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and vibrational properties including quantum and anharmonic effects
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We study the structural and vibrational properties of the high-temperature superconducting sulfur trihydride
and trideuteride in the high-pressure Im3̄m and R3m phases by first-principles density-functional-theory
calculations. On lowering pressure, the rhombohedral transition Im3̄m → R3m is expected, with hydrogen-bond
desymmetrization and occurrence of trigonal lattice distortion. With both Perdew-Burke-Ernzerhof (PBE) and
Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional, in hydrostatic conditions we find that, contrary to
what is suggested in some recent experiments, if the rhombohedral distortion exists it affects mainly the hydrogen
bonds, whereas the resulting cell distortion is minimal. We estimate that the occurrence of a stress anisotropy
of approximately 10% could explain this discrepancy. Assuming hydrostatic conditions, we calculate the critical
pressure at which the rhombohedral transition occurs. Quantum and anharmonic effects, which are relevant in
this system, are included at nonperturbative level with the stochastic self-consistent harmonic approximation.
Within this approach, we determine the transition pressure by calculating the free-energy Hessian, a method
that allows to estimate the critical pressure with much higher precision (and much lower computational cost)
compared with the free-energy “finite-difference” approach previously used. Using PBE and BLYP, we find that
quantum anharmonic effects are responsible for a strong reduction of the critical pressure with respect to the
one obtained with the classical harmonic approach. Interestingly, for the two functionals, even if the transition
pressures at classical harmonic level differ by 83 GPa, the transition pressures including quantum anharmonic
effects differ only by 23 GPa. Moreover, we observe a prominent isotope effect, as we estimate higher transition
pressure for D3S than for H3S. Finally, within the stochastic self-consistent harmonic approximation, with PBE we
calculate the anharmonic phonon spectral functions in the Im3̄m phase. The strong anharmonicity of the system
is confirmed by the occurrence of very large anharmonic broadenings leading to complex non-Lorentzian line
shapes. Generally, for the high-energy hydrogen bond-stretching modes, the anharmonic phonon broadening is of
the same magnitude of the electron-phonon one. However, for the vibrational spectra at zone center, accessible,
e.g., by infrared spectroscopy, the broadenings are very small (linewidth at most around 2 meV) and anharmonic
phonon quasiparticles are well defined.
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I. INTRODUCTION

High-temperature superconductivity in compressed hydro-
gen sulfide has been recently reported, with a record critical
temperature Tc above 200 K at P � 150 GPa [1]. This
discovery, which had been anticipated by ab initio calculations
[2], stimulated a number of experimental [3–8] and theoretical
studies [8–18] aiming at characterizing this fascinating com-
pound. Even if it seems established that the electron-phonon
mechanism and strong anharmonic effects are the key factors in
determining the high superconducting critical temperature, the
pressure phase diagram of the H-S system is still controversial,
mainly due to conflicting experimental results.

*raffaello.bianco@roma1.infn.it

The overall consensus is that H2S, the only stable stoi-
chiometry formed by hydrogen and sulfur at ambient con-
ditions, decomposes at high pressures giving rise to several
H-S compounds, typically sulfur and hydrides with a larger
hydrogen content. Indeed, at high pressure H2S is a potential
superconductor, but with a relatively low Tc (around 80 K
[19]), and is metastable. The experimental observation of a
rapid increase of Tc on pressure above approximately 150 GPa
[1] has been attributed to the decomposition of H2S and the
formation of H3S through the 3H2S → 2H3S + S decompo-
sition. Theoretical calculations show that the decomposition
of H2S into H3S + S is energetically favored already at low
pressures and that a 200-K superconductivity is consistent with
the H3S stoichiometry assuming the conventional electron-
phonon pairing with anharmonic phonons [8–14]. Interme-
diate “Magnéli” phases emerging between the H2S to H3S
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FIG. 1. Crystal structure in the conventional bcc cell of the Im3̄m

phase (right) and of a R3m phase (left) of H3S. In the R3m structure,
the H-S covalent bond of length d1 is marked with a solid line and
the longer H · · · S hydrogen bond of length d2 with a dotted line. In
the Im3̄m phase d1 = d2. Blue and pink spheres represent S and H
atoms, respectively.

decomposition seem to explain the rapid soar of Tc on pressure
loading [11].

