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Theory of nonlinear microwave absorption by interacting two-level systems
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The microwave absorption and noise caused by quantum two-level systems (TLSs) dramatically suppress the
coherence in Josephson junction qubits that are promising candidates for quantum information applications. It
is a challenge to understand microwave absorption by TLSs because of the spectral diffusion resulting from
fluctuations in their resonant frequencies induced by their long-range interactions. Here we treat the spectral
diffusion explicitly using the generalized master equation formalism. The proposed theory predicts that the linear
absorption regime holds while a TLS Rabi frequency is smaller than their phase decoherence rate. At higher
external fields, a nonlinear absorption regime is found with the loss tangent inversely proportional to the intensity
of the field. The theory can be generalized to acoustic absorption and lower dimensions realized in superconducting
qubits.
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I. INTRODUCTION

Quantum two-level systems (TLSs), commonly represented
by atoms or groups of atoms tunneling between two states (see
Fig. 1, Refs. [1,2]), are ubiquitous in amorphous solids. TLSs
restrict the performance of modern nanodevices, including
superconducting qubits [3] and quantum dots [4] for quantum
computing, kinetic inductance photon detectors for astronomy
[5], and nanomechanical resonators [6]. TLSs are commonly
found in Josephson junction barriers, wiring crossovers [7–9],
and even on the surfaces of the resonators with coplanar
superconducting electrodes on crystalline substrates [5,10].
TLSs reduce the coherence in qubits absorbing microwaves in
the frequency domain of their oscillations [3,9] and producing
a noise in qubit resonant energies [10–15].

Both the microwave absorption and the noise induced by
TLSs are dramatically sensitive to their interactions [10,13–
18]. While the 1/f noise is reasonably interpreted within
the interacting TLS model [13,14], the problem of nonlinear
microwave absorption has not been resolved yet, in spite of
numerous efforts [16,17,19]. Here we propose a solution to this
long-standing problem integrating the earlier developed rate
equation model for TLS density matrix time evolution [20,21]
briefly introduced in Sec. II with the master equation formalism
to account for the spectral diffusion [22–24] introduced in
Sec. III B. The rigorous solution of the master equation is
obtained in Sec. IV for the low-temperature case where the
thermal energy is smaller than the microwave energy quantum

kBT < h̄ω. (1)

Based on this solution, the analytical expression for the loss
tangent is derived in Sec. IV B. The opposite high-temperature
regime is discussed qualitatively in Sec. IV C. The obtained
solution results in the novel behaviors of nonlinear absorption
in qualitative agreement with earlier expectations [23,25].
The predictions of theory are partially consistent with the
experimental observations in amorphous solids [16], and they
deviate from the observed weakening of intensity dependence

in Josephson junction resonators and qubits. The possible
reasons for deviations are discussed in Sec. IV D. The paper
ends with a brief conclusion in Sec. V, including the summary
of loss tangent nonlinear behaviors at different temperatures
given in Table I.

II. RATE EQUATION FORMALISM
AND TLS LOSS TANGENT

The nonlinear absorption of acoustic and electromagnetic
waves by TLSs in amorphous solids was discovered exper-
imentally almost half a century ago [16,26–28]. The results
have been interpreted using the rate equation formalism applied
to the TLS density matrix [16,21] in the Bloch vector repre-
sentation [24] defined as σx = ρge + ρeg , σy = (ρge − ρeg)/i,
σ z = ρgg − ρee, where indices g and e stand for the TLS
ground and excited states, respectively. The time evolution
of the density matrix is determined by TLS frequency de-
tuning from resonance D = E/h̄ − ω, Rabi frequency �R =
(�0/E)pFAC cos(θ ) (see Fig. 1), and relaxation and decoher-
ence times T1 and T2. In the rotating frame approximation,
relevant in the regime of interest, Eq. (1), corresponding to the
resonant absorption [20,21,29,30], one has

dσ x

dt
= Dσy − σx

T2
,

dσ y

dt
= −Dσx − σy

T2
+ �Rσz,

dσ z

dt
= −�Rσy − σ z − σ z

eq

T1
, σ z

eq = tanh

(
E

2kBT

)
. (2)

The equilibrium population difference σ z
eq for resonant TLSs

(E ≈ h̄ω) can be set equal to unity in the case of interest,
kBT � h̄ω. The rotating frames approximation is applicable at
sufficiently small external field, �R � ω, which is satisfied in
the vast majority of measurements of TLS resonant absorption
at microwave frequencies.
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FIG. 1. A tunneling two-level system having an energy splitting E

and a dipole moment p interacting with an external field FAC cos(ωt).
The energy E =

√
�2 + �2

0 is defined by an asymmetry � and a
tunneling amplitude �0 [1,2].

