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Spinful Aubry-André model in a magnetic field:
Delocalization facilitated by a weak spin-orbit coupling
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We have incorporated spin-orbit coupling into the Aubry-André model of tight-binding electron motion in the
presence of periodic potential with a period incommensurate with lattice constant. This model is known to exhibit
an insulator-metal transition upon increasing the hopping amplitude. Without external magnetic field, spin-orbit
coupling leads to a simple renormalization of the hopping amplitude. However, when the degeneracy of the
on-site energies is lifted by an external magnetic field, the interplay of Zeeman splitting and spin-orbit coupling
has a strong effect on the localization length. We studied this interplay numerically by calculating the energy
dependence of the Lyapunov exponent in the insulating regime. In the limit of large periods, our numerical results
can be interpreted in the language of the phase-space trajectories. As a first step, we have derived analytically
the energy dependence of the localization observed in numerical simulations of the original Aubry-André model
with large periods. Our main finding is that a very weak spin-orbit coupling leads to delocalization of states
with energies smaller than the Zeeman shift. The origin of the effect is the spin-orbit-induced opening of new
transport channels. We have also found that restructuring of the phase-space trajectories, which takes place at
certain energies in the insulating regime, causes a singularity in the energy dependence of the localization length.
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I. INTRODUCTION

A standard description of electron motion in a one-
dimensional quasiperiodic potential is based on the Aubry-
André (AA) model [1] with tight-binding Hamiltonian

Ĥ0 = −t
∑

n

(c†ncn+1 + c
†
n+1cn) + V

∑
n

cos(2πβn)c†ncn,

(1)

where c
†
n is the creation operator of the electron at the nth site,

t is the hopping integral, V is the amplitude of modulation
of the on-site energies, and β−1 is the modulation period.
Nontriviality of the AA model originates from the fact that,
for irrational β, it exhibits a delocalization transition and yet
contains no randomness.

The key finding of Ref. [1] is that the Hamiltonian Eq. (1)
possesses self-duality: upon transformation from coordinate to
momentum space it retains its form after the interchange V ↔
2t . The consequence of this duality [2] is that, for V > 2t , all
eigenstates are exponentially localized with localization length
scaling as (V − 2t)−1. From the perspective of physics, the
importance of the AA model is that it captures the peculiarities
of motion of a two-dimensional electron in a perpendicular
magnetic field and a periodic potential [3–5].

Early studies of the AA model [6–11] were focused on
the properties of localized eigenfunctions near the transition.
Lately, interest in the AA model has been revived [12–26].
Nowadays, it is invoked to study different observable quan-
tities in the presence of the quasiperiodic background. These
studies were largely motivated by two groups of experiments:
Refs. [27–29] and [30–32]. In Ref. [27] the expansion of
cold atoms loaded into an optical lattice was studied. One-
dimensional modulation was formed as a result of interference

of two laser beams. Localization transition, which takes place
upon increasing the modulation amplitude, was demonstrated
through the analysis of spatial and momentum distribution of
atoms released from the lattice. In Refs. [28,29] the degree
of localization of cold fermions in a quasiperiodic optical
lattice was monitored via the time evolution of the imbalance
of population of different sites following a quench of system
parameters.

In experiments of the second group [30–32], propagation of
light along the axes of coupled waveguides has been studied.
The centers of waveguides formed a periodic array, while
their parameters were periodically modulated. Localization
transition has been detected via the spreading of an initially
narrow wave packet across the lattice.

Cavity quantum electrodynamics with cold atoms [33,34]
offers an alternative approach to emulating the AA Hamilto-
nian [13,21]. Experimental advances motivated new theoretical
studies towards the extension of the AA model. These studies
include incorporation of interaction effects [15,16], effects of
the ac drive [22], and the dynamics of a quench [18,24].

Another recent development in the field of cold atoms is the
possibility to impose Zeeman shifts and spin-orbit coupling
[35,36] by illuminating the condensate with lasers. This raises
a question about the extension of the AA model to incorporate
spin-dependent effects. We address this question in the present
paper.

The result of incorporation of the Zeeman splitting, 2�,
into the AA model is, obviously, two decoupled AA models
for up- and down-spin projections. We will show that in-
corporation of spin-orbit coupling alone does not violate the
duality and amounts to modification of the hopping matrix
element, while the eigenstates for opposite chiralities remain
degenerate.

2469-9950/2018/97(21)/214209(11) 214209-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.214209&domain=pdf&date_stamp=2018-06-29
https://doi.org/10.1103/PhysRevB.97.214209


RAJESH K. MALLA AND M. E. RAIKH PHYSICAL REVIEW B 97, 214209 (2018)

Generalization of the AA model becomes nontrivial when
both Zeeman splitting and spin-orbit coupling are incorporated
[37,38]. In this case, the duality is lifted. We studied the inter-
play of the two spin-dependent effects numerically. The results
are interpreted in the limit of large modulation period, β � 1,
when the semiclassical description and, thus, the language of
phase-space trajectories [39] apply. Nontriviality of interplay
of Zeeman splitting and spin-orbit coupling originates from
the peculiar structure of the phase-space trajectories and the
evolution of this structure with energy. In the language of
phase-space trajectories, delocalization transition corresponds
to the connectivity of these trajectories both in coordinate and
in momentum space.