First-principles structural prediction simulations within
density functional theory (DFT) and the Perdew-Burke-
Ernzerhof (PBE) parametrization for the exchange-correlation
functional yield a phase diagram for H3S consisting of a
Cccm → R3m → Im3̄m sequence [2]. The Cccm → R3m

transition is predicted at approximately 110 GPa and the
transition to the Im3̄m at 180 GPa. Other predictions give
the same phase diagram above 110 GPa, but a C2/c phase
below [8]. H3S becomes metallic after the Cccm → R3m or
C2/c → R3m transition, once the H2S and H2 units present
in both Cccm and C2/c structures are broken. In the Im3̄m

phase, the sulfur atoms of H3S are arranged in a body-centered-
cubic (bcc) lattice and each hydrogen atom resides halfway
between two adjacent sulfur atoms, forming symmetric straight
S-H-S bonds. The R3m phase is obtained from Im3̄m with a
displacive transition that reduces the cubic symmetry with a
rhombohedral distortion. This distortion, however, is estimated
[10] to have a small impact on the position of the sulfur atoms,
which remain essentially unaffected on a bcc lattice, whereas
the hydrogen atoms are shifted from symmetric positions in
the S-H-S bonds (see Fig. 1).

Early x-ray diffraction (XRD) measurements [3] confirmed
the bcc arrangement of the S atoms at high pressure, but
could not distinguish between the R3m and Im3̄m phases, as
H atoms are very weak scatterers and their position cannot
be determined. However, the pronounced kink observed at
150 GPa in the pressure dependence of Tc could signal the
occurrence of a phase transition (widely reputed of second
order), possibly the R3m → Im3̄m transition [3]. Two more
recent experimental works that use as direct reactants H2 and
S in order to synthesize perfect crystallized samples with
H3S stoichiometry (as opposed to the use of H2S as reactant
in the previous experiments) show surprising, and somewhat
contradicting, results (however, the disagreement might be
due to the different pressure used for the synthesis of H3S

and the large kinetic barriers that yield large metastability
regions). In the first place, Goncharov et al. [5] confirm
the pressure-induced destabilization of H2S in favor of H3S
and the theoretically predicted Cccm-R3m-Im3̄m structural
sequence. In these experiments, the cubic Im3̄m was directly
synthesized at large pressure, and subsequent pressure release
led to the appearance of a rhombohedral distortion compatible
with the R3m phase. The R3m remained metastable down to
70 GPa, where it transformed upon annealing to the Cccm.
However, contrary to what is expected, the trigonal lattice
distortion observed around 110 GPa was very large compared
to the calculations [2,10], although the authors admit the
possibility that it could be a consequence of nonhydrostatic
pressure conditions. Second, Guigue et al. [7] provide evidence
supporting that H3S is the stoichiometry of the sulfur hydride
observed at high pressures (above 75 GPa) but, quite surpris-
ingly, they only observed the orthorhombic Cccm phase up to
160 GPa, thus contradicting the expected Cccm-R3m-Im3̄m

sequence and suggesting that a metallic transition to the R3m

or Im3̄m could happen at higher pressures or that the system
can be trapped in a Cccm metastable phase. Several other
hypotheses are also proposed by the authors in order to account
for this result, essentially based on the possibility that the
experimental high-pressure XRD patterns, usually ascribed
to H3S, belong to the diffraction pattern of a compound with
another stoichiometry.

In this paper, we present a detailed theoretical first-
principles analysis of the structural and vibrational properties
of high pressure H3S and D3S in the Im3̄m and R3m phases.
All the force-energy and linear response harmonic calculations
have been performed with the density-functional-theory (DFT)
method, within the generalized gradient approximation (GGA)
for the exchange-correlation functional. We mainly utilize
the Perdew-Burke-Ernzerhof (PBE) parametrization for GGA
(see Appendix B). The choice of PBE is motivated by the
better agreement between the theoretical and experimental
equation of state, if compared with other functionals (see
Ref. [10]), coherently with the fact that PBE is known to
correctly reproduce the compression curve of hydrides [20,21].
However, in order to estimate the impact on the results of
the approximations inherent to DFT, in several cases we
also present results obtained with the Becke-Lee-Yang-Parr
(BLYP) parametrization of GGA.

