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Many-body localization transition with power-law interactions: Statistics of eigenstates
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We study spectral and wave-function statistics for many-body localization transition in systems with long-range
interactions decaying as 1/r* with an exponent « satisfying d < o < 2d, where d is the spatial dimensionality.
We refine earlier arguments and show that the system undergoes a localization transition as a function of the
rescaled disorder W* = W/L*~*In L, where W is the disorder strength and L the system size. This transition
has much in common with that on random regular graphs. We further perform a detailed analysis of the inverse
participation ratio (IPR) of many-body wave functions, exploring how ergodic behavior in the delocalized phase
switches to fractal one at the critical point and on the localized side of the transition. Our analytical results for
the scaling of the critical disorder W with the system size L and for the scaling of IPR in the delocalized and

localized phases are supported and corroborated by exact diagonalization of spin chains.
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I. INTRODUCTION

Many-body localization (MBL) has recently become a
powerful idea in the theory of disordered interacting quantum
systems. The MBL extends the Anderson-localization physics
originally formulated for a single-particle problem [ 1] to many-
body systems at nonzero energy density (or, equivalently,
nonzero temperature). Starting from early works [2-6] and
until recently, understanding of MBL was driven mostly by
theory. In particular, Refs. [4,5] predicted a finite-temperature
MBL transition for spatially extended systems with localized
single-particle states and with short-range interaction. This
result has been supported and refined by numerous subsequent
numerical and analytical studies; see, in particular, Refs. [6—
14] as well as reviews [15-17].

Recently, experimental realizations of one-dimensional
(1D) [18,19] and two-dimensional (2D) [20,21] systems show-
ing MBL transition were implemented for cold atoms in
disordered optical lattices. Signatures of MBL transition in
interacting systems were also observed in InO films [22-24].
Further, the MBL was studied experimentally in arrays of
coupled one-dimensional optical lattices [25,26], spin impu-
rities in diamond [27], and atomic ions [28]. Spectroscopic
signatures of MBL were also observed in systems of coupled
superconducting qubits [29].

While Refs. [4,5] dealt with systems with short-range inter-
action, in many of experimentally relevant systems interactions
arein factlong ranged in the sense that they decay with distance
r according to a power law. Consider, for example, electrons
in an Anderson insulator such as a 2D system on the quantum
Hall plateau. In the absence of long-range interactions, a bulk of
such a system would be in the MBL phase at low temperatures
T. However, it has been found experimentally that there is
quite essential energy transport through the bulk of integer
[30,31] and fractional [32,33] quantum Hall systems. On the
theory level, such heat transport becomes possible due to
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dipole-dipole coupling between two-level systems (“spins”)
formed by nearby localized electronic states. This power-
law 1/r% interaction of “spins” (originating from the 1/r
Coulomb interaction between electrons) leads to many-body
delocalization, establishing a finite thermal conductivity that
has a power-law dependence on temperature at low T [34].
This example demonstrates the importance of understanding
of the physics of many-body localization and delocalization in
systems with long-range interactions. In addition to electronic
realizations, the problem of (de)localization in disordered
many-body systems with dipole interactions arises also in other
contexts, including amorphous materials (glasses) [35,36] that
can be described in terms of interacting two-level systems
[37—44], dipolar molecules in an optical lattice [45—49], spin
defects in a solid-state system [27,47,50-52], as well as
superconducting circuits [53-55]. Further, an experimental
realization of a one-dimensional system of trapped ions with
tunable long-range interaction that can be approximated by
a power law with a tunable exponent has been reported in
Refs. [19,56].

Theoretical investigation of the effect of long-range terms
on localization has in fact a long history. For a noninteracting
problem with strong disorder and hopping terms decaying as
r~* in a spatial dimensionality d, it was shown already in
the famous Anderson’s paper in 1958 [1] that at @ < d the
locator expansion breaks down due to a diverging number of
resonances. This conclusion was confirmed by later works
where the power-law-hopping noninteracting problem was
analyzed in much detail (see, in particular, Refs. [57-61]). Fora
problem with a long-range interaction, considering the effect of
interaction in the first order, one gets an approximate mapping
to the noninteracting problem [60]. It turns out, however, that
this argument is too naive. Specifically, a more efficient de-
localization mechanism has been identified, implying absence
of localization in the thermodynamic limit for an arbitrarily
strong disorder already for @ < 2d [34,47,62—-64]. Thus, a new
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phase arises atd < o < 2d that would be localized (for o > d)
or critical (for « = d) within an approximate mapping to a
noninteracting power-law problem but is in reality many-body
delocalized in the thermodynamic limit [65].

While a system with long-range interaction exponent satis-
fying d < o < 2d is delocalized in the thermodynamic limit,
its finite-size properties are by no means trivial. Specifically,
such a system exhibits a many-body delocalization transition
with increasing size L [34,64]. The goal of this work is to
explore the position of this transition as well as the spectral
and eigenfunction statistics at and around the transition. We
will put particular emphasis on the statistics of many-body
wave functions with varying disorder and system size.