The TLS relaxation and decoherence times originated from
the TLS interaction with phonons are defined as [14,20,31,32]

1

T1
= α

�2
0E

k3
B

coth

(
E

2kBT

)
≈ x2

T10
, T2 = 2T1, (3)

where T10 stands for the minimum relaxation time and we
introduced the dimensionless parameter x = �0/E to describe
TLS tunneling coupling. TLSs obey the universal distribution
P (E,x) = P0/(x

√
1 − x2) (see Fig. 1 and Refs. [1,2,20,33]).

The minimum decoherence time is given by T20 = 2T10 and
the constant α ∼ 3 × 107 s−1 K−3 [31] is determined by the
TLS-phonon interaction.

The microwave absorption is usually characterized by the
TLS loss tangent defined in terms of the integrated reac-
tive response �Rσy(D). This response is determined by the
stationary solution of Eq. (2). For the sake of simplicity,
we assume all TLS dipole moments have identical absolute
values, p, as argued in Refs. [3,31]. The Rabi frequency can
then be expressed in terms of the maximum Rabi frequency
�R0 = pFAC/h̄ as �R = xy�R0, where y = cos(θ ) and it is
uniformly distributed between −1 and 1. The loss tangent is

defined as [21,31]

tan(δ) = 4πP0h̄
2

2ε′F 2
AC

∫ 1

−1
dy

∫ 1

0
dx

xy�R0f
y(0,x,y)

x
√

1 − x2
,

f a(q,x,y) =
∫ ∞

−∞
σa(D,x,y)eiqDdD, a = x,y,z, (4)

where ε′ is a static dielectric constant of the material. The
Fourier transforms f a(q,x,y) will be used in future analysis.

If the TLS Bloch vector obeys Eq. (2), then the Fourier
transform of its y component contributing to the loss tangent
can be evaluated as (cf. Refs. [16,21])

f y(0) = π�R tanh
(

h̄ω
2kBT

)
√

1 + �2
RT1T2

. (5)

This steady-state solution of Eq. (2) substituted into Eq. (4)
determines a TLS loss tangent in the approximate form
[3,5,16,31,34]

tan(δ) ≈ tan(δ0)√
1 + 32

9π2 �
2
R0T

2
20

,

tan(δ0) = 4π2P0p
2 tanh

(
h̄ω

2kBT

)
3ε′ , (6)

where tan(δ0) expresses the loss tangent in the linear-response
regime. In the analysis below, we set the hypertangent factor
tanh ( h̄ω

2kBT
) to unity since the consideration is limited to low

temperatures Eq. (8).

III. MASTER EQUATION FORMALISM
FOR SPECTRAL DIFFUSION

A. Spectral diffusion

The spectral diffusion that is the target of the present work
strongly affects microwave absorption by TLSs leading to a
TLS phase decoherence. It is induced by TLS interactions with
neighboring “thermal” TLSs having energies and tunneling
amplitudes comparable to the thermal energy. They switch
back and forth between their ground and excited states with
the quasiperiod T1T = 1/(αT 3), Eq. (3), and modify the energy
and detuning of the given TLS. One can describe the spectral
diffusion in terms of the distribution function W (D,t |D′,t ′) for
possible detunings D at the time t provided that D(t ′) = D′. In

TABLE I. Summary of intensity dependencies of the TLS loss tangent at different temperatures below 1 K where the TLS model is
applicable. The intermediate intensity regime of significant spectral diffusion is not available at low temperatures where the relaxation is faster
than the phase decoherence as indicated by “n.a.” in a corresponding cell of the table. TLS parameters used within the table are introduced in
Eqs. (3) and (7) while the results are given in Sec. IV B. The restrictions for the maximum Rabi frequency and the temperature are introduced
to avoid the emergence of relaxational absorption (see the end of Sec. IV C) and keep the rotating frame approximation valid.

tan(δ)
tan(δ0)

�c1 �c2 �R0 < �c1 �c1 < �R0 < �c2 �c2 < �R0 < ω min(1,( h̄ω

kBT
)
3
)

