiltonian,
where the free mechanical resonators and the isolated transmon
are described by (h̄ = 1)

H0 =
∑

i

[ωib
†
i bi + Hnl,i] + �

2
σz, (1)

with bi (b†i ) representing bosonic annihilation (creation) oper-
ators, and Hnl,i giving the necessary anharmonicity to isolate
the two lowest energy levels of the NRs, where the qubits are
encoded. In order to keep our analysis simple, we will only
require a shift of the lowest lying Fock energy levels, i.e., a di-
agonal term on the Fock basis, modeled by Hnl,i = Ub

†
i b

†
i bibi

(see Appendix A for details). The last term in H0 describes

the transmon as a pure quantum two-level system [7], σα (α =
x,y,z) representing the Pauli matrices. The interaction between
mechanical oscillators and the transmon is modeled as [15,39]

Hint =
2∑

i=1

gi(bi + b
†
i )σx. (2)

In the following, the electromechanical resonators frequencies
will be set below 100 MHz, while the transmon frequency in
the 2–10 GHz range. Notice that such an energy mismatch
does not allow us to employ the rotating wave approximation
in Hint. Moreover, all the transmon excitations will only appear
as virtual ones, while working with low-occupancy bosonic
states. By a realistic choice of U , gi , and �i = ωi − �, the
dynamics is effectively restricted to the computational basis
that we will be considering. Dissipation and pure dephasing
effects are fully included in our model by solving for the
density matrix master equation

∂tρ = i[ρ,Ĥtot(t)] + LTR[ρ] +
∑

i

Li[ρ], (3)

with Lindblad terms acting individually on the electromechan-
ical NRs, i.e., Li[ρ] = γiD(bi)[ρ] + γi,dD(b†i bi)[ρ], and on
the transmon, i.e., LTR[ρ] = γTRD(σ−)[ρ] + γTR,dD(σz)[ρ],
respectively, where D(a)[ρ] = aρa† − 0.5{a†a,ρ}.

Notice that all the angular frequencies and the rates, when
explicit values are given, should be intended in units of 2π

throughout the following of the manuscript.

B. Mechanical anharmonicity

The required degree of anharmonicity for the vibrating os-
cillators to be defined as qubits deserves a separate discussion.
On one hand, anharmonic contributions to the mechanical
vibrational eigenstates can be experimentally implemented
through the use of intrinsic mechanical nonlinearities [26,27],
or by using static external electric fields [27–30]. On the other
hand, the required anharmonic shift to achieve a reliable qubit
behavior amounts to about 1 MHz at least (see, e.g., the effect
of this value on the gate fidelities, reported in Appendix A).
Since it is not clear if a regime of single-phonon nonlinearity
can be achieved with the above mentioned tools, we hereby
explore an alternative scheme based on dispersive coupling
of an additional low-frequency superconducting element to
each NR, without degrading the mechanical resonator’s re-
markable coherence properties. Notice that such an additional
component would not be involved in mediating the interaction
between NRs, as the transmon qubit in the schematic picture
of Fig. 1(a).

The key idea relies on engineering a nonlinear spectrum of
the collective system composed by a NR and a superconducting
(SC) element, such as a fluxonium, whose anharmonic energy
levels would then be used for the definition of the physical
qubit. Notice that this cannot be considered as a form of hybrid
encoding: indeed, given the dispersive nature of the coupling,
the two subsystems would not be treated on equal footing,
with the NR degrees of freedom maintaining a predominant
role. This is of fundamental importance when considering the
possible effects of the SC circuit noise mechanisms on the
qubit dissipation and coherence times (see Appendix B for
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an extensive analysis). The coupled NR-SC element system is
effectively described by a Rabi-like interaction term, with a
Hamiltonian reading

H = ωNRb†b + �SC

2
σz + g(b + b†)(σ− + σ+). (4)

Notice that, due to the large detuning, � = �SC − ωNR, and the
large coupling strength, no rotating wave approximation can
be made, as done, e.g., in previous works with the same spirit
[31]. It is worth stressing, once again, that the SC component
here envisioned would not play the role of a mediator between
different NRs, as the transmon element explicitly introduced
in the fundamental building block of our setup (see Fig. 1).
Instead, it would be an additional element attached to each
individual electromechanical oscillator, only used to slightly
modify the structure of its excitation spectrum. As we are about
to see, this difference manifests itself also in the parameters
range required to obtain a significant nonlinear effect, which
are very different from the ones at which a transmon qubit
is typically operated. In fact, a SC resonance frequency �SC

in the few hundreds of MHz range is required here, as well
as a NR-SC element coupling rate g in the few tens of MHz,
which is basically opposite to the large � (1–10 GHz range)
and small g (a few MHz) required for the transmon mediator. A
nonlinear SC circuit (e.g., fluxonium) with low frequency and
rather good dissipation and coherence properties, as compared
to typical SC performances, has already been demonstrated
experimentally [40]. We assume that large NR-SC coupling
strengths can be obtained capacitively by applying a suffi-
ciently strong voltage bias. As a first step, we show in Fig. 2(a)
the nonlinear shift δ obtained as a function of g by numerically
diagonalizing the Hamiltonian in Eq. (4). As typical parameters
for a proof of concept demonstration we assumed ωNR =
100 MHz, �SC = 500 MHz, and a suitable number of bosonic
excitations to obtain numerical convergence for the eigenvalues
and eigenstates of interest. The target value, from the results of
Fig. 6 in Appendix A, would be δ � 1 MHz, which is obtained
for g � 50 MHz. While this value is rather large, it should be
noted that ∼10 MHz coupling rates between a transmon and
a 70 MHz mechanical NR have already been demonstrated
experimentally in Ref. [15] (see, in particular, the Methods
summary in the quoted reference). In addition, the authors of
the latter work discuss how it should be possible to improve
the coupling strength to values larger than 25 MHz by suitably
changing the circuit geometry. We can further add that going to
larger charging energy, e.g., by using a fluxonium qubit, should
be possible without decreasing the coherence time. All in all,
increasing the charging energy of the superconducting element,
in addition to improvements to geometry, should ultimately
lead to couplings in the order of 50 MHz without too much
effort.