One of the approaches to the theory of MBL is based
on approximate mapping of an interacting Hamiltonian to
a noninteracting hopping problem defined on a hierarchical
lattice. This idea was first put forward in Ref. [3] in the
context of a hot-electron relaxation in a quantum dot and later
employed in a number of papers for the analysis of the MBL
transitions. This connection with the localization in many-body
systems has recently revived an interest to the problem of
Anderson localization of noninteracting fermions residing on
treelike lattices such as random regular graphs (RRG) and
their close relatives [66—70]. This problem was in fact studied
analytically via supersymmetry method long ago [71-73]. The
corresponding analytical predictions for the level and eigen-
functions statistics near the transition have been supported and
corroborated by recent numerical works [68—70]. In this paper,
we analyze the connection between many-body and RRG
problems. We show that the MBL transition in a many-body
problem with a long-range interaction withd < o < 2d is par-
ticularly close to the Anderson transition on RRG. Combining
analytical considerations and exact-diagonalization numerics,
we perform a detailed study of the statistics of energy levels
and eigenfunctions that allows us to establish the scaling of the
MBL transition in the power-law-interaction problem and to
explore properties of the system at the critical point and around
it. We show, in particular, that the critical point essentially
shares properties of the localized phase, including the Poisson
statistics (in the limit of large L) and the fractal scaling of the
inverse participation ratio (IPR) with the Hilbert-space volume.
On the other hand, on the delocalized side of the transition, the
system becomes ergodic in the large-L limit.

We consider a system of spins % described by the following
Hamiltonian:
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with independent random variables u;;, v;; = 1, and with ¢;
sampled uniformly from the interval [-W/2,W/2]. Here, 67,
6i+, and 6, are Pauli matrices and r;; is the distance between
the sites i and j. Analytically, we consider a d-dimensional
version of this Hamiltonian; in numerical simulations, we study
1D lattices of L spins via exact diagonalization.

The structure of the paper is as follows. We first recall in
Sec. Il mechanisms leading to many-body delocalization of the
system (1) for sufficiently long-ranged interactions, o < 2d,
in the thermodynamic limit of L — oco. Then, in Sec. III,
we turn to the connection of this model with the Anderson

model on RRG. This yields, in particular, the scaling of the
critical disorder W (L) with the system size L. Using the
many-body level statistics, we provide a numerical evidence
for this mapping between the MBL transition in a power-law-
interaction model and the Anderson transition on RRG and
determine a position of the transition. In Sec. IV, we analyze
the structure of many-body wave functions and explore the
scaling of the corresponding IPR in localized and delocalized
phases as well as at criticality. These analytical estimates
are in good agreement with numerical data obtained from
exact diagonalization. A numerical analysis of IPR provides
an alternative method of determination of the position of the
MBL transition, yielding results that are fully consistent with
those obtained from the spectral statistics. In Sec. V, we discuss
the width of the critical regime around W, that separates the
localized and delocalized phases. We conclude the paper by
summarizing our results and discussing prospects for future
research in Sec. VL.

II. MECHANISMS OF DELOCALIZATION AND
CRITICAL DIMENSIONALITY

Let us first discuss the noninteracting counterpart of the
model (1) which describes a particle hopping over a d-
dimensional lattice with random hopping amplitude decaying
as a power law 1/r® with the distance r. It is known [1,57,58]
that the point o = d is critical for this model. For o < d,
the single-particle excitations in such a model delocalize at
arbitrary disorder strength due to a diverging number of reso-
nances. For larger power-law exponents o > d, the Anderson
localization becomes possible in the thermodynamical limit. A
particularly detailed analytical and numerical study has been
performed for a 1D model of this class, known as power-law
random banded matrix (PRBM) ensemble [59,61]. In this
model, the random off-diagonal (i.e., hopping) matrix elements
are characterized by a variance that decays as b/|i — j|** for
|i — j| > b, while the diagonal matrix elements have a vari-
ance unity. It was found that all eigenvectors are localized for
a > 1 and delocalized for ¢ < 1. For @ = 1 the energy levels
and eigenfunctions statistics are critical for any value of b.

Now, let us return to the interacting model (1). Localization
in a system with long-range interaction was first discussed in
Ref. [2], where it was argued, by analogy with Ref. [1], that the
interaction delocalizes the system ato < d. This argument may
seem to suggest that the critical point &« = d of a noninteracting
model is also critical for the interacting model [60]. It turns
out, however, that the critical dimensionality of the interacting
problem (1) is in fact lower, d. = «/2 [34,47,62,63]. In other
words, the power-law-interaction problem exhibits a more
efficient mechanism of delocalization than the noninteracting
power-law-hopping model. This delocalization mechanism
originates from resonant interactions between resonant spin
pairs. Below, we briefly reiterate the corresponding arguments,
which will also play an important role for a later discussion of
the statistics of the many-body wave functions.

We consider a regime of strong disorder, so that a starting
point is a basis of many-body states with all spins having
definite z components o = =£1. Each spin in such a state has
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an energy € renormalized due to interaction with other spins:

€& =¢ +t Z ruikoi oy 2)
k
Two spins i and j are in resonance if
-y L

€& — €1 S —- 3)

r ij
Two strongly hybridized levels of such a resonant pair (those
with total z projection of spin equal to zero) form a new degree
of freedom, pseudospin. For a given spin, an average number
of its resonance partners within alayer R < [r; — ;| < 2R are

estimated as

Ni(R) =tpRI™*/W. )

The spatial density of “active” pseudospins (resonant pairs
built out of original spins with energies within the thermal
window) of size ~R is thus

pps(R) = pN{(R)T /W ~ tp* TR~/ W2, S

It is assumed in Eq. (5) that the temperature 7 is smaller
than the bandwidth W. In the opposite case, the factor 7/ W
should be replaced by unity. For a sufficiently long-ranged
interaction @ < d, the density of pseudospins increases with
R, which clearly implies delocalization. This is essentially the
mechanism of Ref. [1].