T < ( 12h̄7αω6

π6χk7
B

)
1/4 1.67

T20

1.67
T20

1 n.a. 1.67
�R0T20

( 12h̄7αω6

π6χk7
B

)
1/4

< T < h̄ω

kB

3.3

Tsd ln (
T20
Tsd

)

0.6T20
T 2

sd
ln [3 ln ( T20

Tsd
)] 1 ln[1+3 ln(�R0Tsd)]

�2
R0T 2

sd ln (
T20

�R0Tsd
)

1.67
�R0T20

h̄ω

kB
< T < min(1 K, 10h̄ω) 1

Tsd

√
T1T

T10

T1T

T 2
sd

1
T 2

1T

�2
R0T 4

sd

1.67
�R0T20
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a three-dimensional system with TLS-TLS interaction decreas-
ing with the distance as 1/R3, this function has a Lorentzian
shape [23,35,36]. In a short-time limit |t − t ′| < T10 � T1T

[see Eqs. (1) and (3)], the width w of the Lorentzian distri-
bution, (D − D′,t − t ′) = W (D,t |D′,t ′), for the change in
detuning, D − D′, can be expressed as [14,35,36]

w = k2
2 |t − t ′|, k2

2 =
√

1 − x2

T 2
sd

,
1

T 2
sd

= π6

24

χkBT

h̄T1T

, (7)

where the universal dimensionless parameter χ ∼ 10−3 is
the product of TLS density P0 and the average absolute
value of TLS-TLS interaction constant U0, 〈|U (r)|〉 = U0/r3

[14,32,36,37]. The rate 1/Tsd characterizes the TLS phase
decoherence observable in echo experiments. Spectral diffu-
sion affects the nonlinear absorption if this rate exceeds the
TLS relaxation rate 1/T10 defined in Eq. (3). For a typical
microwave field frequency ω/(2π ) ≈ 5 GHz, the decoherence
stimulated by the spectral diffusion goes faster than that due to
the relaxation at reasonably high temperatures T > Tl , where
the temperature Tl is given by

Tl ≈
(

12h̄7αω6

π6χk7
B

)1/4

≈ 30 mK. (8)

Upper [Eq. (1)] and lower (Tl < T ) constraints on the temper-
ature can be satisfied simultaneously at reasonably small reso-
nant frequencies h̄ω/kB < 10 K. Our consideration is limited
to sufficiently small frequencies and temperatures T ,h̄ω/kB <

1 K where the tunneling model [1,2] is valid, which justifies
the relevance of the consideration of the temperature domain
restricted by Eqs. (1) and (8).

To describe the loss tangent behavior within the temperature
domain T > Tl , it is natural to attempt to use Eq. (2) with the
modified decoherence rate

1/T2∗ = 1/T20 + 1/Tsd. (9)

This modifies Eq. (6) for the TLS loss tangent as [16,21,29]

tan(δ) ≈ tan(δ0)√
1 + 16

9π2 �
2
R0T2∗T10

. (10)

The accurate treatment of the spectral diffusion described
below within the framework of the master equation formalism
predicts that the loss tangent behavior is qualitatively different
from Eq. (10).

B. Master equations for TLS Bloch vector

The time evolution of the Bloch vector components dσa =
σa(D,t + dt) − σa(D,t) can be separated into two parts. The
first part described by Eq. (2) includes the quantum-mechanical
evolution and relaxation [16,20,21]. The second part accounts
for the change in detuning due to spectral diffusion that
can be treated classically [17,23,36]. The change of detun-
ing during the infinitesimal time dt is determined by the
conventional Lorentzian probability function (D − D′,dt)
introduced above. The evolution of the TLS density matrix in
the course of the spectral diffusion can be described by the
master equation as suggested by Laikhtman [23] (see also the

textbook [22]),

dσσσ sd(D,t) =
∫ ∞

−∞
dD′(D − D′,dt)[σσσ (D′,t) − σσσ (D,t)].

(11)

This equation is valid if there is no correlation between
the TLS evolution before and after the time t [22]. Phonon
stimulated transitions of resonant TLSs to the ground state
occur with the quasiperiod T10 and each transition erases
memory of the previous TLS dynamic. Since the time between
two transitions of thermal TLS T1T ≈ (αT 3)−1 is much longer
than this quasiperiod [see Eqs. (1) and (3)], each neighboring
thermal TLS contributes no more than once to the shift of the
resonant TLS energy during the time T10. Consequently, there
is no correlation of energy shifts during the equilibration time
T10, which justifies Eq. (11).