For comparison with the numerical results, we also report
hereby the analytical expression of the nonlinear shift as
obtained to fourth order perturbation theory in the SC-NR
oscillators coupling:

δ � 2g4

[
2

(� − ω)2(� + ω)
+ 2

(� + ω)2(� − ω)

+ 1

(� + ω)3
+ 1

(� − ω)3

]
, (5)

FIG. 2. Nonlinearity induced on a nanoresonator by a super-
conducting circuit. (a) Nonlinear shift between the ground-to-first
and the first-to-second excited states transitions δ = ω21 − ω10. (b)
Components of the corresponding wave function. In both panels,
ωNR = 100 MHz, �SC = 500 MHz.

in which different terms arise from the combined effect of
rotating and counter-rotating terms in Eq. (4). In the rotating-
wave approximation, all of the terms but the last one would
cancel out.

To better understand the actual character of the collective
excitations in the first three energy levelsψi (i.e., the designated
computational basis plus one extra level), we report in Fig. 2(b)
the amplitude probability of the bare Fock eigenstates of
the uncoupled harmonic oscillator on the corresponding new
eigenstate of the coupled system pn = |〈n,0|ψn〉|2. Here the
second index in the bra vector indicates the SC element in
its ground state |0〉. Moreover, on the right axis of the same
Fig. 2(b) we show the total probability, for each collective
eigenstate, to find the SC element in the |1〉 excited state,
regardless of the state of the NR: this information gives an
estimate of the amount of wave function leaking on the SC
element as a consequence of the coupling, i.e. the magnitude
of the mixing of the bare degrees of freedom. As it can be
seen, in the region of interest such mixing never exceeds
∼5% for the relevant states in the computational basis, which
would define the mechanical qubit. This is a relevant result,
also in light of the analysis reported in Appendix B, which
guarantees that the NR performances in terms of coherence are
not significantly affected by the presence of the additional SC
element.
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C. Effective qubit-qubit interaction

From the last paragraph, we will hereby assume that the
NRs can be effectively considered as anharmonic mechanical
oscillators with a single-phonon nonlinear shift in the few MHz
range. Hence, an effective interaction Hamiltonian between
the two electromechanical qubits can be derived by resorting
to second order perturbation theory from the original model
Hamiltonian, Eq. (1), and by restricting to the portion of the
total Hilbert space in which the transmon is in its ground
state (details are provided in Appendix D), which describes
the relevant dynamics of the pair of qubits restricted to the
computational basis {|00〉,|10〉,|01〉,|11〉}:

Heff =
2∑

i=1

(
λi

2
σ i

z

)
+ �

8

(
σ 1

x σ 2
x + σ 1

y σ 2
y

) + const., (6)

where σ i are Pauli operators in the computational basis of the
NRs, λi are single-qubit energy shifts (i.e., transmon-induced
frequency renormalizations), and the effective XY coupling
constant reads

� = 4g1g2�
(
ω2

1 + ω2
2 − 2�2

)
(
�2 − ω2

1

)(
�2 − ω2

2

) . (7)

We will use this Heff as the reference model to understand the
behavior of the real system, for which we numerically solve
the full master equation above.

III. SINGLE- AND TWO-QUBIT GATES

One of the key ingredients to perform single- and two-qubit
gates is the dynamical tuning of ω1 and ω2. This can be
achieved by using external static and modulated electric fields,
i.e., electrostatic potential energies V , which can locally act on
a single NR as already shown experimentally [23,24,26,27].
In the idle configuration, the two NRs are significantly de-
tuned: |ω1 − ω2| � �, thus switching off the interaction term
appearing in Eq. (6). Hence, the two qubits are decoupled and
independent rotations of each of them can be implemented.
The use of a high-frequency transmon helps improving the
two-qubits decoupling.

In particular [12], single-qubit Ri
z rotations can be per-

formed by shifting the NRs oscillation frequency for the
amount of time required to add the desired phase to the ni = 1
component of the wave function. Other single-qubit rotations
are obtained by an oscillating transverse field keeping a definite
phase relationship with the quantum mechanical evolution of
the system. Indeed, by choosing H

xy

i (t) = V xy(t)(bi + b
†
i ),

with V xy(t) = �t0 (δt)V xy

0 cos(ωit + θ ) one can achieve either
Ri

x (θ = 0) or Ri
y (θ = π/2) rotations. The total rotation angle

equals the area under the pulse modulating the oscillation, i.e.,
φxy = − ∫

dtV
xy

0 �t0 (δt), where �t0 (δt) is a step function of
duration δt , starting at t0.

Our setup can also straightforwardly implement the two-
qubit entangling gate known as

√
iSWAP, described by

the truth-table |00〉 → |00〉 and |11〉 → |11〉, while |10〉 →
(|10〉 + i|01〉)/√2 and |01〉 → (i|10〉 + |01〉)/√2. This gate is
obtained by tuning the qubits to resonance, ωi → ω′

i = ωi + ξi

such that ω′
1 = ω′

2, thus activating the effective interaction
term in Eq. (6). Indeed, the dynamics induced by the XY

interaction in Eq. (6) corresponds to a
√

iSWAP for a proper
choice of the interaction time Tgate = π/|�|, as we show
in Appendix D. The transmon-mediated interaction should
then be turned off by bringing back the two NRs to their
original frequencies. Together with single-qubit rotations, this
constitutes a universal set of quantum operations. A further
tuning knob of the present setup is the dynamical variation of
the transmon frequency induced by an external magnetic flux,
which allows us to considerably shorten the