With harmonic calculations including zero point motion
we analyze if the occurrence of a Im3̄m → R3m transition
can effectively have a strong impact not only on the H
atoms positions, but also on the bcc arrangement of the S
atoms. We also analyze the role that nonhydrostaticity can
play. We then study H3S at high pressure in the conventional
hydrostatic setting and, in order to fully include anharmonic
and quantum effects, we utilize the stochastic self-consistent
harmonic approximation (SSCHA) [22,23]. We apply the
SSCHA extension presented in Ref. [24] to evaluate, with the
free-energy Hessian, the transition pressure Pc between the
Im3̄m and R3m phases. In Ref. [10] the SSCHA was already
applied to evaluate the critical pressure of the Im3̄m → R3m

transition, but explicitly estimating the free-energy difference
between the two phases. This direct approach, however, is
computational demanding as it requires, in principle, separate
SSCHA calculations for several average atomic positions along
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selected distortion paths. Moreover, SSCHA calculations in
low-symmetry phases are more delicate than SSCHA calcu-
lations in the high-symmetry phase because at low symmetry
it is necessary to consider a large number of configurations to
reduce the statistical uncertainly and obtain reliable converged
estimations of the free energy. Indeed, in Ref. [10] explicit
SSCHA calculations in the low-symmetry phases where per-
formed only for two volumes (more details in Sec. III). On
the contrary, with the free-energy Hessian method adopted
in this work, for each volume we have complete and direct
access to the lattice instability of the system with workload
almost comparable with the one of a single SSCHA free-
energy calculation in the high-symmetry phase. This allows to
calculate the critical pressure Pc with much higher precision
than any “finite-difference” approach. Finally, in order to
facilitate the comparison with experimental results, we apply
the SSCHA dynamical extension of Ref. [24] to calculate the
anharmonic phonon spectral functions and dispersions.

The paper is structured as follows. In Sec. II, we analyze
the extent of the trigonal lattice distortion expected in the
Im3̄m → R3m rhombohedral transition, and we estimate the
effect of nonhydrostatic pressure. In Sec. III, under hydrostatic
pressure conditions, we compute the critical pressure Pc of
the Im3̄m → R3m transition for H3S and D3S, within the
SSCHA free-energy Hessian method [24]. In Sec. IV, we use
the SSCHA dynamical ansatz [24] to calculate the anharmonic
phonon spectral properties of H3S (D3S) in the high-pressure
Im3̄m phase. In Sec. V, we summarize our results and draw
some final conclusions. The paper is completed with two
appendices. In Appendix A, we summarize the theoretical
method used. In Appendix B, we describe the computational
details of the calculations and the results of the convergence
tests.

II. EXTENT OF THE TRIGONAL LATTICE DISTORTION
AND EFFECT OF NONHYDROSTATIC PRESSURE

At very high pressure, hydrogen sulfide is expected to
be in the trihydride stoichiometry with metallic structure
R3m/Im3̄m. R3m is a rhombohedral modification occurring to
the Im3̄m bcc phase at lower pressures, with asymmetric H-S
bonds. In Fig. 1 we show these two structures. DFT calculations
suggest that the rhombohedral distortion essentially involves
only the position of the hydrogen atoms [10], i.e., that the
trigonal angle of the S atoms in the R3m structure is very
close to the bcc one, as in Im3̄m. However, recent measure-
ments challenge this picture and report a large trigonal lattice
distortion at pressures below 110 GPa (see Fig. 2 in Ref. [5]),
with a trigonal angle ϑ such that cos ϑ � −0.324. The trigonal
angle can be given in terms of the hexagonal ahex and chex

lattice parameters used in Ref. [5] as cos ϑ = [2(chex/ahex)2 −
3]/[2(chex/ahex)2 + 6]. Ultrahigh pressure experiments for sul-
fur hydrides are performed with confinement in a diamond
anvil cell (DAC). The experimental setting is very delicate and
special care is required in order to reach hydrostatic conditions.
Undesired nonhydrostatic pressure conditions can appear in
experiments, which could be at the origin of such trigonal
distortion [5]. Motivated by these considerations, we calculate
within DFT-PBE the total energy and the stress anisotropy
of H3S in the orthorhombic phase R3m as a function of the