Using the Fourier transform representation of the TLS den-
sity matrix, Eq. (4), and the width of the Lorentzian distribution
defined in Eq. (7), one can express the time evolution in Eq. (11)
as

dfsd = (e−k2
2dt |q| − 1)f = −k2

2 |q|dtf . (12)

The complete set of evolution equations for the density
matrix Fourier transforms [see Eqs. (6)] can be obtained adding
Eq. (12) and the Fourier transforms of Eq. (2). Then we get

df x

dt
= −|q|k2

2f
x − i

df y

dq
− f x

2T1
= 0,

df y

dt
= −|q|k2

2f
y + i

df x

dq
− f y

2T1
+ �Rf z = 0, (13)

df z

dt
= −|q|k2

2f
z − �Rf y − f z

T1
+ 2πδ(q)

T1
= 0,

where time derivatives should be set to zero since we are
interested in the stationary regime [20]. All Fourier transforms
f a(q) (a = x,y,z) should approach 0 for q → ±∞, which
defines the boundary conditions to Eq. (13). To evaluate the
loss tangent, we need to find the Fourier transform f y(0) for
q = 0 in accordance with Eq. (6).

Here and in earlier work [23], the rotating frames approxi-
mation assumes the instantaneous adiabatic basis for the Bloch
vector following the spectral diffusion of the detuning. This as-
sumption seems to be well justified since a single TLS resonant
frequency ω0 is much larger compared to a characteristic rate of
the spectral diffusion, however the collective TLS transitions
can be stimulated by their interactions in the course of spectral
diffusion [30,38]. This collective dynamics becomes important
at very low temperature T ∼ 10 mK [32], which is outside of
the scope of the present work.

IV. NONLINEAR ABSORPTION IN THE PRESENCE OF
SPECTRAL DIFFUSION: RESULTS AND DISCUSSION

A. Solution of the master equation for individual TLSs

Further analysis of Eq. (13) is straightforward but tedious,
and its details can be found in the Supplemental Material, Sec. I
[39]. Using the first and third equations, one can expressf x ,f z,
and df x

dq
in terms of f y and obtain the second-order differential

equation for f y(q) containing the δ-function term δ(q) as a
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nonhomogeneous part. It is convenient to introduce the new
variable v = (A + k2|q|)2, where A = 1/(k2T2). Using the

substitution f y = e− v−A2

2 F (v), we get the equation for F (v)
in a form similar to the hypergeometric differential equation
(see Refs. [40,41]; remember that v > A2)

v
d2F

dv2
− v

dF

dv
− F

[
�2

Rη

4k2
2

]
= 0, η(v) = 1

1 + A√
v

. (14)

To account for the δ-function term at v = A2 [q = 0, see
Eq. (13)] we introduce the boundary conditions at v = A2 for
the first derivative of the function F in the form [39]

dF (A2)

dv
− 1

2
F (A2) = −π�R

2
, (15)

while the second boundary condition is F (∞) = 0. The pa-
rameter of interest f y(0), that determines the loss tangent in
Eq. (4), is equal to F (A2).

Equations (14) and (15) represent the most significant
results of the present work. They have been solved numerically
for this problem and can be extended to other problems of
interest. The approximate analytical solution for the TLS
loss tangent is derived below in the case of a significant
spectral diffusion, A � 1, and compared to the numerical
solution. This solution is a subject for comparison to the
experimental data and it helps to understand the nonlinear
absorption qualitatively.

If the parameter η in Eq. (14) can be set to constant,
then the solution satisfying the zero boundary condition at
infinity is given by the confluent hypergeometric function of
the second kind, F (v) = cU (η(�R/k2)2/4,0,v) [41,42], with
the constant c defined by the boundary condition in Eq. (15).
Comparing the first term in Eq. (14) with the second and
third terms, one can see that the solution of Eq. (14) should
change remarkably compared to its maximum F (A2) (q = 0)
at v ∼ v∗ = min(1,k2

2/�2
R). Assuming that v∗ determines the

typical value of the parameter η, one can expect that η ≈ 1 for
v∗ � A2, while in the opposite case η ≈ 1/2. This is confirmed
by the comparison of analytical and numerical solutions [39].