√
iSWAP gating

time (see Appendix C for details).
The density matrix master equation describing the full sys-

tem is written as ∂tρ = i[ρ,Ĥtot(t)] + LTR[ρ] + ∑
i Li[ρ] ,

where Ĥtot(t) = Ĥ0 + Hint + Ĥ (t), and H (t) includes all the
time-dependent frequency shifts that are necessary to imple-
ment the gates. This master equation is numerically integrated,
in the interaction picture, by using a standard Runge-Kutta
algorithm. A few representative examples of simulated single-
and two-qubit gates, together with a description of the required
external pulses, are shown in Appendix C. Here we report
the computed fidelities of illustrative single- and two-qubit
operations in the presence of the main dissipation parameters
of the model. The fidelity of a given gate is defined as F =√〈ψ |ρ|ψ〉 [41], where ψ is the ideal target state and ρ is
the density matrix evolved through the full master equation.
Realistic parameters for the hybrid circuit are assumed in all
the simulations, such as ω1 = 85 MHz and ω2 = 75 MHz (idle
configuration), U = 3 MHz, � is tuned from 10 GHz (in idle
configuration) down to 2.5 GHz (when performing two-qubit
gates), g1 = g2 = 6 MHz, γ1 = γ2 = 50 Hz, γTR = 100 kHz.
We also tested the effects of non-negligible thermal occupation
of the nanomechanical modes (i.e., nonperfect ground state
cooling), showing that it does not appreciably affect the gate
performances with our protocol (see Appendix E). Finally,
we checked that bosonic occupancies ni > 1 do not occur
throughout the whole gate dynamics.

As benchmark operations, we show in Fig. 3 the calculated
fidelities of a single qubit R1

x rotation, with φx = π/2, and
of the

√
iSWAP gate, respectively, as a function of the pure

dephasing rate (i.e., the reciprocal of the coherence time) for
both the NRs and the transmon [42]. We immediately notice
a very weak dependence of F on γTR,d and, as it could be
expected, a more sensitive dependence on γNR,d . In particular,
it is worth reminding that a value of γNR,d � 100 kHz is utterly
pessimistic for most of the electromechanical NRs, in partic-
ular nanomembranes and nanotubes, where total linewidths
rather in the 0.1–1 kHz range have been experimentally shown
[22–24]. The most remarkable and clear-cut message of these
results is that, as expected from the virtual nature of transmon
excitations, our scheme is intrinsically robust against transmon
decoherence. Indeed, the results look practically insensitive to
an increase of more than two orders of magnitude in γTR,d

from the most optimistic but still realistic [8] value (i.e.,
γTR,d = 10 kHz, corresponding to a transmon T2 time of 100
μs), for both single- and two-qubit gates.

Finally, we emphasize the comparison with transmon based
technology: two-qubits gating times are currently on the order
of 40–50 ns in state-of-the-art devices when fidelities beyond
99% are required [35], which means T2/Tgate ∼ 103 with
current qubit coherence time [8]. With our setup, we have
obtainedF > 99% with Tgate = 500 (300) ns for single- (two-)
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FIG. 3. (a) Fidelity of a single-qubit x rotation by a π/2 angle, and
(b) fidelity of the two-qubit

√
iSWAP gate, as functions of the pure

dephasing rates of the electromechanical resonators and the transmon,
respectively. For the two-qubits gate, we assume γ1,d = γ2,d = γNR,d ;
all the other simulation parameters are reported in the text.

qubit gates. These numbers show the potential impact of the
proposed electromechanical platform to achieve T2/Tgate >

104 for T2,NR ∼ 10 ms, which is extremely promising and
potentially better than state-of-the-art transmon qubits.

IV. DIGITAL QUANTUM SIMULATIONS

The remarkable theoretical fidelities shown in the last
section for the elementary single- and two-qubit gates are a
crucial requirement for scaling up the quantum computation,
e.g., to build a quantum simulator involving a long sequence
of concatenated gates [1]. Here we test the performances of
a realistic proof-of-principle digital quantum simulation of il-
lustrative models mapped onto spin-type Hamiltonians. This is
done in analogy to previous works [32,34,43], by decomposing
the time-evolution operator up to the instant t into the product

0 5 10 15 20 25
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1 Exact Trotter N=10
T

2,NR
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FIG. 4. (a) Exact time evolution of the total magnetization of
a S = 1 system (full line) undergoing oscillations between oppo-
site polarized states (describing, e.g., quantum tunneling across an
anisotropy barrier), compared to the digital quantum simulation of the
target Hamiltonian (8) for infinite and finite T2 time of the electrome-
chanical qubits, respectively (points). (b) Exact Trotter evolution
(N = 10) of the total x polarization in the model Hamiltonian (9)
(full line), compared to the corresponding quantum simulation for
different values of the qubits T2 time (points).

of N terms, each evolving for short time intervals τ = t/N ,
also named Trotter steps [6]. For sufficiently small τ , different
terms of the target Hamiltonian commute, thus allowing us to
decompose the target evolution into a sequence of quantum
gates. In fact, we hereby focus on spin-type Hamiltonians,
since most models of physical interest can be mapped onto a
combination of local operators only involving one H(1)

α and
two-body H(2)

αβ spin terms, and the time evolution of these
terms can be efficiently simulated through a proper sequence
of one- and two-qubit gates. Indeed, the time evolution induced
by H(1)

α ∝ σ i
α directly corresponds to single-qubit rotations

Ri
α . Conversely, two-body terms of the form H(2)

αβ ∝ σ 1
ασ 2

β

can be obtained by combining the XY evolution given by
the second term in Eq. (6) with single-qubit rotations (as
explicitly reported in Appendix F). In the following results,
we assumedγTR,d = 100 kHz as a realistic transmon dephasing
rate, and checked the performances for different values of the
nanomechanical qubits T2 times.