Our main finding is that, in the vicinity of the delocalization
transition, a weak spin-orbit coupling leads to metallization
in the energy domain (−�,�). The origin of the effect is
that spin-orbit coupling opens new transport channels. These
channels facilitate the coupling between disconnected trajec-
tories, thus avoiding tunneling. In general, we demonstrate
that restructuring of the phase space at a certain energy
causes an anomaly in the localization length at this en-
ergy even if the restructuring takes place in the insulating
regime.

II. PHASE-SPACE TRAJECTORIES AND LOCALIZATION
LENGTH IN THE AUBRY-ANDRÉ MODEL IN

THE SEMICLASSICAL LIMIT

A. AA model with long modulation period

The most transparent scenario of delocalization transition in
the Aubry-André model was proposed in Ref. [7]. This scenario
is based on simplification which becomes possible when the
inverse period is small, β � 1; the fractional part, β1, of β−1 is
small; and all the successive βi , the fractional parts of β−1

i−1, are
small. In this limit the system is characterized by the hierarchy
of periods

l1 ∼ 1

β
,l2 ∼ 1

ββ1
, . . . ,ln ∼ 1

ββ1β2 . . . βn−1
, . . . . (2)

With ln growing exponentially with n, the renormalization-
group procedure is applicable. As a first step, smallness of
β guarantees that a given period of the potential, V (x) =
V cos(2πβx), contains many, ∼ 1

β
( V

t
), levels. These levels

are the eigenfunctions of the operator, 2t cos p̂ + V (x), where
the coordinate, x = n, and the momentum, p̂ = −id/dx, are
treated as continuous variables.

By virtue of the same condition, β � 1, the levels are
discrete, i.e., the overlap, t (1), of the wave functions in the
neighboring periods is smaller than the level spacing. If a group
of β−1 sites is viewed as a “supersite,” which is the essence
of the renormalization-group transformation, then this overlap
plays the role of a first-order hopping integral. On the other
hand, with overlap neglected, the levels in the neighboring
periods are mismatched. This mismatch, being the result of
irrationality of β, plays the role of the first-order modulation
amplitude, V (1), of the supersite energies [7]. As a result,
the original model Eq. (1) with parameters t , V , and the
period, β−1, transforms into the same model with renormalized
parameters t (1), V (1), and the period, β−1

1 . From the fact that

the renormalized Hamiltonian possesses duality, the recurrent
relation put forward in Ref. [7] has the form(

V (n+1)

2t (n+1)
− 1

)
∼ 1

βn

(
V (n)

2t (n)
− 1

)
∼ ln+1

(
V

2t
− 1

)n

. (3)

The fact that the critical exponent in the AA model is equal to
1 follows immediately from Eq. (3).

In principle, the conclusion about the critical exponent
being 1 follows formally from the property of duality and
the expression for the localization length as an integral of the
density of states [40]. This formal reasoning [2] yields that
the localization length is equal to ln(V/2t). The procedure of
Ref. [7] clarifies on the qualitative level how this exponent is
formed, i.e., how the allowed band at the step n breaks into

1
βn+1

allowed bands at the step (n + 1) (devil’s staircase [4]).
In numerics, the full-developed staircase cannot be cap-

tured. Still, with two spin-dependent effects incorporated, the
duality of the model gets violated, so that the modification of
the localization length in this situation turns out to be highly
nontrivial.

B. Test of the numerical approach

Numerical studies of the localization properties of eigen-
functions in the AA model are carried out either by analysis
of the inverse participation ratio (see, e.g., Ref. [12]) or by
analysis of eigenvalues of the transfer matrix, as in Ref. [20].
To study the spin-dependent effects, we have generalized
the approach suggested in Ref. [41], which is based on the
Thouless formula [40]. The object of interest is the behavior
of the Lyapunov exponent, L(E), which is the inverse local-
ization length of the state with energy E. The details of the
computational procedure are presented in Appendix A.

There is a question whether or not L(E) depends on energy
for the original AA model. Formal derivation [2] suggests that
it does not. On the other hand, a number of numerical studies
of the “metallic” AA model [8,42–46] reveal that, for large
periods of potential (β � 1), the model possesses the mobility
edges. This, in turn, suggests that, for the “insulating” AA
model, the energy dependence of the Lyapunov exponent is
present and, in fact, is very strong. Resolution of the “mobility-
edge paradox” lies in the fact that any weak violation of the
duality restores the mobility edge. Moreover, even without
incorporating the duality breaking in the simulations, as in
Ref. [8], finite size of the system can assume the role of the
duality-breaking mechanism [45], making the extended states
of the metallic AA model behave as localized away from the
band center. In other words, these states do not disperse “for
all physical purposes” (see Ref. [45]).

Still, with the issue of mobility edges being so delicate, in
our paper we not only calculate L(E) but also analyze (see
Appendix B) the wave functions at several energies. The goal
is to ensure that the AA model with chosen β exhibits mobility
edges.