We are interested, however, in the case of faster decaying
interaction o > d, when pps(R) decreases with increasing R,
so that most of the pseudospins have a microscopic size. Since
we also assume a strong-disorder regime, such resonances are
relatively rare, i.e., most spins do not have any resonant partner.

Interestingly, although the density of pseudospins is low,
their total number in the system may be much larger than unity
even in the localized phase. However, in the localized phase
such pseudospins typically “do not talk to each other” and for
this reason do not induce delocalization. On the other hand,
they do manifest themselves in the scaling of IPR, as will be
discussed below in Sec. I'V.

Now, we turn to the discussion of the mechanism for
delocalization based on interaction of the pseudospins. For
simplicity, we focus in the rest of the paper on the limit
of infinite temperature (which effectively means 7 2 W), in
which case the density of pseudospins takes the form

pps(R) = tp> R~/ W. ©6)

The number of pseudospins of size ~R within a volume of the
linear size ~R is thus
N 10 2d-a

N> (R) W R . @)
For a < 2d, the function N>(R) monotonically increases with
R. Let us now consider a finite system of linear size L. When
the system is sufficiently small, we have N,(L) < 1, so that
there are no pseudospins of size ~ L. The existent pseudospins
have much smaller size and do not “communicate” with each
other. As a result, the system is in the localized regime. On
the other hand, with increasing system size, N>(L) increases
and eventually becomes larger than unity. This means that
there are multiple pseudospins of size L in the system. As
we discuss in more detail in the next section, the interaction

between pseudospins leads to many-body delocalization of the
whole system. Already at this stage, we can anticipate that there
is a line in the W-L plane where delocalization takes place. In
other words, the critical disorder W, depends nontrivially on
the system size L.

This means that the mere definition of the localization
transition point in the large-L limit requires proper scaling
of the disorder W with the system size. Below, we analyze
this scaling and then study properties of the spectrum and of
many-body eigenstates around the transition.

III. MANY-BODY LOCALIZATION TRANSITION
A. Scaling of the critical point

As has been argued above, for a given disorder W, the
system experiences a transition to the delocalized phase with
increasing system size L. Equivalently, a system of given size
L undergoes a transition to the localized phase with increasing
disorder W. In order to determine the corresponding critical
length L. (W) or, equivalently, the critical disorder W (L), we
begin with the following estimate. Let us find the system size
at which the pseudospins that are in resonance with each other
start to emerge. This is found by setting N, (L) ~ 1, with N(L)
given by Eq. (7), which yields

Lo (W) ~ (W/tp?)5i (8)
or, equivalently,

Wi (L) ~ tp*L¥~°. )

This scaling of the critical point was proposed in Refs. [34,64].
The identification of Eq. (9) as the critical disorder of the MBL
transition, however, is not at all trivial, as we are now going
to discuss. Moreover, we will argue that Eq. (9) is not fully
correct in the sense that it misses a logarithmic correction to
scaling.

Consider a system of size L of the order of a few (order
unity) L. (W). A typical product state of this system at
infinite temperature has a few pseudospins of size ~L, i.e.,
it is well coupled to several other many-body states by the
corresponding spin-flip interaction matrix elements. Flipping
any of the pseudospins provides another many-body state well
connected with the original one. The new state will again
have a few pseudospins and this process can be iterated.
The crucial question is whether the new many-body states
will have resonances distinct from those encountered on the
previous steps of this iteration procedure. If we would discard
zz interactions, this would not be the case, and we would get
stuck after a few steps. However, the zz interactions that shift
the energy €; of a spin when other spins are flipped [see Eq. (2)]
are of crucial importance here. This effect is known as spectral
diffusion. As aresult of these energy shifts, existing resonances
are eliminated and new resonances are created. Specifically,
after p spin-flip steps, a typical distance to the closest flipped
spin will be ~Lp~1/¢, so that the typical shift of the energy &;
is estimated as [34]

AP ~ L7 p/d, (10)

This fast increase of AP with p (we recall that o > d)
ensures that the resonances are very efficiently “reshuffled”
so that the emerging network of many-body states coupled by
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such resonances has a treelike structure [34]. While locally
this structure reminds a Cayley tree, the many-body Hilbert
space is finite and has no boundary. Therefore, the resonant
structure emerging in the many-body Hilbert space may be
viewed as a RRG. We thus conclude that systems of sizes larger
than L., (W) should be ergodic. Indeed, exact-diagonalization
results in Ref. [64] supported this expectation.

Let us note in passing that the spectral diffusion is also
relevant for MBL transition in systems with short-range inter-
actions [14], where it shifts the MBL transition point (para-
metrically enhancing delocalization) with respect to earlier
estimates [4,5]. The spectral diffusion in that case (and in
the case of quantum dot models) is somewhat less efficient,
however, which made the analysis in Ref. [14] substantially
more complicated.