In either case, one can evaluate the parameter of interest
f y(0) = F (A2) [see Eq. (4)] using the boundary condition
Eq. (15) and the identity dU (a,b,v)/dv = −aU (a + 1,b +
1,v) [41] as

f y(0) = π�R

1 + ηB2

2
U (ηB2/4,0,A2)

U (1+ηB2/4,1,A2)

, B = �R

k2
. (16)

Consider the case v∗ > A2 (�R < k2
2T1, and we set η ≈ 1).

In this case, one can use the asymptotic behaviors of conflu-
ent hypergeometric functions U (a,0,v) ≈ �(1 + a)−1, U (1 +
a,1,v) ≈ [ln(1/v) − 2γ − ψ(1 + a)]�(1 + a)−1, and approx-
imate the digamma function as ψ(1 + a) = ψ(1 + B2/4) ≈
2 ln(B/2 + e−γ /2), where γ ≈ 0.5772 is the Euler constant.
Then Eq. (16) can be represented as

f y(0) = π�R

1 + �2
R

k2
2

ln
(

2e−γ k2
2T2

2e
− γ

2 k2+�R

) . (17)

This solution is in excellent agreement with the exact numerical
solution if the argument of the logarithm exceeds 2 [39].

In the opposite limit of a very large field B > 1/A (�R >

k2
2T1, and we set η ≈ 1/2), one can approximate Eq. (16) as

[39]

f y(0) ≈ π�R√
1 + B2

2A2

. (18)

This result is identical to the stationary solution of Eq. (2) or
Eq. (13) at k2 = 0 as given by Eq. (5). It does not depend on
the spectral diffusion. The spectral diffusion is not significant
in this regime because the typical detunings of resonant TLSs
contributing to absorption, D ∼ �R [13], exceed a TLS fre-
quency shift Dsd ∼ k2

2T1 due to the spectral diffusion occurring
during the time T1 separating two resonant TLS relaxation
events [see Eq. (7)]. Substituting Eq. (18) into the loss tangent
definition, Eq. (4), and performing the integration, one obtains
the earlier established behavior of the loss tangent Eq. (6)
[20,33].

The solution of time-dependent master equations has been
obtained in Ref. [23] ignoring relaxation terms (i.e., setting
T1 = T2 = ∞) for a finite pulse duration. Although it has
a certain similarity with the present work, it leads to a full
suppression of absorption in the infinite duration time limit
that is a consequence of the lack of dissipation needed for the
correct description of absorption in a steady-state regime.

B. Evaluation of the loss tangent

The loss tangent is defined by the integral in Eq. (4) over
different tunneling amplitudes and dipole moment orientations
of contributing two-level systems. It has been evaluated using
the exact numerical solution of Eq. (14) as shown in Fig. 2
by solid lines for several ratios of spectral diffusion and
relaxation rates (T20/Tsd). The predicted behaviors differ from
that for the loss tangent in the absence of spectral diffusion,
Eq. (6), as shown in Fig. 2 by dashed lines and from the
“corrected” Eq. (6) with the modified decoherence time T2∗
(1/T2∗ = 1/T20 + 1/Tsd) as shown in Fig. 2 by the dotted line.

Below, we derive the analytical interpolation for the loss
tangent suitable for the analysis of experimental data in the
case of a significant spectral diffusion Tsd < T10; otherwise,
the loss tangent is always determined by Eq. (6). In the case of
an intermediate Rabi frequency, 1/Tsd < �R0 < T10/T 2

sd, one
can use the approximate solution, Eq. (17), substituted into the
integral in Eq. (4). Then, one can evaluate this integral with
logarithmic accuracy as tan(δ0) ln(1 + 3l)/(�R0Tsd)2 with the
logarithmic factor l = ln(�R0Tsd)/ ln(Dsd/�R0) [39]. In the
opposite case of large Rabi frequency, T10/T 2

sd < �R0, the loss
tangent is determined by Eq. (6). One can combine these two
asymptotic behaviors within the single interpolation formula

tan(δsd) = tan(δ0)

1 + �2
R0T

2
sd

3π�R0T 2
sd

4
√

2T20
+ln(1+3l∗)

(19)

with the logarithmic factor l∗ defined as

l∗ = ln(d1 + c1�R0Tsd)

ln
(
d2 + c2T20

�R0T
2

sd

) . (20)