trigonal angle ϑ at fixed volume. Here, the stress anisotropy is
measured by the difference σ‖ − σ⊥, where (σ‖,σ⊥,σ⊥) are the
eigenvalues (principal stresses) of the stress tensor σij in the
R3m phase (notice that two of them are equal by symmetry).
For each cell configuration, the internal atomic positions have
been relaxed until the forces acting on them are zero (thus, ϑ

is the only free parameter).
The volume is kept equal to 110 a3

0 , where a0 = 0.5292 Å;
is the Bohr radius. With PBE, in hydrostatic conditions this
volume corresponds to a (theoretical) pressure of 100 GPa.
According to Fig. 2 in Ref. [5], at this pressure the system
should be in equilibrium with a trigonal angle ϑ∗ quite smaller
than the bcc one ϑbcc (cos ϑbcc = − 1

3 , cos ϑ∗ � −0.324). As
we can see from Fig. 2, this contradicts the results of our
DFT calculations. At this volume, the most stable structure
has isotropic stress and a trigonal angle ϑmin which is very
similar to the bcc one, only slightly larger (cos ϑmin � −0.334).
It is worthwhile to recall that, at this pressure, even with ϑbcc

the atoms relax in a configuration with R3m space group that
breaks the S-H-S bond symmetry, i.e., a configuration different
from Im3̄m. In order to obtain the experimentally observed
angle ϑ∗ it is necessary to apply a significant stress anisotropy
of σ‖ − σ⊥ ∼ 10 GPa, thus an anisotropy of around 10%.
This conclusion is strengthened if we include the vibrational
contribution to the energy. Indeed, the configuration with ϑ∗
is even more unstable when the harmonic zero-point energy
(ZPE) contribution is included (see Fig. 2). The result is
also robust with respect to the DFT exchange-correlation
functional. Indeed, as shown in Fig. 2, similar results are
obtained with the BLYP parametrization for GGA. Notice that
with this functional, in order to have theoretical pressure of
100 GPa (in hydrostatic conditions), we keep the volume equal
to 115 a3

0 .
In conclusion, the results obtained in our calculations

confirm the small distortion of the bcc lattice occurring in a
Im3̄m → R3m transition and indicate that it is a nonhydro-
static pressure, occurred in the experiment, that could have
caused the large rhombohedral distortion observed [5].

III. CRITICAL PRESSURE OF THE RHOMBOHEDRAL
PHASE TRANSITION

In the previous section, we numerically confirmed that,
as obtained in previous DFT calculations, in hydrostatic
conditions if at high pressure the transition Im3̄m → R3m

occurs, then it has small impact on the positions of sul-
fur atoms, which essentially remain in a bcc configuration.
However, while there is quite a wide theoretical consensus
on this aspect of the rhombohedral displacive transition of
H3S, the transition pressure Pc at which it would occur is
still uncertain. This is mainly due to two nontrivial aspects
that have to be considered. First, the quantum nature of the
proton, which can crucially affect the structural and physical
properties of hydrogen compounds. That is particularly true
for the transition R3m → Im3̄m, where a symmetrization
of the hydrogen bond occurs, similar to the quantum proton
fluctuations leading to the symmetrization of hydrogen bonds
in ice X [25,26]. Moreover, since H has a very light mass and
we deal with a phase transition, anharmonic effects become
crucial as already determined in recent works [9,10]. Motivated
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FIG. 2. Lower panels: total energy (per unit cell) of H3S in the R3m phase (with respect to the energy minimum) as a function of cos ϑ ,
where ϑ is the trigonal angle. The calculation including the ZPE at the harmonic level is also shown. Upper panels: stress anisotropy σ‖ − σ⊥
as a function of cos ϑ (σ‖,σ⊥,σ⊥ are the eigenvalues of the stress tensor). The calculations are performed with PBE, in the left column, and
with BLYP, in the right column. The volume V is kept fixed at 110 a3

0 , in the first case, and at 115 a3
0 , in the second case (a0 is the Bohr radius).