Thus, the spectral diffusion ensures that systems with
disorder weaker than W, (L) are ergodic. Is a system with
W larger than W,(L) necessarily localized? The answer is
no. Indeed, the situation we are facing here is similar to
the one known from Refs. [1,74] where it was shown that
estimate based on counting of “real” first-order resonances
underestimates the critical disorder of Anderson localization
on a lattice with connectivity K >> 1 by a logarithmic factor
In K. This enhancement of delocalization arises from higher-
order resonances, i.e., those attainable via intermediate out-of-
resonance states. Such resonances lead to enhancement of the
effective matrix element in pth order of the perturbation theory
by a factor (In K)?~!, which yields, in the large-p limit, the
enhancement of W, by a factor ~In K. More specifically, for
the box distribution of disorder, the hopping matrix element
set to unity, and in the middle of the band, the critical disorder
is given by

W./K ~4InK. (11)

We thus have to identify what plays the role of In K in
our problem. The total connectivity of the graph obtained
by counting all many-body basis states coupled to a given
one by an interaction term is K ~ p2L??. In fact, one
should exert a certain care here since not all these states
necessarily contribute to the logarithmic enhancement. Indeed,
an amplitude of a higher-order process in a many-body system
may be suppressed, in comparison with that on a Cayley-tree
model, due to partial cancellations between the processes with
permutations of elementary interaction processes. However,
the spectral diffusion interferes also at this point, ensuring
that the logarithmic enhancement is operative since the shifts
AWP¢; [Eq. (10)] destroy the cancellation [14]. Specifically,
consider a typical order of the perturbation theory in which we
can reach any state starting from the given one p ~ L?. The
corresponding energy shiftis then given by interaction between
nearby spins AP¢& ~ tp®/4. Thus, we expect a logarithmic
factor originating from energy interval between AP)¢; and the
spacing W/p?L?? ~ t/L%. This yields the factor In K. with
Keir ~ p%/?L*. We see that the difference between In K. and
In K is just a factor o/2d of order unity. To summarize, we
predict a MBL transition at

Wo(L) ~ tp*L*~* In(pL?), (12)

up to a numerical coefficient of order unity.

loc alized

FIG. 1. Schematic phase diagram inthe W-L plane. The thick line
is the critical line of the MBL transition W = W,(L) or, equivalently,
W, = W,.. The localized phase, the critical regime, and the delocal-
ized phase are shown by pink, gray, and green colors, respectively.
Dashed lines correspond to fixed values of the renormalized disorder
W.. Borders of the critical regime are determined by Eq. (22), where
the correlation lengths ¢(W,) are given by Eq. (21). For two values
of W, (one slightly above W, and another one slightly below), black
dots mark length scales where the system leaves the critical regime
entering localized or, respectively, delocalized phase.

Equation (12) is different from Eq. (9) by a logarithmic
factor that was not taken into account in Refs. [34,64]. Of
course, in the large- L limit, this logarithm is not too important
in comparison with the dominant power-law factor. On the
other hand, for system sizes L that can be achieved in numerical
simulations (see below) and in experiments, the logarithmic
factor plays quite an important role.

As usual, for finite L, the true localization transition turns
to a crossover. The transition emerges, strictly speaking, in the
thermodynamic limit L — oco. The specialty of the present
problem is that the thermodynamic limit should be taken by
sending simultaneously L and W to infinity and keeping the
ratio W/ W, (L) fixed. Then, for W/ W_.(L) > 1 we will bein the
MBL phase, for W/ W.(L) < 1 in the many-body delocalized
phase, and for W/ W, (L) = 1 in the MBL transition critical
point. The phase diagram in the plane spanned by W and L is
illustrated in Fig. 1.

In view of the relation to the localization transition on RRG
established above, we expect that the MBL transition in the
present problem has the same gross features as the Anderson
transition on RRG. Specifically, this implies that, in the large- L
limit taken as explained above, (i) the level statistics at the
critical point point is of Poisson form, as in the localized phase
and (ii) the delocalized phase is ergodic in the sense of Wigner-
Dyson (WD) level statistics and of the scaling of the many-
body IPR [68-73].

Below we will verify and supplement these predictions by
exact diagonalization of a 1D model described by Eq. (1) with
o= % Specifically, we will first study the level statistics and
then turn to the many-body eigenfunction statistics (IPR). It
is worth mentioning already here that there is a difference
between the present model and RRG with respect to scaling
of IPR in the localized phase that is related to short-scale
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FIG. 2. Spectral statistics r of a 1D spin chain (1) witha = % as a function of disorder W for various system sizes L. (a) r(W) demonstrating
delocalization (ergodicity, r — rwp) at fixed W in the limit L — oo; (b) r(W,) with disorder rescaled according to Eq. (13). A drifting crossing
point is observed that is expected to converge to a critical value W, at L — oo (see Fig. 4). In the thermodynamic limit L — oo, the system

is expected to be ergodic for W, < W, and localized for W, > W,..

resonances (that play no role for the transition mechanism)
mentioned above. We will discuss implications of these res-
onances for the structure of many-body wave functions in
Sec. IV.

B. Numerical analysis: Spectral statistics

In the numerical analysis, we consider spins on a regular 1D
lattice with unit spacing (i.e., set the spin density to be p = 1),
so that system size L represents also the number of spins,
ranging from L = 8 to 16. We consider periodic boundary
conditions and set + = 1 in Eq. (1).

We consider the sector of vanishing total o, and concentrate
on é of the states in the middle of the many-body band (which
corresponds to taking the infinite temperature). In order to be
able to generate large statistical ensembles for a wide range
of W (which is of crucial importance for a reliable analysis
of the data), we restrict ourselves in the numerical analysis by
values of the system size L up to 16. This size is somewhat
smaller than typical values of L for exact-diagonalization
studies of systems with short-range interactions since our
Hamiltonian matrix is by far less sparse than those in the
short-range-interaction case. On the other hand, exponentially
rare events are not important for the localization-delocalization
transition and the physics around it in our problem, at variance
with short-range-interaction problems where such events were
argued to be essential (see also a discussion in the end of
Sec. VI). This is favorable for the numerical analysis of the
transition based on results for relatively small systems in the
power-law-interaction model.