III. AA MODEL IN THE SEMICLASSICAL LIMIT

The example of the calculation of the Lyapunov exponent,
L(E), is presented in Fig. 1 for β =

√
5−1
29 and for three different
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FIG. 1. Manifestation of the delocalization transition in the en-
ergy dependence of the Lyapunov exponent. The curves, L(E),
calculated numerically for β =

√
5−1
29 and for the hopping integrals

t = 0.4V (red), 0.5V (black), and 0.66V (blue), are shown. These
smooth parts of the curves are described very well by L(E) calculated
analytically from Eqs. (5) and (6) and shown in the inset.

values of V/2t . We see that the smooth parts of the L(E) curves
exhibit three different behaviors in the insulating regime, at the
transition, and in the metallic regime. Namely, for V > 2t , the
L(E) curve has a plateau, which evolves into L(E) ∝ |E| at
the transition. This is followed by a plateau L(E) = 0 in the
metallic regime.

In order to verify whether mobility edges in the metallic
regime are reliable, we analyzed the wave functions inside and
outside the mobility gap. The wave functions [see Fig. 11(a) in
Appendix B] near the band edge indeed exhibit localization.

In this section we demonstrate that the behavior of L(E) in
Fig. 1 can be captured quantitatively within the semiclassical
description. For small β the potential changes slowly, which
allows us to introduce a local dispersion law at a given x. This
law has the form

E(p,x) = V cos(2πβx) + 2t cos p. (4)

Equation (4) defines a system of phase-space trajectories [39],
E(p,x) = E. These trajectories are illustrated in Fig. 2.

In the semiclassical limit, the duality, p ↔ 2πx and V ↔
2t , becomes apparent. In the language of phase-space trajec-
tories, the metallic and the insulating states correspond to the
trajectories continuous in the x direction and discontinuous in
x direction, respectively. Metal-insulator transition at V = 2t

takes place when the trajectories, corresponding to E = 0,
“percolate.” The energy dependence of the Lyapunov exponent
at the transition point is determined by tunnel coupling of the
trajectories disconnected in the x direction. It follows from
Eq. (4) that the tunneling takes place either along the line
Rep = 0 or along the line Rep = π . These points correspond
to the minimal separation of the disconnected trajectories (see
Fig. 3). Using Eq. (4), the semiclassical expression for the
logarithm of the coupling constant,

∫
dxIm p, calculated along

(a) (b)

(c)

FIG. 2. Phase-space trajectories in the AA model are shown for
zero energy and for three values of the hopping integral: t = 0.5V

(a), 0.4V (b), and 0.66V (c). Trajectories in panel (b) “percolate” in
the p direction, while the trajectories in panel (c) percolate in the x

direction.

Rep = 0, can be cast in the form

L1 = 1

πβ

∫ cosh−1 ( V +E
2t )

0
dq

q sinh q√(
V +E

2t
− cosh q

)(
V −E

2t
+ cosh q

) .

(5)

(a) (b)

FIG. 3. Illustration of the origin of a plateau in L(E) which
develops in the interval |E| < (V − 2t) in the insulating regime. (a)
For energies outside of this interval the coupling of the phase-space
trajectories separated by a period involves a one-step tunneling at
p = 0, which is the shortest tunneling path. (b) For energies inside
the interval this coupling involves a two-step tunneling at p = 0
(green arrow) and π (red arrow). As follows from Eq. (7), the
logarithm of the tunneling amplitude for the first step is proportional to
(V − 2t + E), while for the second step this logarithm is proportional
to (V − 2t − E). Thus, the product of the amplitudes does not depend
on E.
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The corresponding expression for tunneling along Rep = π

reads

L2 = 1

πβ

∫ cosh−1( V −E
2t

)

0
dq

q sinh q√(
V +E

2t
+ cosh q

)(
V −E

2t
− cosh q

) .

(6)

The upper limit in Eq. (5) corresponds to the first bracket
in the denominator turning to zero, while the upper limit of
Eq. (6) corresponds to the second bracket in the denominator
turning to zero. If the argument in cosh−1 is smaller than 1, the
corresponding L should be set to zero.

At critical value V = 2t onlyL1 is nonzero for E > 0, while
onlyL2 is nonzero for E < 0. For E � t we can expand cosh q

in the first bracket and replace cosh q by 1 in the second bracket.
Then the integral can be readily evaluated, yielding

L1 = 1

β

(
E

4t

)
. (7)

To relate L1 to the Lyapunov exponent, we reason as follows.
Tunnel coupling of two trajectories separated in the x direction
by n periods is exp(−nL1). The distance between these
trajectories is xn = n

β
. Expressed via the Lyapunov exponent,

this coupling is exp(−Lxn). Thus, L and L1 are related as
L = βL1. We then conclude that the semiclassical result
Eq. (7) captures the behavior of the Lyapunov exponent at
the transition obtained numerically and shown in Fig. 1.