As a first example, we show in Fig. 4(a) the quantum sim-
ulation of a spin-1 Hamiltonian initialized in a fully polarized
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eigenstate and experiencing tunneling of the magnetization.
The simulation of Hamiltonians involving S > 1/2 spins can
be performed by encoding the state of each spin S into that of
2S qubits. The target S = 1 Hamiltonian in this case reads

HS1 = DS2
z + E

(
S2

x − S2
y

)
. (8)

By considering the total spin as a combination of two
1/2 spins, Sα = sα,1 + sα,2, the mapped Hamiltonian H̃S1 =
2Dsz,1sz,2 + 2E(sx,1sx,2 − sy,1sy,2) results in a sum of two-
body terms that can be easily implemented in our platform.
In particular, the evolution induced by sx,1sx,2 − sy,1sy,2 is
obtained by two Ry(π ) rotations on one of the two qubits,
preceding and following the two-qubit evolution provided
by Heff (see Appendix F). The exact time evolution of the
total magnetization 〈Sz〉 is compared in Fig. 4(a) to a digital
quantum simulation of H̃S1 with our electromechanical setup,
either for γNR,d = 0 or γNR,d = 1 kHz. The overall quantum
simulation works very well with an average fidelityF = 0.999
for γNR,d = 0 and F = 0.988 for γNR,d = 1 kHz, respectively.

As a further test, Fig. 4(b) reports the digital quantum
simulation of the total magnetization along x, i.e., 〈Sx〉 =
Tr[ρ(sx,1 + sx,2)] [44], for the transverse field Ising model
of two 1/2 spins (which recently became the subject of
intense theoretical activity in the context of analog quantum
simulations [45–48]), described by the model Hamiltonian

HTIM = �sx,1sx,2 + b(sz,1 + sz,2), (9)

where we set � = 2b = � for the specific simulation in Fig. 4.
Notice that the computation of each point in Fig. 4(b) (with
N = 10 Trotter steps) requires the sequential concatenation
of 20 two-qubit gates and 40 single-qubit rotations (each one
operated in parallel on both qubits). Although this makes
the simulation much more demanding, the average fidelity is
already 0.90 for γNR,d = 1 kHz, which steeply increases to
0.96 if a more optimistic γNR,d = 100 Hz is assumed. The
latter result is especially noteworthy if one considers the total
computational time required for the longest sequence of gates
(i.e., corresponding to the last point in Fig. 4), which is about
150 μs. This confirms the robustness and potential strength of
the quantum computing platform introduced in this work.

In addition, by exploiting generalized Jordan-Wigner trans-
formations to map fermionic into spin operators [43,49,50],
it is possible to simulate many-body fermionic systems. In
particular, our effective qubit-qubit interaction already imple-
ments an XY model, which is the essential building block in
the simulation of hopping processes in fermionic Hamiltonians
[34,51].

V. CONCLUSIONS

In conclusion, we have proposed a scalable architecture
to realize an electromechanical digital quantum simulator,
based on state-of-the-art technology. Qubits are encoded in
the anharmonic vibrational modes of mechanical nanores-
onators, whose coupling is mediated by virtual excitations
of an auxiliary transmon and can be switched on and off
by tuning their resonance frequencies. We have shown that
the fidelity of elementary gates is practically unaffected by
the transmon decoherence and remains remarkably high even
with the inclusion of realistic values of the nanoresonators

decoherence rates. These elementary gates are concatenated
into quantum simulation algorithms and very good results are
found for the implementation of nontrivial models, such as the
transverse field Ising model and the XY model.
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APPENDIX A: ANHARMONICITY OF
NANOMECHANICAL RESONATORS

A certain degree of anharmonicity is the essential ingredient
that allows a faithful encoding of information on the ground and
first excited levels of each nanoelectromechanical resonator.
In our theoretical description we assumed a very simple
model for the nonlinear contribution to the energy spectrum:
indeed, a diagonal shift of the |1〉 ↔ |2〉 transition with respect
to |0〉 ↔ |1〉 (in the Fock number basis representation of
each qubit) already contains all the relevant features, while
keeping the description easy to understand and analytically
transparent. Here we compare this simplified description with
a more realistic and commonly used model of anharmonic
mechanical oscillators, with the aim of better clarifying the
physical properties and parameters that are required from our
nanoelectromechanical devices.

From the perspective of the total bosonic Hilbert space
(i.e., without truncation on the maximum number n1,max and
n2,max of allowed excitations in each resonator), the diagonal
nonlinearity model can be written as a Kerr-type Hamiltonian,
i.e.,

Hnl,diag = Ub†b†bb. (A1)

On the other hand, a widely accepted model for nonlinear
nanomechanical resonators is rather given by [12]

Hnl = U (b† + b)4 ∝ x̂4. (A2)

As a first step in comparing the two models, we will now
show that the first one, which we have adopted in this work,
underestimates the degree of required nonlinearity given the
same parameter U in the range of interest, i.e., it predicts a
smaller shift δ = ω21 − ω10, with respect to (A2). This is easily
seen in Fig. 5, where we compute the shift δ by performing a
numerical diagonalization of both models, after adding the free
Hamiltonian H0 = ωb†b and setting nmax = 10. In the plot, U

and δ are both expressed as fractions of the bare frequency
of the oscillator ω. As it is evident from the results, in the
range that corresponds to the region of interest for our purposes
(U/ω � 0.1), the model Hamiltonian (A1) that we employed
is always quite conservative in terms of quantitative estimation
of the nonlinear single-phonon contribution.