Disorder averaging was performed over 10° realizations
(smallest systems, L =8) to 2 x 10° realizations (largest
systems L = 16) at each W. As a convenient scaling variable
characterizing the spectral statistics, we use the ensemble-
averaged ratio r = (r;) of two consecutive spacings r; =
min(d;,6;+1)/ max(d;,8;4+1), which takes values between rp =
0.386 and rwp = 0.530 realized for the Poisson and the WD
Gaussian orthogonal ensemble (GOE) limits, respectively. The
results for o = % are shown in Fig. 2(a). The rapid shift of
the curve r(W) to the right with increasing L fully supports
the analytical expectation that for fixed W the system is
delocalized in the large-L limit. Indeed, as Fig. 2(a) indicates,

for a fixed disorder W the parameter » approaches its ergodic
value 0.530 at L — oo.

Let us now rescale the disorder according to the predicted
scaling (12). Specifically, we define

B w
T LML’

The result is shown in Fig. 2(b). The curves show now a
behavior similar to the one found for Anderson model on
RRG [68]. They get steeper with increasing L and show a
crossing point between curves corresponding to L and L + 2
total spins. The zoomed-in region illustrates that this crossing
point drifts to the right and that this drift is slowing down
with increasing L (see also Fig. 4). [Taking into account the
logarithmic factor in the denominator of Eq. (13) is essential for
this analysis; if this factor is discarded, the drift of the crossing
point accelerates, indicating a divergence in the large-L limit.]
These results support the analytical prediction of the scaling
(12), i.e., of the existence of a critical value W, such that the
system is delocalized (and ergodic) at W, < W, and localized
at W, > W,..

The reason for the drift of the crossing point to the right in
the RRG model was explained in detail in Ref. [68], and we
briefly recall it here. The critical point on the RRG is of “nearly
localized” nature and in particular is characterized by the
Poisson level statistics. Thus, the crossing point moves towards
the Poisson value of r, corresponding to underestimation of W,
from the statistics of a finite-size system. An equivalent way
to say this is that in the delocalized phase near the transition
point (which corresponds in the present notations to W, slightly
below W,.), the spectral statistics shows a nonmonotonous
behavior as a function of L, first approaching the Poisson value
rp and only then starting to grow towards the ergodic value
rwp. This upturn in the L dependence (or, equivalently, the
position of the crossing point between curves with subsequent
values of L) takes place at the correlation length that scales
as (W,. — W,)7 %, The index v, on the delocalized side of the
transition on RRG was found to be v; = % [68,69,71-73].

W, 13)

IV. WAVE-FUNCTION STATISTICS

Let us now turn to properties of many-body eigenfunctions
of the Hamiltonian (1). More specifically, we will characterize
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the eigenfunctions /) = |j) by IPR:
' 14 .
P =3 = i, (14)
n n

with w,&’ ) = (] j) being the wave-function amplitude on the
basis state u of the many-body Hilbert space. The basis states
|w) are eigenstates of all 67 operators. We now analyze the
expected behavior of IPR and then turn to comparison to the
results of exact diagonalization.

A. Analytical considerations

We begin with analytical discussion of the IPR scaling in
the localized and delocalized phases as well as at the MBL
transition.

1. Localized phase

We consider first the localized phase W, > W,. [which
corresponds to L < L. (W)]. In the extreme localization limit
W, = oo, the eigenstates are identical to the basis states, yield-
ing the largest possible IPR, P, = 1. For the RRG problem,
the IPR would remain of the same order, P, ~ 1, in the whole
localized phase. However, the many-body problem that we are
exploring is different from the RRG model in this respect.
This is related to the small-scale pseudospins which, while
not establishing ergodicity, mix every basis state with a large
number of other basis states. Indeed, according to Eq. (5), a
total number of pseudospins in a system of size L reads as
tp : k d_R Rdfa

Nps ~ LT

Ld
~ tp1+ot/d_. (15)
W p-ld R w

In the last expression we have assumed « > d; in the case
o = d an additional logarithmic factor emerges. Setting p = 1
and t = 1 (as was done in Sec. IIIB), we thus have

L[’
W 3
N ~
PS LiInL
W

o >d
(16)
, a=d.

While these resonances do not lead to delocalization in the
considered regime L < L (W), their existence is manifest in
the scaling of the IPR with the system size. Indeed, each
resonance contributes a factor of ~% to the IPR, thus yielding

—1In Pz ~ Nps, (17)

with Npg given by Eq. (16). The emerging scaling of the IPR
looks formally as fractality of eigenstates in the localized
phase. Indeed, since the volume of the many-body Hilbert
space is

N =28, (18)

Eq. (17) can be rewritten (for @ > d) as P, ~ N7, with t ~
1/ W.Itis worth mentioning that such fractal scaling of the IPR
with A/ equally applies to the many-body localized phase of a
system with short-range interaction [14], as was also observed
numerically [10].

2. Critical point

Now, we discuss the transition point W, = W, [or, equiv-
alently, L = L.(W)]. In the RRG model, the IPR remains

a quantity of order unity also in the localization transition
point. In this sense, the RRG model is different from a d-
dimensional Anderson transition problem, where IPR has a
fractal behavior at criticality. (This is related to the effectively
infinite-dimensional character of the RRG model.) In the
present situation, the effect of short-scale resonances (see
Sec. IV A1) will be superimposed on the RRG-type behavior.
As aresult, the scaling of IPR at the transition point is obtained
by setting L = L.(W) in formulas for the localized phase
[Egs. (17) and (16)]. This yields the following results:

Lafd
= a>d

—InpP, ~{ InL>’ (19)
: :1, a=d

where L = L.(W).