Consider now the vicinity of the transition 0 < (V − 2t) �
t . In the domain |E| > (V − 2t) only one of L1 and L2 is
nonzero, as it was at the transition. Then the generalization of
Eq. (7), valid for arbitrary sign of E, takes the form

L(E) = |E| + (V − 2t)

4t
. (8)

In the domain |E| < (V − 2t) both L1 and L2 are nonzero.
The Lyapunov exponent is determined by the sum

L(E) = β(L1 + L2). (9)

It is easy to see that the energy drops out from this sum, so that

L(E) = (V − 2t)

2t
(10)

in this domain. The results Eqs. (8) and (10) are plotted in
Fig. 1, inset. We see that they completely agree with numerical
results shown in the same figure. The expression for L(0) is in
accord with critical exponent of the AA model being equal to
1 [7].

We note that the simulation of the L(E) dependence was
previously carried out in Ref. [41]. To suppress the com-
mensurability effects the on-site energies were chosen in the
form V cos(2πβ|n|ν), with ν = 0.7, so that the results did not
depend on whether or not β is irrational. Numerical results
in Ref. [41] are quite similar to those shown in Fig. 1, inset.
However, the authors did not have an explanation for the
plateau.

It is instructive to illustrate the L(E) behavior in the
AA model with the help of Fig. 3. Coupling between two
phase-space trajectories separated by a period, 1/β, requires
tunneling. For |E| > (V − 2t), the geometry of the trajectories
is such that this tunneling is a one-step process [see Fig. 3(a)].

By contrast, for |E| < (V − 2t) the geometry of the trajectories
is different, so that one-step tunneling is insufficient for the
transport along x. Rather, the coupling is a product of the
amplitudes of tunneling at p = 0 and π . Upon the change of
energy, one amplitude grows, while the other amplitude drops
off, so that their product remains constant. Note, finally, that
the linear behavior of L(E) given by Eq. (8) also applies for
V < 2t , outside the metallic domain, |E| < (2t − V ).

To conclude this section, we note that there is a wide-spread
confusion in the literature concerning the scenario of the
delocalization transition in the AA model. This confusion can
be traced to Ref. [7], where it is claimed that all the states get
delocalized as t exceeds V/2. At the same time, the fact that
delocalization occurs gradually in the domain |E| < |2t − V |,
which grows with t , as in Fig. 1, was established by Sokoloff
(see Ref. [6]) even before Ref. [7] was published.

IV. DELOCALIZATION IN THE PRESENCE OF ZEEMAN
SPLITTING: EFFECT OF A WEAK

SPIN-ORBIT COUPLING

Zeeman splitting is incorporated into the AA model by
adding the term �σ to the on-site energies, where σ takes
the values ±1. Presence of spin-orbit coupling allows a
spin-flip process upon hopping to the neighboring site [47].
For hopping, say, to the right, we denote the corresponding
hopping amplitude with it1. Then, for hopping to the left,
this amplitude is −it1. With Zeeman splitting and spin-orbit
coupling included, the Hamiltonian Eq. (1) takes the form

Ĥ = −t
∑
n,σ

(c†n,σ cn+1,σ + c
†
n+1,σ cn,σ )

−it1
∑

n,σ �=σ
′
(c†n,σ cn+1,σ

′ − c
†
n+1,σ

′ cn,σ )

+
∑
n,σ

[V cos(2πβn) + �σ ]c†n,σ cn,σ . (11)

In the semiclassical limit, the Hamiltonian Eq. (11) defines two
branches of the spectrum and, correspondingly, two types of the
phase-space trajectories. They are described by the equations

V cos(2πβx) + 2t cos p ± [
�2 + 4t2

1 sin2 p
]1/2 = E. (12)

It is easy to see that, without Zeeman splitting, the effect
of spin-orbit coupling amounts to the replacement of t by
±(t2 + t2

1 )
1/2

. This observation is, actually, general, i.e., it is
valid not only in the semiclassical limit. As demonstrated in
Appendix C, it can be derived rigorously from the Hamiltonian
Eq. (11). Transformation t → ±(t2 + t2

1 )
1/2

is accompanied
by the shift of momentum. Equally, it is obvious that without
spin-orbit coupling the eigenstates of the Hamiltonian Eq. (11)
are the same as in Eq. (1) with eigenvalues shifted by ±�.

Our prime finding is that the interplay of the two spin-
dependent processes has a dramatic effect on the localization
properties of the eigenstates. More specifically, very small
spin-orbit coupling leads to a strong suppression of the local-
ization. This is illustrated in Fig. 4. The dependence, L(E), in
this figure was calculated for parameters V and t corresponding
to the criticality, so that, for t1 = 0, we obtained two V -shaped
curves centered at E = ±�. After a small t1 = 0.05V was
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(E

)

FIG. 4. Illustration of the effect of spin-orbit coupling on the
localization in the AA model with Zeeman splitting. All the curves
show L(E) calculated for the critical value t = 0.5V . Zeeman
splitting is chosen to be � = V . Black lines are L(E) calculated for
t1 = 0. They correspond to the metal-insulator transitions at energies
E = ±�. Incorporation of a weak spin-orbit coupling, t1 = 0.05V ,
suppresses the localization in the domain −� < E < �. Blue and red
numerical curves are for two eigenvalues of the transmission matrix
(see Appendix A). For clarity, the calculation was performed for large
period, β =

√
5−1
97 .

included, the behavior of L(E) near ±� did not change.
However, L(E) dropped down significantly in a wide domain
of intermediate energies |E| < V .