In addition to the eigenvalues, we also compared the eigen-
vectors corresponding to the first three energy levels (namely
the computational basis plus the first extra level) for the two
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FIG. 5. Comparison between two possible models for the single-phonon nonlinearity of the nanomechanical resonators. Panel on the right
focuses on the region of interest for our setup.

models. In this case, we selected the parameter U in two dif-
ferent ways such that the gap δ is the same both for Hnl,diag and
Hnl. The two bare frequencies were assumed as ω1 = 85 MHz
and ω2 = 75 MHz, corresponding to the values used in the
simulations shown in the main text. The following table sum-
marizes the fidelity F of the eigenvalues |n〉nl obtained from
(A2) as compared to the corresponding bare Fock state |n〉.

n F(ω = ω1) F(ω = ω2)

1 0.9996 0.9995
2 0.9971 0.9963
3 0.9899 0.9872

By using the |n〉nl states as elements of the computational
basis, the very same protocol machinery that we presented
in the paper can be used to implement single-qubit rotations
and the

√
iSWAP gate. Indeed, electrical pulses can still be

used to tune the fundamental transition frequency ω01 for both
oscillators, thus bringing them to resonance when needed.
Moreover, the operators bi and b

†
i promote transitions between

the new eigenvectors, albeit with a slightly different matrix
element Xkl = 〈k|b|l〉, as summarized in the following table:

Xkl Fock states |n〉nl for (ω = ω1) |n〉nl for (ω = ω2)

X01 1 1.0005 1.0007
X12

√
2 1.4170 1.4179

The Hamiltonian (A2) only couples Fock states differing
by an even number of excitations. This means that |n〉nl

and |n + 1〉nl are still orthogonal to each other, since they
are superpositions of even or odd Fock states only, namely
eigenvectors of the parity operator on the Fock basis belonging
to different eigenspaces. As a consequence, the matrix element
Xnn vanishes. The same is not true for Xn(n+2), meaning that
bi and b

†
i could in principle promote |0〉nl ↔ |2〉nl transitions

outside the computational basis, e.g., during the single qubit
xy rotations. However, in our protocol this effect remains
negligible in view of the large energy gap between the two
eigenstates.

In conclusion, the only significant consequence that we
must keep into account is the rescaling of the coupling
elements gi → giXkl (notice that, in principle, this is specific
for every transition) and the shortening, by a factor X01, of
the time required for the single qubit xy rotations. Numerical
simulations of individual gates within this framework show
behaviors and fidelities that are very close (the difference is
below 0.1%) to the simplified case that we have adopted for
the numerical simulations.

Fidelity vs nonlinear shift. We evaluated the relevance of
the nonlinearity to the quantum information processing tasks
by performing the fundamental gates for different values of
the parameter U used in the main text. As an example, in
Fig. 6 we show the data points obtained for a single qubit
Rx(π ) rotation as a function of the nonlinear gap difference
δ = ω21 − ω10. Single qubit rotations are the most sensitive
to nonsufficient nonlinearity in our scheme, since the total
number of excitations is not conserved by the external pulse
proportional tob + b†, in general. The simulations were carried
out with the same nonlinearity model and parameters as in the
main text but varying U , in the absence of external dissipations.
The most significant feature is the large plateau very close
to unity for almost all values above δ � 2 MHz. Moreover,

FIG. 6. Fidelity of single quibit Rx(π ) gate as a function of the
nonlinear shift between the first and second energy gaps. Gaussian
tuning pulses were used (see Appendix C) to activate and control the
gates.
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FIG. 7. Dissipation and coherence times for the coupled nanomechanical resonator and superconducting circuit system, obtained from
Bloch-Redfield simulations. The values of overall T1 and T2 time scales are expressed in units of the corresponding typical time scales for the
superconducting circuit assumed in the simulation, as taken from the literature (i.e., T1,SC = 1 ms and T2,SC � 10 μs).

we find that a nonlinear shift δ = 1 MHz is already sufficient
to give theoretical fidelities F > 0.99, which is the threshold
required on single gates to successfully apply error correction
protocols such as the surface code [35].

APPENDIX B: DECOHERENCE EFFECTS OF PHONON
NONLINEARITY INDUCED BY A SUPERCONDUCTING

CIRCUIT

With reference to the scheme introduced in Sec. II B, and
to show its effectiveness in defining efficient nanomechanical
qubits, we have quantitatively analyzed the actual effect of
introducing the SC element in terms of dissipation (T1) and
coherence times (T2) of the collective excitations, by applying
the formalism of open quantum systems. In view of the strong
internal coupling (g can be a significant fraction of ωNR) and of
the presence of non-negligible counter-rotating terms, a Bloch-
Redfield master equation with suitable secular approximation
[52] was used instead of a more phenomenological collection
of Lindblad terms derived for the bare nanomechanical res-
onator and SC subsystems. In a nutshell, the Bloch-Redfield
approach starts by diagonalizing the full system Hamiltonian,
a procedure that is indeed consistent with the fact that our
qubits are actually defined as slightly mixed excitations,
and then derives the dissipation and pure dephasing terms
from the matrix elements, computed between the true system
eigenstates, of a set of operators describing the coupling to the
environment. In our case, we worked with the following model:

Htot = HNR+SC + Henv,NR + Henv,SC + HI , (B1)

where HNR+SC is given in Eq. (4), Henv,i = ∑
k ωk,id

†
k,idk,i is

a collection of harmonic bath modes (i = NR,SC) and the
system-bath coupling HI is a sum of terms of the form

HI,S = O ⊗
∑

k

g′
k,i(dk,i + d

†
k,i). (B2)

Here O is a Hermitian system operator describing individual
interaction mechanisms for either the nanoresonator or

the superconducting circuit. We use, for example, the
operators ONR = {b + b†; b†b} and OSC = {σ− + σ+; σz}
corresponding to dissipative and dephasing processes on
the bare nanoresonator and SC, respectively. The resulting
master equation will correctly describe all possible transitions
induced by the environment on the effective dynamics of
the coupled nanoresonator and SC system, with rates that
are proportional to the spectral functions of the environment
evaluated at the relevant transition frequencies. We specify
such functions as zero temperature white noise spectra