The numerical constants c1,d1,c2,d2 ∼ 1 in the definition of
l∗ were introduced to describe the crossover between two
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FIG. 2. The loss tangent vs Rabi frequency in the presence of the
fast spectral diffusion T20 � Tsd. The main graph shows the numerical
solution (solid line), analytical interpolation of Eq. (19) (diamonds),
the solution, Eq. (6), ignoring the spectral diffusion (dashed line),
and the solution Eq. (10) with the modified decoherence rate (dotted
line) in the case T20 = 2T10 = 20Tsd. In the inset, the numerical (solid
lines) and analytical [Eq. (19), circles] solutions are compared for
different relative rates of spectral diffusion T20/Tsd (indicated at each
line).

regimes. They were estimated as 0.5,3,0.55,1.2, respectively,
by fitting the exact numerical solution with Eq. (19) [39].
As shown in Fig. 2, this fit is perfectly consistent with the
numerical solution and, therefore, it can be used to analyze
experimental data. In the asymptotic regime of a large external
field, T10/T 2

sd < �R0, one can ignore the factor ln(1 + 3l∗) in
the denominator in Eq. (19), which leads to Eq. (6), while in
the opposite regime, the logarithmic term l∗ ≈ l dominates in
the denominator.

Using Eq. (20), one can estimate the crossover Rabi fre-
quencies separating linear and nonlinear regimes (�c1) and
regimes of significant and negligible spectral diffusion (�c2)
characterized by the loss tangent behaviors tan(δ) ∝ �−2

R0

and tan(δ) ∝ �−1
R0, respectively. We assume that the spectral

diffusion is much faster than the relaxation, i.e., Tsd � T20.
For the first crossover representing the nonlinear threshold,
one can estimate ln(1 + 3l∗) ≈ 3 ln(d1)/ ln(T20/Tsd) within the
logarithmic accuracy. The threshold Rabi frequency where the
loss tangent gets smaller than its linear-response theory value
by a factor of 2 can be expressed as

�c1 ∼ 3.3

Tsd ln
(

T20
Tsd

) . (21)

This crossover frequency is proportional to the squared tem-
perature. Consequently, the nonlinear threshold intensity in-
creases as the fourth power of the temperature.

The second crossover frequency can be estimated set-
ting two factors in the denominator of Eq. (17) respon-
sible for the spectral diffusion [ln(1 + 3l∗)] and relaxation

[3π�R0T
2

sd/(4
√

2T20)] regimes equal to each other. Then
within logarithmic accuracy one gets

�c2 ∼ 0.6T20

T 2
sd

ln

[
3 ln

(
T20

Tsd

)]
. (22)

The estimates for the threshold Rabi frequency separating
linear and nonlinear regimes has been obtained in Ref. [23]
using qualitative arguments and in Ref. [25] using the rigorous
perturbation theory analysis. Both estimates are consistent
with the present work; moreover, the estimate of Ref. [25]
differs only by a factor of π/3.3 ≈ 0.95, which is an excellent
agreement. The loss tangent intensity dependence predicted
by Eq. (19) is also consistent with the qualitative estimates
of Refs. [23,25], yet here it is obtained in a rigorous form.
The weakening of that dependence at higher intensities to
the inverse square-root behavior to our knowledge was not
considered before the present work.

C. Loss tangent behavior in regimes where the present
theory is not applicable

The analytical interpolation for the loss tangent given
by Eq. (20) is applicable only if the spectral diffusion is
faster than the TLS relaxation (Tsd < T10) that takes place
at sufficiently large temperature T > Tl , Eq. (8), and the
resonant TLS relaxation is faster than that of thermal TLSs
responsible for the spectral diffusion suggesting kBT < h̄ω,
Eq. (1). For the typical microwave experimental frequency
of 5 GHz, this limits the theory applicability to temperatures
30 < T < 200 mK [31]. Below we consider the loss tangent
outside of this temperature domain.

At low temperaturesTsd < T10, Eq. (13) is still applicable. In
this regime, its numerical solution shown in the Supplemental
Material [39] is almost identical to Eq. (4) so that the nonlinear
absorption can be very well described by Eq. (6) ignoring the
spectral diffusion. It is noticeable that in the crossover regime
of Tsd = T10 the numerical solution, analytical interpolation
of Eq. (20), and standard model described by Eq. (6) predict
almost identical behaviors. At higher temperatures (Tsd < T10)
one can use Eq. (20) until kBT < h̄ω.