3. Delocalized phase

Finally, we consider the delocalized phase W, < W,,
[which corresponds to L > L.(W)]. In view of the connection
to the RRG problem, we expect that the system becomes
ergodic in the large-L limit for a fixed value of W, smaller than
the critical value W,... This corresponds to the IPR proportional
to the inverse volume of the Hilbert space 1/N/, i.e.,

—InP, ~ L%n2. (20)

B. Numerical results

Numerical results for the many-body IPR for the 1D model
witha = % are shown in Fig. 3. At not too strong disorder W,
the system reaches ergodic behavior (20) already for the system
sizes that can be treated by exact diagonalization [see Fig. 3(a)].
On the other hand, for large W the system is still in the localized
phase for these values of L. The inset of Fig. 3(a) confirms
the behavior predicted for the localized phase [Eqgs. (17) and
(16)]. In Fig. 3(b) we plot the rescaled logarithm of the
IPR, —1In P,/ L2=4 as a function of the rescaled disorder W,
[Eq. (13)]. The rescaling along the y axis is chosen in such a
way that the corresponding quantity increases with L in the
delocalized phase (W, < W,.) and decreases in the localized
phase and in the critical point (W, > W,.) according to our
analytical predictions (see Sec. IV A). Therefore, a crossing
point drifting to the right and converging to W, is expected,
in analogy with Fig. 2(b) for the level statistics. This is indeed
what is observed in Fig. 3(b).

In Fig. 4 we have combined the results for the position of
the drifting crossing points obtained from the analysis of the
level statistics [Fig. 2(b)] and the eigenfunction IPR [Fig. 3(b)].
Results of both approaches are consistent with each other and
allow us to roughly estimate the critical disorder W, ~ 4.3.
When performing this extrapolation, we assumed the value of
the critical exponent of the correlation length in the delocalized
phase vy = % (see Sec. V). We have also discarded the data for
the smallest system size L = 8§, as the corresponding crossing
point in Fig. 2(b) is still close to the Wigner-Dyson value and
thus too far from the asymptotic (L — oco) Poisson value. The
fact that the size L = 8 is too small for being taken into account
in a quantitative extrapolation to the thermodynamic limit is
also clear from the inset of Fig. 3. While curves at large L
show there a maximum at a disorder of order of the critical one
W.(L), there is still no trace of this maximum for L = 8.
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FIG. 3. Many-body eigenstate IPR P, of a 1D spin chain (1) with @ = % as a function of disorder W for various system sizes L. (a) —In P,
as a function of W without rescaling. At not too large W the system reaches ergodicity for given system sizes. For large W the system is still in
the localized phase for these values of L. Inset: —In P, as a function of W for various L. The behavior given by Egs. (17) and (16) is manifest
at large W. (b) —In P,/L*~? as a function of the rescaled disorder W, [Eq. (13)]. A slowly drifting crossing point is observed that is expected

to converge to the critical value W, in the limit L — oo (see Fig. 4).

V. CRITICAL REGIME

In this section, we briefly discuss the phase diagram of
Fig. 1 and in particular the expected width of the critical
regime around W,.. As has been explained above, the system is
expected to be in the delocalized (respectively, localized) phase
in the large-L limit if W, is smaller (respectively larger) than
W.,.. Letus consider the value of W, close (but not equal) to the
critical value W,.. Using the approximate mapping to the RRG
model, we then expect the emergence of a large correlation
length ¢ in the Hilbert space of the problem that diverges at
the transition point according to a power law:

C(Wy) ~ (W, — W*c)iﬂlv Wi > W

é‘(W*) ~ (Wye — W*)_Dd’ W < Wee 21

where we have allowed for two different exponents ¥; and ¥,
on the localized and delocalized sides of the transition.

The length ¢ determines the “correlation volume” in the
Hilbert space. In the RRG model with connectivity K the
correlation volume is ~ K¢ . In view of the analysis of Sec. IIL A,

5
4+ e —m *
* ’,———‘f—ﬂ
—~ 3t -
3 -
~— - ®
% -
§27 o7 i
° -7
1k //’ |
0 . . . . . . .
9 10 11 12 13 14 15
L

FIG. 4. Position of the crossing point in r(W,) curves [Fig. 2(b),
circles] and In P,(W,)/L*~? [Fig. 3(b), stars]. Extrapolation of the
positions of the crossing point to L — oo according to W,(L) =
W, — const L™2 (see text in Sec. IVB for more detail) renders an
estimate for the position of the critical point in the thermodynamic
limit: W, ~ 4.3 (shown by horizontal line).

we will use Kqp ~ LY as an effective coordination num-
ber. Equating Kgff to the Hilbert space volume given by
Eq. (18), we find the condition for the boundary of the critical
regime,

(22)

where ¢ is given by Eq. (21). This regime around the critical
line is shown in Fig. 1 by gray color. If we move along a line
of fixed W, close to W, on the phase diagram (dashed lines
in Fig. 1), we will be first in the critical regime but then [when
the length L will exceed the one determined by Eq. (22)] we
will end up in either the localized or delocalized phase. In this
sense, the MBL localization transition at W, = W,.. becomes
sharp in the thermodynamic limit L — oo, in full analogy with
conventional localization transitions.