Si(ω) =
⎧⎨
⎩

γi,d for ω = 0,

γi for ω > 0,

0 for ω < 0,

(B3)

where, again, i = NR, SC and γ (γd ) represent dissipation
(pure dephasing) contributions in the uncoupled case. These
numerical simulations were carried out with the QuTiP library
in Python [53] (see also http://qutip.org/). In Fig. 7 we show the
results for the change in the total T1 (decay of diagonal terms)
and T2 (decay of coherences) of the coupled system as a func-
tion of g, obtained by observing the time evolution of an initial
superposition of the computational basis elements. In practice,
the data are obtained by fitting the exponential decay of the
excited state occupation probability and of the off-diagonal ele-
ment (coherence) of the resulting density matrix. The following
parameters were used in these simulations: ωNR = 100 MHz,
�SC = 500 MHz, γNR = 50 Hz (corresponding to T1,NR =
20 ms), γNR,d = 200 Hz (which results inT2,NR = 8 ms), γSC =
1 kHz, and γSC,d = 50 kHz. In particular, these parameters
correspond to uncoupled values of T1,SC = 1 ms and T2,SC �
10 μs for the low-frequency SC element, as experimentally re-
ported, e.g., in Ref. [40]. As it can be appreciated from the plots,
the additional superconducting element is predicted to affect
the original performances of the nanomechanical oscillator by
less than an order of magnitude, thus still preserving a signifi-
cant advantage over the typical dissipation and coherence times
of, e.g., transmon qubits or Cooper pair box with a large charg-
ing energy used as the SC element in this calculations, whose T1
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and T2 values are taken as a reference for normalization in the
figures. Before concluding, we also notice that the introduction
of a superconducting nonlinear element is in principle compat-
ible with the parallel use of other strategies designed to enhance
the single-phonon nonlinearity, such as the external static elec-
tric fields or clamping techniques mentioned in the main text.

APPENDIX C: SINGLE- AND TWO-QUBIT GATES

As we have pointed out in the main text, the fundamental
ingredient needed to perform single- and two-qubit gates is
the possibility to dynamically tune the oscillation frequency of
the nanomechanical resonators. Here we show in full detail the
protocols that are needed to obtain two specific gates, namely a
single-qubit x rotation of an angle α and a two-qubit

√
iSWAP

gate, ideally defined by the unitary matrix

U√
iSWAP =

⎛
⎜⎜⎝

1 0 0 0
0 1/

√
2 i/

√
2 0

0 i/
√

2 1/
√

2 0
0 0 0 1

⎞
⎟⎟⎠. (C1)

Unless explicitly stated, we will assume throughout the
discussion that the permanent renormalization shifts (encoded
in the parameters λi of the main text) have already been taken
into account.

We adopt a modeling similar to Ref. [12], where diagonal
terms of the form

Hz
i (t) = V z(t)x2

i = V z(t)(bi + b
†
i )2 (C2)

modify the oscillation frequency, while transverse components

H
xy

i (t) = V xy(t)xi = V xy(t)(bi + b
†
i ) (C3)

displace the equilibrium position and can be used for x and y

rotations.
Rz rotations can be performed by changing the qubits

oscillation frequency by an amount δω for a time interval δt .
To implement it, a steplike pulse can be used, the temporal
switching of the external fields being only limited by the
response time of the control electronics (typically in the
nanosecond time scale). The resulting Hz

i (t) = δω�t0 (δt)b†i bi

will produce a phase φz = − ∫
dtδω�t0 (δt) = −δωδt on the

|1〉 component of the basis. With �t0 (δt) we denoted a unitary
step function starting at t0 with duration δt .

As a specific example, a Rx(α) gate on the first nanores-
onator is obtained by applying a transverse pulse

H
xy

1 (t) = V xy(t)x1 = V xy(t)(b1 + b
†
1), (C4)

with

V xy(t) = A(t,t0,σ )V xy

0 cos(ω1t). (C5)

Here V
xy

0 denotes the amplitude scale of the pulse, while
A(t,t0,σ ) is a time-dependent modulation of the oscillatory
part that describes the on/off dynamics of the gate. For
example, a square pulse A(t,t0,σ ) = �(σ/2 − |t − t0 − σ/2|)
starting at t0 and lasting for σ = α/V

xy

0 (� is the unit step
function) is one of the possible choices for the envelope
function. Given that we are not dealing with real two-level
systems, but rather trying to restrict the dynamics of a nonlinear
harmonic oscillator to the first two levels, the choice of the

pulse profile is of great importance and can lead to significant
improvement of the performances. Indeed, the frequency
spectrum of a cosinelike function modulated by a square pulse
may not be sufficiently narrow around the target ω1 to avoid the
activation of unwanted transitions that are close in energy, e.g.,
the |1〉 ↔ |2〉 transition. An easy to implement but powerful
tool in this context is provided by Gaussian pulses, which give
a fast decaying Gaussian frequency spectrum. The envelope
can be chosen as

A(t,t0,σ ) = e
− (t−t0)2

2σ2 , (C6)

with σ = α/(
√

2πV
xy

0 ). The gate lasts approximately 2.5–3σ

on both sides of the central peak at t = t0. By using Gaussian
pulses, the amount of nonlinearity U that is required to obtain
reasonably large fidelities can be reduced with respect to the
square pulse case, or alternatively the strength of the tuning
V

xy

0 can be increased, thus diminishing the total gating time.
For the two-qubit gate the transmon-mediated interaction

must be activated. Good isolation of the qubits during the idle
phase and single-qubit gates requires that they are detuned
from each other and that the transmon is at a sufficiently
high frequency (e.g., � � 10 GHz) to strongly suppress the
residual effective coherent coupling, whose strength is (see
Appendix D)