In hydrostatic conditions, these volumes correspond to a theoretical pressure of 100 GPa, for the two functionals. For each angle, the internal
positions are relaxed until the forces acting on atoms are less than 10−3 Ry/a0. The angle ϑbcc corresponds to the body-centered-cubic (bcc) cell
(cos ϑbcc = − 1

3 ). The energy minimum is obtained with the angle cos ϑmin � −0.33376 in the PBE case, and cos ϑmin � −0.33359 in the BLYP
case. The ϑ∗ angle measured in the experiment of Ref. [5] at pressures below 110 GPa (cos ϑ∗ � −0.324) is marked for comparison.

by these considerations, we apply the stochastic self-consistent
harmonic approximation (SSCHA) [22].

In the classical harmonic approach, the equilibrium position
R(0)

eq is the configuration for which V (R), the potential energy
felt by the nuclei (in the Born-Oppenheimer approximation),
has the minimum (with bold symbols we indicate quantities in
component-free notation). Therefore, in R(0)

eq the derivative of
V (R) (i.e., the classical atomic forces) is zero and the harmonic
dynamical matrix (i.e., the Hessian of V (R) in R(0)

eq divided by
the square root of masses)

D(0)(q) = M− 1
2

∂2V

∂ R∂ R

∣∣∣∣
R(0)

eq

M− 1
2 (1)

is positive definite. Here, M is the mass matrix and q is a vector
of the Brillouin zone (we are explicitly taking advantage of

crystal lattice periodicity). On the contrary, if in a configuration
(typically having high symmetry) the forces are zero but
the Hessian in V (R) has negative eigenvalues, that means
that the considered configuration is a local maximum for
V (R). In that case, the considered configuration is structurally
unstable towards other configurations (typically having lower
symmetry), for displacements defined by the corresponding
negative eigenvectors. Notice that this approach is “classical”
as it neglects the quantum contribution from the kinetic term
of the nuclei Hamiltonian, i.e., it treats the nuclei as classical
particles.

For a full quantum approach, the total energy has to
include not only the potential energy, but also the kinetic
term. Moreover, to take into account thermal effects, more in
general the free energy has to be considered. The SSCHA is
a variational method that allows to evaluate F (R), the free
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energy of the system as a function of the average atomic
position R, taking into account quantum, anharmonic effects.
F (R) has the minimum in the equilibrium configuration Req.
Therefore, in Req the first derivative of F (R) (i.e., the average
forces acting on atoms) is zero, and

D(F )(q) = M− 1
2

∂2F

∂R∂R

∣∣∣∣
Req

M− 1
2 (2)

is positive definite. The Hessian of F (R) inReq, divided by the
square root of masses [Eq. (2)] is the (temperature-dependent)
free-energy-based quantum, anharmonic generalization of the
harmonic dynamical matrix (1). Analogously to the classical,
harmonic case, also in this more general context it is possible
to find configurations that are local maxima of F (R). In these
configurations, the average forces are zero but the Hessian of
F (R) has negative eigenvalues, meaning that system config-
uration is not stable and the atoms move with displacements
defined by the corresponding negative eigenvectors. Therefore,
according to Landau’s theory [27], following the evolution of
the Hessian of F (R) in a high-symmetry configuration, as
a function on temperature or other external parameters, it is
possible to study the occurrence of structural (second-order)
phase transitions.

In principle, the Hessian matrix of F (R) in a high-
symmetry configuration could be evaluated with SSCHA
by finite differences, like in a frozen-phonon approach, i.e.,
calculating the variation of the SSCHA free energy for finite
displacements of the atoms along specific distortion patterns.
However, this approach would require separate SSCHA cal-
culations for several average atomic positions having lower
symmetry. As a consequence, in order to reduce the statistical
error and obtain reliable converged results, a huge number
of calculations should be performed. On the contrary, in this
paper we adopt the method introduced in Ref. [24]. This
approach allows to compute the full free-energy Hessian
matrix with a single SSCHA calculation in the high-symmetry
phase, with workload comparable with the one of a simple
SSCHA free-energy calculation. In this way, we have access
to a complete picture of all the possible second-order lattice
instabilities of the system, i.e., by diagonalizing that matrix
we can find the values of the critical parameters and the
corresponding instability patterns without any extra ad hoc
assumption on the expected low-symmetry phases [24]. A
brief summary of the theoretical method used is reported in
Appendix A.