In Fig. 4 the inverse period was chosen to be β =
√

5−1
97 . For

this β the original AA model exhibits pronounced mobility
edges. This is illustrated in Fig. 11(b) of Appendix B, where
four representative wave functions are shown.

The physics underlying this stark suppression of local-
ization is the following. Small t1 opens new channels of
coupling between the trajectories corresponding to a given
spin. Obviously, for t1 = 0, all eigenstates corresponding to
the branches Eq. (12) are orthogonal to each other. With finite
t1, the eigenstates corresponding to a given momentum are or-
thogonal to each other. However, the eigenstates corresponding
to different momenta have a finite overlap. Below we confirm
this statement by a direct calculation.

The analytical forms of the eigenfunctions corresponding
to + and − branches are the following:

�+
p =

(
ϕ+

1p

ϕ+
2p

)
= 1

21/2D
1/4
p (Dp − �)1/2

(−2it1 sin p

� − Dp

)
, (13)

�−
p =

(
ϕ−

1p

ϕ−
2p

)
= 1

21/2D
1/4
p (Dp + �)1/2

(−2it1 sin p

� + Dp

)
, (14)

where Dp is defined as

Dp = (
�2 + 4t2

1 sin2 p
)1/2

. (15)

Using Eqs. (13) and (14), we calculate the scalar product of +
and − eigenfunctions with different momenta and obtain〈

�−
p+ q

2

∣∣�+
p− q

2

〉
= − 4t2

1 � sin q

2 cos p(
Dp+ q

2
Dp− q

2

)1/4[(
Dp+ q

2
+ �

)(
Dp− q

2
− �

)]1/2

FIG. 5. Schematic illustration of the spin-orbit facilitated delo-
calization. The phase-space trajectories for a given energy E < �

include the contours corresponding to two different branches [see
Eq. (12)]. They are shown with black and red lines. Coupling between
two black contours is determined either by tunneling (green arrow) or
by two virtual transitions from black to red and back (blue arrows).
These transitions are accompanied by change of the momentum by
π , so that the corresponding spinors are not orthogonal [see Eq. (16)].
Moreover, the amplitudes of these transitions are proportional to t1
but do not contain the tunneling exponent. Thus, already at very small
t1, these transitions dominate the coupling. As a result, L(E) drops
dramatically, as shown in Fig. 4. The contours in the figure are shown
for parameters � = V , t = 0.5V (as in Fig. 4), and E = 0.5V .

×
[

� sin q

2 cos p

�2 + 4t2
1 sin

(
p + q

2

)
sin

(
p − q

2

) + Dp+ q

2
Dp− q

2

+ 2
cos q

2 sin p

Dp+ q

2
+ Dp− q

2

]
. (16)

It is easy to see that this product is zero when either � = 0,
t1 = 0, or the transferred momentum, q, is equal to zero.

Now we can explain the behavior of L(E) in Fig. 4.
The phase-space trajectories corresponding to intermediate
energies are shown in Fig. 5. Black contours correspond to
the + branch, while red contours correspond to the − branch.
Direct coupling between two black contours requires tunneling
shown with a green arrow. Note, however, that the coupling
can be realized by a two-step process via an intermediate red
contour: first the virtual transition from black to red, shown by
a left blue arrow, and then the transition from red to shifted
black contour, shown by a right blue arrow. It can be easily
shown that the momentum transfer in both virtual transitions
is π , so that the blue lines are vertical.

For small t1, the amplitude of the two-step process is small
∝ t2

1 . On the other hand, it does not contain the tunneling
exponent. Thus, this process dominates the Lyapunov exponent
when L(E) calculated for direct tunneling is bigger than | ln t2

1 |.
We have checked this prediction numerically. The results are
shown in Fig. 6. It can be seen that the plateau in L(E) at
intermediate energies indeed scales with | ln t2

1 |.
To conclude the section, we demonstrated that for energies

at which the phase-space trajectories corresponding to both
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FIG. 6. Scaling of the plateau in L(E) with spin-orbit strength,
t1. The plateau height calculated for three t1 values drops, upon
increasing t1, as | ln (t1/t)|. Parameters �, t and the period, β, are
the same as in Fig. 4.

branches coexist a particle can avoid tunneling by “bouncing”
between the states of different branches. It should be empha-
sized that this effect is specific only for the tight-binding model
in which the bandwidth is limited.

V. DELOCALIZATION DUE TO SPIN-ORBIT
COUPLING ALONE

In the previous section we assumed that the amplitude, t1,
of hopping with spin-flip constitutes a small correction to the
spin-conserving hopping amplitude, t . In the present section we
show that interplay of Zeeman splitting and spin-orbit coupling
alone, without direct hopping, can result in nontrivial effects
in localization properties of the AA model.