� = 4g1g2�
(
ω2

1 + ω2
2 − 2�2

)
(
�2 − ω2

1

)(
�2 − ω2

2

) . (C7)

In principle, tuning the two qubits to resonance (e.g., to a
common intermediate frequency ωr = |ω1 − ω2|/2) is suffi-
cient to activate coherent oscillations: the desired

√
iSWAP

gate is then obtained for an interaction time τ = π/|�|. In this
case, square pulses already give good fidelities in the range of
parameters that we studied. The interaction is then turned off by
shifting back the frequencies of the nanoresonators, and two
rephasing single-qubit z rotations are applied to correct for
the additional phase accumulated by the qubits with respect
to their evolution with the original bare ω1,2. This latter step
is obtained by an inverse −ξi = ωi − ωr pulse lasting for a
time τ ′ = mod(τ |ξi |,2π )/|ξi |. In order to shorten the required
gating time, one can exploit one peculiar property of our setup,
namely the possibility of dynamically tuning the transition
frequency � of the transmon. This is, of course, of great
importance when performing long sequences in the presence
of realistic dissipation processes. This shift, which is imple-
mented in practice by varying the magnetic flux concatenated
with the transmon, is essentially just another time-dependent
contribution to the Hamiltonian in the interaction picture

HTR(t) = δ�(t)
σz

2
. (C8)

Changing the frequency of the transmon affects all the effective
qubit-qubit Hamiltonian parameters: in particular, reducing �

(and thus the detuning � with respect to the nanoresonators)
increases the coupling � ∝ g2/� and modifies the
renormalizations λi . Needless to say, this procedure is limited
both by the tunability range of the transmon and by the validity
of the perturbative expansion in terms of g2/�. Given some
values of the external dissipation rates, for example, there exists
an optimal δ� that increases the gate fidelity without losing
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FIG. 8. Numerical simulations of single- and two-qubit quantum gates in an electromechanical circuit. Here the system undergoes unitary
evolution, with ω1 = 85 MHz and ω2 = 75 MHz. With pab we denote the component of the two-qubit wave function on the corresponding
Fock state, pab = |〈ab|ψ〉|2. (Bottom left) Rx(π ) rotation performed on qubit 1 while qubit 2 is kept isolated and the transmon frequency,
� = 10 GHz, is left unchanged. (Top left) The Gaussian oscillating pulse acting on qubit 1 needed for the Rx(π ) gate. The peak amplitude is
0.3 MHz. (Bottom right) A typical time evolution displaying a

√
iSWAP operation, with a short idle phase before and after the gate. (Top right)

Frequency shifts operated on qubit 2 and on the transmon during the time evolution, including the rephasing stage on the qubit. Notice that the
renormalization shift λ2 on the qubit is not included.

too much of the agreement between the actual behavior of the
system and what is expected from the effective Hamiltonian
description. In our protocols, we set a nonzero δ� during the
coherent interaction time τ [which must then be computed by
using � + δ� in Eq. (C7)] and we put the transmon back to
its original frequency already during the rephasing stage. It
is worth noting explicitly that when the transmon frequency
is modified, the permanent shifts −λi applied to the qubits
must be adjusted accordingly. Figure 8 shows a single-qubit
Rx(π ) rotation and a two-qubit gate together with the required
pulse sequences.

APPENDIX D: DERIVATION OF THE EFFECTIVE
QUBIT-QUBIT INTERACTION

We provide here a detailed derivation of the effective
Hamiltonian describing the interaction between the two qubits,

mediated by virtual fluctuations of the interposed transmon.
This is obtained by considering

Hint =
2∑

i=1

gi,x(bi + b
†
i )σx (D1)

as a weak perturbation with respect to

H0 =
∑
i=1,2

[ωib
†
i bi + Ub

†
i b

†
i bibi] + �

2
σz. (D2)

This condition is ensured, provided that gi  �i = ωi − �.
Then we eliminate the transmon degrees of freedom by second
order expansion and restrict to the two-qubit computational
basis, where the transmon is frozen in its ground state. In this
subspace, the matrix elements of the effective Hamiltonian are
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given by

〈μν|H̃eff|μ′ν ′〉
= 1

2

∑
m1,m2

〈n1 ↓ n2|Hint|m1 ↑ m2〉〈m1 ↑ m2|Hint|n′
1 ↓ n′

2〉

×
[

1

ω1(n1 − m1) + ω2(n2 − m2) − �

+ 1

ω1(n′
1 − m1) + ω2(n′

2 − m2) − �

]
. (D3)

Here |n1σn2〉 are states in the full Hilbert space, with ni

being the bosonic occupation of each nanoresonator mode and
σ =↓ (↑) indicating the ground (excited) state of the transmon.
Conversely, H̃eff operates in the two-qubits Hilbert subspace,
spanned by the computational basis |μν〉, with μ,ν = 0,1. The
sum runs over all the states with σ =↑ (excited transmon).
Finally, H̃eff is decomposed in terms of Pauli operators σ i

α . We
report here the form it takes if bosonic states up to mi = 2 are
included:

H̃eff =
2∑

i=1

(
λi

2
σ i

z

)
+ �

4
σ 1

x σ 2
x + const., (D4)

where

� = 4g1g2�
(
ω2

1 + ω2
2 − 2�2

)
(
�2 − ω2

1

)(
�2 − ω2

2

) (D5)

is the effective coupling, while

λi = −2g2
i [�2 + ωi(2U + �)]

(2U + � + ωi)
(
�2 − ω2

i

) (D6)

are single-qubit energy shifts (corresponding to a renormaliza-
tion of the qubit frequencies). Notice that H̃eff was obtained
while truncating bosonic occupancy up to 2, and it was
restricted to the computational basis only afterwards.