Equations (21) and (22) give for the finite-size correlation
length in the real space £ o ¢!/¢, implying critical indices
V;.g = V1.4/d (up to logarithmic corrections). For the case of
the RRG model, ¥, = 1 and ¥; = % which would yield values
of vy 4 in conflict with Harris criterion v > 2/d (see Ref. [75]
for discussion of Harris criterion for the MBL transition).
Apparently, the actual values of v;; describing asymptotic
scaling in the vicinity of the transition are different from
those suggested by the RRG model. The origin of the failure
of the mapping to RRG for description of the true critical
behavior becomes clear from counting the independent random
parameters in both models. Specifically, the number of random
variables in the Hamiltonian (1) is power law in the system
size, whereas it is exponential in the RRG counterpart. The
fluctuations related to finite system size are in fact stronger in
the model (1) which should lead to larger values of v; ;. We
note, however, that numerical works on MBL transition in 1D
systems with short-range interaction yield critical indices v
in the range 0.5-1 [8,10], also in a strong conflict with Harris
criterion. The tentative resolution of this apparent contradiction
is that the true asymptotic behavior shows up only in quite
large systems L = 500-5000 [75]. In view of this, we use RRG
critical index v; = % while estimating the critical disorder W,
from finite-size data in Fig. 4.
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VI. SUMMARY AND OUTLOOK

To summarize, we have analyzed the many-body delo-
calization transition in systems with long-range interactions
decaying with a distance according to a power law 1/r®
with d < o < 2d, where d is the spatial dimensionality. We
have argued for similarity between this problem and that of
Anderson localization on RRG and found the scaling for the
critical disorder with the system size: W.(L) o< L?**~*In L. In
the large-L limit, the system exhibits a sharp MBL transition
as a function of the reduced disorder W, given by Eq. (13). We
have also studied the IPR of the many-body wave functions
and demonstrated their fractal behavior in the localized phase
as well as at the critical point.

We have complemented the analytical considerations by
exact-diagonalization numerical study of 1D chain withe = %
Specifically, we have studied the energy level statistics as
well as the many-body eigenfunction statistics (IPR). These
results confirm the analytical expectations for the scaling
parameter W, controlling the MBL transition, and we have
numerically estimated the transition point W,.. Further, the
numerical results support the expected behavior in the localized
and delocalized phases. In particular, in the localized phase
W, > W,. and at criticality W, = W,., the level statistics
evolves with increasing L towards the Poisson form and the
IPR has a fractal scaling. On the other hand, in the delocalized
phase W, < W,,, the level and eigenfunction statistics evolve
towards ergodicity at large L. Of course, since system sizes L
that can be treated by exact diagonalization are not too large, a
quite broad window about the critical value W, still belongs
to the critical regime for such L.

Let us stress that the approximate mapping to RRG (in
the many-body Hilbert space) is not at all trivial. Indeed, as
has been mentioned in Sec. V, the Hamiltonian (1) depends
on ~L% random variables, whereas onsite energies of RRG
are ~2- random variables. This implies strong correlations
between the energies in the actual many-body problem which
are not present in the RRG model. If the second term in Eq. (2)
is neglected, these correlations would prevent the system from
ergodization even in the presence of pseudospins of the size
~L. Tt is the spectral diffusion that strongly reduces the effect
of these correlations, restoring the similarity to RRG.

On the experimental side, our results are relevant to a variety
of realizations of disordered many-body systems with power-
law interactions (see references in Sec. I). We hope that the
future experimental work will allow to study the scaling of the
position of MBL transitions in these systems with the system
size as well as the physical properties around the transition.
It is well known that experimental investigations of MBL
transitions represent a highly nontrivial and challenging task.
However, recent years have witnessed impressive advances in
this direction. This includes also measurements of statistical
properties of many-body energy levels and eigenstates that
were considered in our paper. In particular, the statistics for
many-body energy levels was studied experimentally in a
system of superconducting qubits in Ref. [29]. A crossover
from the Wigner-Dyson to the Poisson statistics was observed,
which serves as a hallmark of the MBL transition. A complete
experimental characterization of many-body eigenstates via
expansion over the basis states is also possible for not too large

systems. In the experiment of Ref. [76], such a full quantum
state tomography has been carried out for a many-body state
of eight trapped ions. As the number of basis states grows
exponentially with the system size L, this method is restricted
torelatively small systems, which are at the same time available
to exact numerical diagonalization.

Remarkably, the IPR of many-body states can be ex-
perimentally studied even for much larger systems. Indeed,
recent experiments demonstrated coherent quantum evolution
in many-body systems of 53 trapped ions [77] and 51 atoms
[78], which can be described by Hamiltonians of coupled spins
%. In these setups, measuring all coefficients in the expansion
of a many-body state over the complete basis is impossible in
view of a huge number of the basis states, N/ ~ 250 ~ 1015,
However, a projection of the quantum state to certain selected
basis states has been measured via single-shot state detection.
In this way, one can prepare the system initially in a given
basis state | (0)) = |u) and then measure the probability of
return of the quantum state (which develops according to the
full many-body Hamiltonian) to the same basis state after a
time 7:

C@t) = [P O)YO). (23)
Expanding [v(¢)) in exact eigenstates |i), one gets
C(ty =Y e "B (i) P (k) . (24)
jk

In the long-time limit, we can discard oscillatory terms, which
yields the IPR in the many-body Hilbert space:

Clt - o00) =Y _|(jlm* = P} (25)
J

In fact, there is a slight difference in the definition of IPR
between Eqs. (14) and (25): the former one corresponds to
expansion of a given exact many-body state over the Fock-
space basis state, while the latter is a dual quantity. This
difference is not essential, however, when the average value
is calculated.