We perform harmonic and SSCHA calculations for several
unit-cell volumes. First, we use DFT with PBE for both the
energy-force calculations used by the SSCHA and for the
linear response calculations of the harmonic approximation.
Since we are interested in the low-temperature regime at
which thermal fluctuations are negligible, we perform the
SSCHA calculations at 0 K, i.e., with SSCHA we calculate
the quantum anharmonic ground-state energy. For a given
average configuration R, the difference between the Born-
Oppenheimer (BO) static (i.e., classical) energy V (R) and
the SSCHA quantum (anharmonic) ground-state energy F (R)
defines the quantum (anharmonic) zero-point energy (ZPE)
EZPE(R) = F (R) − V (R). As anticipated in Sec. I, the SS-
CHA has already been used to estimate the critical pressure

of the Im3̄m → R3m transition in Ref. [10], by directly
evaluating the quantum anharmonic energy difference between
the high- and low-symmetry phases. In principle, such a direct
approach would require the calculation of F (R) for several
configurations, at different volumes. However, as said, it is
very challenging and computationally demanding to reduce
the statistical error of SSCHA calculations performed in the
low-symmetry phases. For that reason in Ref. [10], even if
the SSCHA quantum energy of the high-symmetry phase was
computed for several volumes, the SSCHA quantum energy of
the low-symmetry phase was effectively computed only for two
volumes (V = 97.85 a3

0, V = 102.11 a3
0) and, for each of them,

only for a single R3m configuration, the one corresponding to
the minimum of the one-dimensional double-well Im3̄m →
R3m distortion pattern of the BO energy. Subsequently, by
means of fits and observing the weak volume dependence of
the obtained zero-point energy curves EZPE(R), the critical
pressure was estimated. On the contrary, under the hypothesis
of a second-order phase transition, with the new approach no
SSCHA calculations in the low-symmetry phases are required,
nor it is necessary to select a priori specific distortion patterns
or make assumptions regarding the ZPE dependence from
external parameters (the volume, in this case). Indeed, with
a computational cost which is essentially comparable with
the one of the sole SSCHA quantum anharmonic energy
calculation in the high-symmetry phase, we can estimate
the critical pressure with much greater precision than the
previously adopted direct approach.

At very small volume (very high pressure), both R(0)
eq and

Req, i.e., both classical and quantum anharmonic equilibrium
configurations, are Im3̄m [2,9,10] (where atomic positions
are fixed, i.e., forces are zero, by symmetry). As a conse-
quence, D(0)(q) and D(F )(q), evaluated in the high-symmetry
phase Im3̄m, are both positive definite. Increasing the volume
(i.e., reducing the pressure) we observe a softening in the
eigenvalues of these two matrices. The softening is led by
an optical phonon at � with irreducible representation T1u,
which drives a second-order displacive transition to the R3m

phase (it can be verified through a symmetry analysis with the
AMPLIMODES code [28,29], for example). In order to ease the
comparison with experiments, in Fig. 3 we show, for D(0)(q)
and D(F )(q) calculated in Im3̄m, the squared frequency (i.e..
the eigenvalue) of the optical T1u mode at � as a function
of pressure. We convert the unit-cell volume V , used for the
calculations, to pressure P by using the appropriate theoretical
equation of state (EoS) at 0 K of Ref. [10]. For the eigenvalues
of D(F )(q), we use the fully quantistic EoS, P (V) = −∂F/∂V .
For the eigenvalues of D(0)(q), to be consistent with the fact
that in this case we are neglecting quantum effects, we use
the classical EoS, Pcl(V) = −∂V/∂V , i.e., we discard the ZPE
contribution (however, if we use also in this case the quantum
EoS we only shift the eigenvalue curve, almost rigidly, of
around +10 GPa). The data are fitted with cubic functions
in order to extrapolate the critical pressures, Pc for D(F ) and
P cl

c for D(0), at which the frequency becomes imaginary and the
transition to R3m is driven. Since the results are well fitted with
a low-order polynomial (all the calculated points are, within the
statistical error, on the fitting curves), with the obtained data we
can estimate with sufficient accuracy the transition pressures.
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(BLYP)