In order to get rid of the frequency renormalization induced
by the transmon, we shift the bare frequencies ωi by an amount
−λi throughout the whole gating dynamics. From the theoreti-
cal point of view, this detuning is implemented by introducing
additional terms −λib

†
i bi in the model Hamiltonian.

It is worth noting that the effective interaction in Eq. (D4)
can be decomposed into two terms:

�

4
σ 1

x σ 2
x = �

8

(
σ 1

x σ 2
x + σ 1

y σ 2
y

) + �

8

(
σ 1

x σ 2
x − σ 1

y σ 2
y

)
. (D7)

The first term on the right-hand side is an effective XY

interaction that couples the |10〉 and |01〉 elements of the com-
putational basis. The second term is generated by the counter-
rotating contributions in the original interaction Hamiltonian,
and couples the |00〉 and |11〉 components: given the large
energy gap �ω1 + ω2 � � between them, this part is actually
negligible. Hence, we can rewrite the effective Hamiltonian as
reported in the main text:

Heff =
2∑

i=1

(
λi

2
σ i

z

)
+ �

8

(
σ 1

x σ 2
x + σ 1

y σ 2
y

) + const. (D8)

The second term of Heff is practically ineffective as far as
|ω1 − ω2| � � and it is only switched on when the two qubits

are brought in resonance. In that case, the matrix form of the
time-evolution operator UXY (t) = e−i �

8 (σ 1
x σ 2

x +σ 1
y σ 2

y )t expressed
in the computational basis {|00〉,|10〉,|01〉,|11〉} is

UXY (t) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos�t
4 −isin�t

4 0

0 −isin�t
4 cos�t

4 0

0 0 0 1

⎞
⎟⎟⎟⎠, (D9)

which corresponds to the
√

iSWAP gate, ideally Eq. (C1), if
we choose to stop the evolution at t = π/|�|.

APPENDIX E: RESIDUAL THERMAL OCCUPANCY
OF NANOMECHANICAL RESONATORS

In our analysis we assumed that the system can be cooled
at sufficiently low temperatures to safely neglect the effect of
thermal interaction with the environment. Examples of ground
state cooling of nanomechanical systems are already known in
the literature. However, this is still a challenging issue from
the experimental point of view, especially when resonators in
the MHz range are considered. For this reason, we studied
how the fidelities of the gates change if we add, on top of
all the dissipation mechanisms that we already considered, a
residual thermal interaction between the nanoresonators and
the surrounding environment. Since the transmon has a much
higher transition frequency (i.e., an higher temperature is
sufficient to cool it in the ground state), we did not include
thermal noise acting on this element. We used the standard
Lindblad terms to model the interaction of the ith oscillator
with a bosonic thermal reservoir

Li[ρ] = χ

2
[n̄(ωi,T ) + 1](2biρb

†
i − b

†
i biρ − ρb

†
i bi)

+ χ

2
n̄(ωi,T )(2b

†
i ρbi − bib

†
i ρ − ρbib

†
i ), (E1)

where (h̄ = kB = 1)

n̄(ωi,T ) = 1

exp
(

ωi

T

) − 1
. (E2)

In our simulations, we chose n̄ = 0.1 for both oscillators, as
this generally represents a good estimate of the achievable
residual thermal occupation. The rate χ can be inferred from
typical line broadening of the nanoresonators, which is of the
order of few tens of Hz. When average values for the other
dissipation mechanism are taken into account, the effect of the
residual thermal occupation is of the order of 0.01%–0.1%
of the single gate fidelity if χ = 50 Hz, and of 1% if we
use the very pessimistic value χ = 1 kHz. The overall effect
is therefore comparable to the general (zero temperature)
dissipation mechanism that we included via the rates γi .

APPENDIX F: QUANTUM SIMULATION OF GENERIC
TWO-SPIN INTERACTIONS

The time evolution

UXY (t) = e−iJ (σ 1
x σ 2

x +σ 1
y σ 2

y )t (F1)
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induced by Heff [Eq. (D8)] can be mapped into a generic spin-
spin evolution

Uαβ(t) = e−iJ (σ 1
α σ 2

α +σ 1
β σ 2

β )t , (F2)

by properly combining it with single-qubit rotations. For
instance, the following identities hold (see also Ref. [32]):

UXZ(t) = R12
x

(
π

2

)
UXY (t)R12

x

(−π

2

)
(F3)

and

UYZ(t) = R12
y

(
π

2

)
UXY (t)R12

y

(−π

2

)
. (F4)

Here R12
α (θ ) = exp[−i( σ 1

α

2 + σ 2
α

2 )θ ] is a simultaneous rotation
of both qubits by an angle θ about α axis.

Another useful identity is

UXY (t)− = R1
y(π )UXY (t)R1

y(−π ), (F5)

with U−
XY (t)=exp[−iJ (σ 1

x σ 2
x −σ 1

y σ 2
y )t] and R

j
α(θ )=

exp[−i σ
j
α

2 θ ]. Note that the combination of UXY (t) with
U−

XY (t) was used to simulate the Ising XX interaction reported
in the main text:

UXX(t) = UXY (t)U−
XY (t). (F6)

Here Uαα(t) = exp[−i2Jσ 1
ασ 2

α t]. The UYY (t) evolution can be
implemented along the same lines.

By combining UXX(t) or UYY (t) with a proper rotation of
one of the two qubits, a generic spin-spin interaction of the
form σ 1

ασ 2
β (with α �= β) can be obtained. For instance

R2
y

(
− π

2

)
UXX(t)R2

y

(
π

2

)
= e−i2Jσ 1

x σ 2
z . (F7)

Conversely, introducing R12
y (π/2) rotations results in the op-

erator UZZ(t):

UZZ(t) = R12
y

(
π

2

)
UXX(t)R12

y

(
− π

2

)
. (F8)
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