Upon setting t = 0 in Eq. (12), the equations for the phase-
space trajectories assume the form

±[
�2 + 4t2

1 sin2 p
]1/2 − E = V cos(2πβx). (17)

Although the duality between x and p is absent, both branches
still exhibit the delocalization transition for a certain relation
between t1, �, and V . To find this relation and the energy
position of the delocalized state, we reason as follows. Upon
changing p from zero to π/2, the combination in the left-hand
side of Eq. (17) changes from (� − E) to [(�2 + 4t2

1 )
1/2 − E],

while the combination in the right-hand side changes from −V

to V upon changing x. To achieve percolation of phase-space
trajectories, one should require that these intervals of change
coincide. This leads to the conditions

� − E = −V, (18)(
�2 + 4t2

1

)1/2 − E = V. (19)

Upon solving the above system, we find the critical value of t1
and percolation energy, Ec:

t c1

V
=

[ |�|
V

+ 1

]1/2

, ± Ec

V
= |�|

V
+ 1. (20)

The Lyapunov exponent, L(E), calculated for critical value
t1 = t c1 and for one value of t1 below the transition are shown
in Fig. 7(a). We see that quantum delocalization indeed takes
place at critical t1. As illustrated in Fig. 7(b), the phase-space

(a)

(b)

FIG. 7. Illustration of delocalization transition at zero direct
hopping (t = 0). The transfer between the sites is exclusively due
to finite spin-orbit coupling. (a) The dependencies L(E), calculated
for � = 2V and for two values of t1, are shown: t1 = 1.72V (red) and
1.22V (green). For the first value, the condition Eq. (20) is satisfied, so
that the phase-space trajectories for E = Ec = 3V , shown in panel
(b), percolate. For the second value, L(E) exhibits the plateaulike
behavior near the minimum. The underlying reason for this is that
the transport between disconnected phase-space trajectories involves
two types of tunneling similar to Fig. 3(b). Energy in the figure is
measured in units of V .

trajectories at t1 = t c1 and E = Ec are not perfect squares. This
is the reflection of the absence of x-p duality. This duality is
respected only near the crossing points, like (x,p) = (0,π/2),
but it is these points that are responsible for transport.

Energies ±Ec correspond to delocalization within individ-
ual branches. The most nontrivial scenario emerges when both
branches are involved in transport. We will demonstrate that,
for a certain relation between t1, V , and �, there is an anomaly
in the behavior of the localization length with energy inside the
insulator regime. This relation is established from the condition
that the energy distance between the branches is equal to 2V

and has the form

4
(
t̃ c1

)2

V 2
+ �2

V 2
= 1. (21)

First, at this t1, the phase-space trajectories corresponding to
both branches coexist. They are shown by blue and red lines
in Fig. 8. The value t1 = t̃ c1 is distinguished by the fact that
the restructuring of the phase-space trajectories corresponding
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(a) (b)

(c)

FIG. 8. Phase-space trajectories at zero energy and in the absence
of direct hopping are shown for parameters t1 = 0.433V (a), 0.333V

(b), and 0.485V (c). Zeeman splitting is chosen to be � = 0.5V in
all three plots.

to E = 0 takes place at this t1. Note that the restructuring at
t1 = t̃ c1 does not involve percolation, as it is illustrated in Fig. 8.

The restructuring of the phase-space trajectories affects the
transport for the following reason. As seen in Fig. 8(b), for
t1 > t̃c1 , the transport is exclusively due to tunneling between
blue and red trajectories. On the other hand, for t1 < t̃c1 the
transport requires both interbranch tunneling between blue
and red trajectories as well as intrabranch tunneling between
blue trajectories and between red trajectories. This is because
for t1 < t̃c1 additional classically forbidden regions appear [see
Fig. 8(c)].

Restructuring of the trajectories at t1 = t̃ c1 leads to the
anomaly in the energy dependence of the Lyapunov exponent.
Namely, L(E) exhibits a V -shape behavior, as shown in Fig. 9.
The origin of this behavior is the following. The minimal

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
E

0

0.2

0.4

0.6

0.8

1

L
(E

)

FIG. 9. The dependencies, L(E), are shown for t = 0, � = 0.5V ,
and two values of t1: t1 = t̃ c

1 = 0.433V (blue) and t1 = 0.35V (red).
The blue curve exhibits a V -shaped behavior which reflects the
restructuring of the phase-space trajectories. The red curve exhibits a
plateau around E = 0. This plateau has a similar origin as the plateau
in Fig. 1. Energy is measured in the units of V .

value, L(0), is determined by the interbranch tunneling. For
positive E, transport requires additional tunneling between the
red trajectories. For negative E, transport requires additional
tunneling between the blue trajectories. This additional tunnel-
ing takes place at p = π/2. The “price” of additional tunneling
is proportional to E, as we have established above [see Eq. (7)].
Thus, the behavior of L(E) at small E has the form

[L(E) − L(0)] ∝ |E|. (22)

Note that the tunneling between red and blue trajectories is
“forbidden,” in the sense that the initial and final states are
both at p = 0. Thus, the corresponding spinors are orthogonal
to each other. The reason why this tunneling still takes place is
the uncertainty in the momentum, δp, of a tunneling particle.
This uncertainty can be viewed as a momentum transfer in the
course of tunneling. Then the overlap integral Eq. (16) can be
estimated as δp/�. The uncertainty is set by the discreteness
of the AA model, i.e., by the fact that the coordinate in Eq. (17)
takes integer values. This yields δp ∼ β−1.