At high temperature, kBT > h̄ω, the master equation for-
malism is no longer applicable and we cannot obtain the
accurate quantitative solution for the loss tangent. Below, we
suggest the qualitative arguments to predict the nonlinear ab-
sorption behavior in this regime ignoring possible logarithmic
dependencies.

The crossover Rabi frequency �c separating linear and
nonlinear regimes can be estimated considering the probability
of absorption during the resonant TLS relaxation time T10 >

T1T [remember that T1T = 1/(αT 3) estimates the relaxation
time of thermal TLSs responsible for the spectral diffusion].
During that time, the TLS energy passes through the resonance
T10/T1T times and the probability of absorption during each
passage is given by �2

RT 2
sd, so the total absorption probability

during the time T10 can be estimated as Pabs ≈ �2
RT 2

sdT10/T1T ,
provided thatPabs < 1. The saturation in absorption is expected
to take place at Pabs ∼ 1, suggesting the crossover Rabi
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frequency

�c1 ∼ 1

Tsd

√
T1T

T10
. (23)

The more accurate estimate of the nonlinear threshold for
h̄ω0 < kBT including numerical and logarithmic factors can
be found in Ref. [25]. Using definitions of Eqs. (3) and (7), one
can estimate the temperature dependence of the threshold Rabi
frequency as �c1 ∝ T , while the threshold intensity behaves
as Ic ∝ �2

c1 ∝ T 2.
At small Rabi frequency, �R < �c, the loss tangent can be

described by the linear-response theory expression given by
Eq. (6), while at higher Rabi frequencies the inverse intensity
dependence tan(δ) = tan(δ0)(�c/�R)2 is expected similarly
to the intermediate temperature regime and in agreement with
Ref. [25]. This dependence holds until the Rabi frequency
is smaller than the typical maximum spectral diffusion range
(�R < �c2 ∼ T1T /T 2

sd) while at larger intensities the nonlinear
absorption is no longer sensitive to the spectral diffusion and it
can be described by Eq. (6). It is straightforward to check that
different asymptotic behaviors are consistent with each other
at the crossovers.

In the case of thermal energy exceeding the field quan-
tization energy, there exists the emergence of relaxational
absorption that contributes to the loss tangent as tan(δrel) ≈
tan(δ0)αT 3/ω for h̄�R0 < kBT [20]. One should notice that
the relaxational absorption is suppressed exponentially in the
opposite limit of low temperatures given by Eq. (1) so it can
be neglected there. Here it limits the maximum temperature
to 10h̄ω/kB to keep the crossover estimates valid and limits
the maximum Rabi frequency to ω[h̄ω/(kBT )]3 to keep the
resonant absorption dominating. We assume both constraints
are satisfied, as indicated in Table I.

D. Discussion of experiment

The theoretical predictions for the nonlinear absorption in
the presence of spectral diffusion was made in Ref. [16] using
Eq. (10) with a modified decoherence rate as described in
Eq. (9). These predictions do not have any specific domain
of relevance, yet they do not deviate dramatically from the
predictions of the present theory [see Eq. (10) and the dotted
line in Fig. 2 calculated at a spectral diffusion rate exceeding
the TLS relaxation rate by a factor of 10, similarly to Ref. [16]].
Particularly, this approximate agreement could be the reason
for the conclusion of Ref. [16] about the relevance of that
approach to the experiments.

One should notice that the temperature dependence of
the threshold intensity, which separates linear and nonlinear
regimes, is experimentally observed as I ∝ T 4, which conflicts
with the theoretical model of Ref. [16] predicting I ∝ T 2.
However, it is consistent with the present theory determining
the crossover Rabi frequency as the inverse TLS decoherence
rate, 1/Tsd ∝ T 2, Eq. (7). The critical intensity is determined
by the squared Rabi frequency, leading to the T 4 dependence
in agreement with the experiment [16] (cf. Ref. [34]).

We hope that the present work provides a solid background
for future experiments that can verify the predictions of
the theory. The analytical interpolation of Eq. (17) should

serve as a guideline for the data analysis since it covers not
only asymptotic regimes but crossovers between them. It is
important that the novel behavior takes place in the domain of
Rabi frequencies (intensities) restricted from both lower and
upper sides [see Eqs. (22) and (22)], and therefore the ratio of
relaxation and decoherence times T10/Tsd determining the size
of this domain should be chosen sufficiently large. The other
significant problem of a finite pulse duration can also affect
the experimental data [23,34]. This duration should exceed the
TLS relaxation time to make the theory applicable [23].