Therefore, experimental determination of IPR P, can be
carried out via single-shot measurements of the many-body
return probability C(¢). This is feasible, as long as P; is not
too small, since one has to perform the measurement '\4P2_1
times. We have shown, however, in this paper that the critical
point of the MBL transition in the problem with power-law
interaction is similar to the localized phase and, in particular,
the IPR at criticality is not too small [see Eq. (19)]. This makes
an experimental investigation of IPR in the critical point as
well as in its vicinity feasible even for quite large systems. As
a model example, let us consider a 1D system with interaction
exponent o = % (as studied numerically in our work). Let us
assume that we perform the measurement of the order of 10*
times (as in Refs. [77,78]), i.e., can measure P, as long as
it is larger than ~10~*. Using Eq. (19), we estimate that P,
at criticality can then be measured for systems with length
up to L ~ 7000, despite the fact that the total volume of
the Hilbert space V' = 2% for such systems is astronomically
large, N/ ~ 27090 ~ 102900 Ag a second example, we consider
a 2D system with dipole-dipole interaction, « = 3. Repeating
the same estimate, we find that P, at the MBL transition
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FIG. 5. Evolution of the critical disorder W, of the ergodization
transition with the power-law-interaction exponent «. The range d <
a < 2d is considered in this work, and the corresponding critical
disorder is given by Eq. (12). Extreme cases are the limits of infinite-
range interaction (¢ = 0, quantum dot) and of short-range interaction
(v = 00). In the range 0 < o < d, the mechanism of ergodization
is analogous to that in the quantum dot (¢ = 0) model discussed in
Ref. [14]. In the range 2d < o < 00, the delocalization is expected to
take place due to rare ergodic spots [79,80]. See text for more detail.

can be determined for system sizes up to L ~ 30, i.e., with
spatial volume up to L ~ 1000. (Again, the total volume of
the Hilbert space for such systems is enormous, N = 2L% ~
10°%.) Our estimates thus show that the study of IPR around
the MBL transition in systems with long-range interaction is
in principle possible in rather large systems. The fact that
systems with ~50 qubits have already been experimentally
implemented as well as the rapid progress in this field allow us
to hope that such measurements can be carried out in a not too
far future. In addition to analysis of the eigenfunction statistics,
the MBL transition in system with power-law interaction can be
experimentally detected also by investigation of other physical
observables such as, e.g., the spin relaxation or the energy
transport.

We also hope that our work will pave the way for more
detailed theoretical studies of the MBL transitions. The mech-
anism of the transition in the model addressed in this work
appears to be somewhat simpler than in quantum dots and in
spatially extended systems. This manifests itself in a particu-
larly close connection with the Anderson transition on RRG.
Nevertheless, this connection is not rigorously understood
at this stage yet. This, in particular, applies to the critical
exponents v, and v; (see Sec. V).

It is worth mentioning another interacting model with
power-law decaying terms, which has been studied in Ref. [81].
This is PRBM model (see Sec. II), supplemented by short-
range interaction. As numerical results suggest, the critical
value of the exponent « for this model is larger than nonin-
teracting critical value o = 1. It might be interesting to study
the delocalization transition in that model as well as possible
relations with the model studied in this work.

Before closing, let us briefly discuss what happens with the
MBL transition for other values of the power-law interaction
exponent «. We recall that in this work we focused on the range
d < o < 2d.In general, one can vary « between 0 and co. The
limit ¢ = 0 corresponds to an infinite-range interaction, i.e., to
a spin quantum dot model where all interaction matrix elements
are of the same order. The opposite limit « = oo corresponds
to a model with short-range interaction. The mechanism and
the scaling of the ergodization transition (delocalization in the
many-body Hilbert space) in the spin quantum dot model was
considered in Ref. [14]. A direct extension of the analysis in
that work to the range 0 < o < d yields W, ~ L2~ In* L,
where the index p < 1 (that can depend on «) remains to be
found. A lower bound on u can be found using the approach of
Ref. [14]. The mechanisms of ergodization for 0 < o < d and
d < o < 2d bear some similarity: in both cases the transition
takes place, up to logarithmic factors, when first pseudospins
of size ~L emerge. However, the spectral diffusion, which
plays a key role for establishing ergodicity, is more efficient
ford < o < 2d thanfor 0 < o < d, which makes the analysis
for 0 < o <d and in particular the determination of the
exponent p more difficult. For faster decaying interaction
2d < a < 00, the delocalization mechanism considered in this
work is not operative any more. There exists, however, another
delocalization mechanism, the one related to rare ergodic
spots [79,80]. (We have not discussed it above since in the
regime o < 2d the delocalization mechanism considered in
our work is much more efficient.) That mechanism is expected
to establish ergodization in the large-L limit (at fixed W) for
systems with o > 2d. To estimate the corresponding W,.(L),
we note that delocalization via the mechanism of Refs. [79,80]
in the power-law interaction model will happen if an ergodic
spot of volume V ~ In W emerges. This will be the case if all
random energies €; within this spot are of order of unity, which
yields a probability of such a rare event ~ exp(—const In> W).
Thus, the critical length L.(W) can be estimated as L. ~
exp(const In?> W). Equivalently, we get an estimate for L-
dependent critical disorder W, ~ exp(const In'/? L). The esti-
mated behavior of W,(L) in the full range of « is summarized
in Fig. 5.
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