For t1 slightly smaller than t̃ c1 , a plateau in L(E) develops in
the vicinity of E = 0. The origin of this plateau is absolutely
similar to the origin of the plateau around zero energy for t1 = 0
and finite t slightly smaller than 0.5V .

VI. CONCLUSION

To illustrate our findings, we presented the numerical results
for large modulation periods, β � 1. For these periods the
semiclassical description applies, which allowed us to interpret
the findings in the language of the phase-space trajectories. In
most studies, however, the inverse “golden mean” value, β =√

5−1
2 , is employed. For this β the semiclassical description

is inapplicable. Still the spin-orbit induced delocalization
mechanism is at work. This is illustrated in Fig. 10, in which
we show the curves L(E) for this value of β calculated without
spin-orbit coupling, t1 = 0, and with weak spin-orbit coupling,
t1 = 0.05V . For t1 = 0 the localization lengths are the same for
all energies and for both spin projections, as it should be. It is
also seen that finite t1 makes almost no difference. However, in
the domain near E = 0, it turns the insulator with L(0) ≈ 0.2
into a metal.

It is instructive to put our main finding into a more general
perspective. The closest analogy to the effect we report can be
found in Ref. [48]. In this paper the orbital motion of a two-
dimensional electron in a strong perpendicular magnetic field
was considered. It was demonstrated that spin-orbit coupling
between the Zeeman-split Landau levels assists the passage
of the electron through the saddle points of a smooth random
potential and, thus, facilitates delocalization.

Delocalizing effect of spin-orbit coupling in the quantum
Hall regime is expected [49] to manifest itself via the splitting
of the extended states in two overlapping spin sub-bands. This
is in accord with later numerical simulations [50,51]

Concerning the standard physical mechanism of spin-orbit
facilitating of delocalization [52], it is based on the suppression
of constructive interference of two scattering paths related by
time reversal. In two dimensions it leads to the crossover from
weak localization to weak antilocalization in the magnetore-
sistance curves. It is inefficient in the problem we studied due
to the presence of strong Zeeman splitting. Note, finally, that
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(a)

(b)

FIG. 10. The Lyapunov exponent as a function of energy is plotted
for canonical β =

√
5−1
2 in the insulating regime, t = 0.4V . Zeeman

splitting is chosen to be � = V . In the upper panel, (a), spin-orbit
coupling is absent. In the lower panel, (b), the parameter t1 is chosen
to be t1 = 0.05V . It is seen that two plots differ only near E = 0,
where small t1 causes the metallization. Blue and red curves in panel
(b) correspond to two eigenvalues of the transmission matrix. Energy
is measured in units of V/2.

quantization of the phase-space trajectories in a weak magnetic
field in metals with strong spin-orbit coupling [53,54] had
recently became a hot topic in relation to Weyl semimetals.
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APPENDIX A

We adopt and extend the numerical procedure described in
Ref. [41] to calculate the Lyapunov exponent, L(E), for the
Hamiltonian Eq. (11). Rewriting the Hamiltonian Eq. (11) in
a form similar to that in Ref. [41] one has

Ĥ =
∑

n

(VnI + �σz)|φn〉〈φn|

+T
∑

n

(|φn〉〈φn+1| + |φn+1〉〈φn|), (A1)

where |φn〉 is a 2 × 1 vector

φn =
(

ψ
↑
n

ψ
↓
n

)
(A2)

and ψ
↑(↓)
n corresponds to up-spin (down-spin) projections. The

matrices I and σz are the identity matrix and the Pauli matrix,
respectively. The 2 × 2 matrix, T , has the meaning of the
transmission matrix and has the form

T =
(

t it1

−it1 t

)
. (A3)

The diagonal terms, Vn = V cos (2πβn), stand for on-site
energies. Parameters �, t , and t1 are defined in the main text.

The numerical procedure in Ref. [41] is based on step-
by-step decimation of sites achieved by renormalization of
energies and coupling matrix elements for remaining sites.
Since Vn is an even function of n, we can restrict consideration
to n � 0.