Numerous measurements of the nonlinear loss tangent have
been performed in Josephson junction qubits and resonators
(see, e.g., Refs. [3,7–9]). All of them use Eq. (6) or (10) as a
guideline for the experimental data analysis in a broad tem-
perature range including the temperatures where the spectral
diffusion is significant (30 < T < 200 mK). In the present
work, we demonstrate that these equations are not applicable
in this regime and should be modified according to Eq. (17).
The experimental observations, indeed, show the intensity
dependence different from 1/

√
I [Eqs. (6) and (10)] in the

nonlinear regime. However, they show weakening compared
to this dependence while the present work predicts its strength-
ening. In our opinion, this discrepancy can be understood
assuming that the standard model of interacting TLSs in three
dimensions is not quite relevant for quantum two-level systems
in Josephson junctions. Particularly, amorphous films used in
Josephson junctions possess the reduced dimensionality that
can affect the interaction between TLSs and/or their statistics
[43,44]. The theory should be modified accordingly, which is
beyond the scope of the present work.

V. CONCLUSION

The present work suggests the resolution of the long-
standing problem of nonlinear absorption by interacting two-
level systems (TLSs) in low-temperature amorphous solids.
The solution to this problem is obtained using the master
equation formalism developed for the spectral diffusion of TLS
resonant frequencies induced by their long-range interactions.
It is demonstrated that the spectral diffusion extends the
domain of a linear absorption compared to the noninteracting
model, Eq. (6), to Rabi frequencies of the order of the TLS
phase decoherence rate [�R0 ∼ 1/Tsd; see Eq. (19)] provided
that this rate exceeds the relaxation rate 1/T10. At larger
Rabi frequencies, 1/Tsd < �R0 < T20/T 2

sd, the loss tangent
decreases inversely proportionally to the intensity of the
external field [�−2

R0; see Eq. (19)]. This new behavior can be
understood assuming that the absorption by almost all TLSs,
passing the resonance due to the spectral diffusion, is saturated
for slow passage �R0Tsd > 1 (cf. Refs. [31,45], where the
slow resonance passage due to a bias sweep leads to similar
behavior). TLSs passing the resonance absorb nearly the same
energy h̄ω, while the absorption by other TLSs is negligible.
Consequently, the absorbed energy is weakly sensitive to the
field intensity, and the loss tangent is inversely proportional
to that intensity. At larger intensities, the resonant domain
size �R exceeds the spectral diffusion range T20/T 2

sd [17] and
its increase with the intensity restores the earlier predicted
behavior tan(δ) ∝ �−1

R0, Eq. (6). For the typical microwave
frequency ω/(2π ) ∼ 5 GHz, the spectral diffusion remains
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significant (T10/Tsd > 1) at temperatures exceeding 30 mK
[see Eqs. (3) and (7) and Ref. [31]]. The results of the
consideration are summarized in Table I.

The theory is fully extendable to the nonlinear absorption
of acoustic waves. The nonlinear internal friction can be
described replacing the Rabi frequency in Eq. (19) with
the product of the TLS-phonon interaction constant and
the strain field (γ ε; see reviews [20,33]). Although the
present theory is not directly applicable to high temperatures
T > h̄ω/kB where the thermal energy exceeds the external
field quantization energy, the similar behavior of the non-
linear absorption is expected in this regime as well with
modified crossover intensity as described in Sec. IV C and
Table I.

The predictions of our theory can be verified experimen-
tally by measuring the nonlinear absorption of acoustic or
electromagnetic waves in “ordinary” glasses where the TLS
model [1,2,36] is relevant. The analytical expression for the
loss tangent given by Eq. (17) can be used as a guide line
for the data analysis in a broad domain of parameters (see
Table I). The results of previous measurements seem to be
inconclusive (see the discussion in Sec. IV D) because the range

of field intensities is insufficiently broad to distinguish between
different intensity dependencies. According to our analysis,
the conclusive measurements can be performed varying the
external field intensity by one or two orders of magnitude in
the nonlinear regime.

The predicted strengthening of the loss tangent intensity
dependence in the nonlinear regime [∝ I−1, Eq. (19)] con-
trasts with the observed weakening of the intensity depen-
dence of microwave absorption in Josephson junction qubits
[7,9,17,43,46,47]. The generalization of the present theory to
low dimensions and modified TLS distribution compared to
the standard tunneling model are possibly needed to interpret
those experiments.
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