As a first step, consider three sites n = 0, 1, and 2. Elimina-
tion of the site n = 1 results in the following renormalization
of the bare on-site energies, (VnI − �σz), of the sites n = 0
and 2, as well as renormalization of coupling, T0,2:

ε1
0(E) = (V0I − �σz) + T †(E − V1I + �σz)

−1T ,

ε1
2(E) = (V2I − �σz) + T †(E − V1I + �σz)

−1T ,

T2,0(E) = T †(E − V1I + �σz)
−1T . (A4)

Renormalized energies ε1
0(E) and ε1

2(E) serve as bare energies
in the subsequent elimination steps. At the second step, the
site n = 2 is eliminated using the rules prescribed by Eq. (A4).
Repeating this procedureN − 1 times, one arrives at the system
of two sites, n = 0 and N , with effective on-site energies and
effective coupling in the form

εN−1
0 (E) = εN−2

0 (E) + T0,N−1

[
E − εN−2

N−1(E)
]−1

TN−1,0(E), (A5)

εN−1
N

(E) = εN−2
N

(E) + T0,N−1(E)
[
E − εN−2

N−1(E)
]−1

TN−1,0(E),

(A6)

TN,0(E) = T †
0,N

(E) = T0,N−1

[
E − εN−2

N−1(E)
]−1

T . (A7)

In Ref. [41] the Lyapunov exponent is defined as

L(E) = − lim
N→∞

1

N
ln |λN(E)|, (A8)

where λN(E) is the eigenvalue of the effective coupling matrix,
T0,N . In the presence of the Zeeman splitting and the spin-orbit
coupling the eigenvalues are nondegenerate, which results
in two Lyapunov exponents. Only the smallest of these two
values should be identified with the inverse localization length.
The actual number of sites in our numerical calculation was
N = 700 (in Ref. [41] it was N = 1000). Increasing N makes
the L(E) curves more “continuous” but does not affect their
general behavior.

APPENDIX B

In this appendix we illustrate how the increasing period of
the modulation reinstates the mobility edges in the AA model.
We have chosen two inverse periods, β =

√
5−1
29 , as in Fig. 1,

and β =
√

5−1
97 , as in Fig. 4. Finding the eigenvalues amounts

to diagonalizing a matrix for a finite system. The components
of the eigenvector corresponding to a given eigenvalue yield
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(a)

(b)

FIG. 11. The wave functions of the AA model are plotted for
β =

√
5−1
29 (a) and

√
5−1
97 (b). Modulation amplitude is chosen to lie

in the vicinity of the transition, V

2t
= 0.975. Four plots in panel

(a) correspond to different energies. Top left is for E = −3.694,
i.e., close to the band edge (see Fig. 1). The eigenfunction appears
to be localized. The top right energy in panel (a) E = −2.739.
The bottom left and bottom right energies in panel (a) are E =
−1.552 and −0.061, respectively. Corresponding wave functions are
progressively delocalized. In panel (b) the energies for top left and top
right are E = −3.872 and −2.586, while the energies for bottom left
and bottom right are E = −1.434 and −0.039. The wave functions
in the top two figures are strongly localized, the third wave function
is weakly localized, while the fourth wave function is extended.

the value of the wave function on the site. In Fig. 11 we plot
the squares of the wave functions for four different energies.
For a chosen modulation amplitude, V

2t
= 0.975, the duality

requires that all the wave functions are delocalized. Numerical
calculations suggest that this is the case for small periods,
β ∼ 1. Yet, in Fig. 11(a) the wave function close to the band
edge appears to be localized, while three other wave functions
for energies closer to the band center are apparently extended.
As the period increases [see Fig. 11(b)], the localization
becomes even more pronounced. Only one wave function,
corresponding to the energy between the two semiclassical
mobility edges, is extended. This finding is in accord with
earlier [42,43] as well as recent [44–46] studies, where the
analysis of the wave functions was carried out using the inverse
participation ratio. These studies have established that, while

the mobility edges are present, it is unclear whether they are
sharp or smeared.

APPENDIX C

In the presence of both direct hopping, t , and spin-orbit
coupling, t1, one can write the tight-binding equations for the
AA model as

V cos(2πβn)fn + t(fn+1 + fn−1) + t1(gn+1 − gn−1) = Efn,

V cos(2πβn)gn + t(gn+1 + gn−1) − t1(fn+1 − fn−1) = Egn,

(C1)

where fn and gn are the amplitudes at site n, corresponding to
the up-spin and to the down-spin. Fourier transformations of
fn and gn can be written as follows:

fn =
∑
m

Am exp[2imπβn] exp(ikn),

gn =
∑
m

Bm exp[2imπβn] exp(ikn). (C2)

Substituting Eq. (C2) in Eq. (C1) and then comparing the
coefficients of exp[2imπβn] exp(ikn) we arrive at

V

2
[Am+1 + Am−1] + 2t cos(2πβm + k)Am

+ 2it1 sin(2πβm + k)Bm = EAm,

V

2
[Bm+1 + Bm−1] + 2t cos(2πβm + k)Bm

− 2it1 sin(2πβm + k)Am = EBm. (C3)

Multiplying the first equation by i and then adding/subtracting
it to/from the second equation yields

V

2
[Am+1 ± iBm+1 + Am−1 ± iBm−1]

+ 2
√

t2 + t2
1 cos(2πβm + k ∓ k0)[Am ± iBm]

= E[Am ± iBm], (C4)

where

k0 = arctan
t1

t
, (C5)

and A ± iB are the new amplitudes. We have reduced the AA
model with spin-orbit coupling to two decoupled AA models
for a spinless electron with hopping amplitude (t2 + t2

1 )
1/2

. It
is important that, while the eigenvalues of Eqs. (C4) are the
same for + and − signs, the corresponding eigenvectors are
not orthogonal to each other.
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