(PBE)

(PBE)

Free energy Hessian

Classical (Harmonic)

FIG. 3. Squared frequency of the T1u mode at � of H3S and
D3S in the Im3̄m phase, as a function of the pressure. The “Free-
energy Hessian” results are calculated by diagonalizing the free-
energy dynamical matrix D(F )(q) [Eq. (2)]. The “Classical” results
by diagonalizing the harmonic dynamical matrix D(0)(q) [Eq. (1)].
The calculations are performed with PBE and BLYP for H3S, and
with PBE for D3S, at constant volume. Subsequently, the volume is
converted to pressure by using the corresponding theoretical equation
of states. For the “Free-energy Hessian” results, we use the full
quantum equations of states at 0 K. For the “Classical” result, to
be consistent, we use the classical equation of states which does not
include the zero-point energy contribution (more details in the main
text). However, if the quantum EoS is used, the classical curve is only
shifted, almost rigidly, of around +10 GPa. For each calculation is
shown the value of the critical pressure at which the mode softens and
drives the transition to the R3m phase.

Therefore, we do not perform other calculations at pressures
closer to the transition in order to improve the accuracy of our
transition pressure estimation.

In the classical case, the critical pressure is identical for H3S
and D3S, with P cl

c = 173 GPa. Indeed, the harmonic dynamical
matrices for the two isotopes differ only for the square root
of the masses at denominator. Thus, they give the transition
at the same volume (and exactly at the same pressure too since
the classical equation of states without ZPE is the same for
both). When quantum effects and anharmonicity are properly
taken into account, the results are very different, confirming
the importance of going beyond the harmonic approximation.
The critical pressures drastically reduce, with Pc = 91 GPa and
Pc = 107 GPa for H3S and D3S, respectively (around 10 GPa
smaller than the ones presented in Ref. [10]). Therefore, the
Im3̄m phase dominates the pressure range within which the
high Tc is measured. Moreover, a consistent isotope effect
appears with a critical pressure 16 GPa larger for D3S, which
brings the result for the heavier isotope closer to the classical
limit.

In experiments, the observed kink in the pressure depen-
dence of Tc on pressure release, which could be ascribed to the
Im3̄m → R3m transition, is estimated to happen at 150 and
160 GPa for H3S and D3S [1,3], thus at pressures higher than
the critical pressure of the second-order Im3̄m → R3m tran-
sition obtained in our calculations (interestingly, notice that,
according to some structural research, H3S at P =112 GPa
should be already in the C2/c phase [8], thus before the
Im3̄m → R3m transition calculated here). Several hypotheses
can be formulated to account for this result. On the calculation
side, it could be tempting to ascribe the disagreement to a
failure of the self-consistent harmonic approximation (SCHA)
adopted here. However, this is not the case because the SCHA
is expected to overestimate, not underestimate, the critical
pressure. Indeed, at pressures below 173 GPa, at harmonic
level the system is unstable in Im3̄m and stable in a R3m

phase, as seen. Therefore, at these pressures the quantum
anharmonic contribution is more relevant in the Im3̄m high-
symmetry phase than in the R3m low-symmetry phase. As a
consequence, since the method is variational in the free energy,
at these pressures the SCHA underestimates the free-energy
difference between the nonsymmetric and symmetric phases,
i.e., underestimates the free-energy curvature in the symmetric
phase.

Still on the computational side, a more reasonable hypoth-
esis would be a failure of the DFT method used to perform
the energy-force calculations needed by the SSCHA. In order
to analyze this issue, we perform similar calculations for H3S
also with the BLYP parametrization of GGA. In this case, in
order to reduce the computational cost, we perform the SSCHA
calculations on a smaller supercell (2 × 2 × 2) than the one
(3 × 3 × 3) used for PBE. Indeed, from the tests performed
with PBE, we expect a result almost already converged with
this supercell size (details in Appendix B). Moreover, from
the PBE and BLYP harmonic results and the PBE-SSCHA
results, we can roughly estimate the BLYP-SSCHA transition
pressure before doing the calculations. We take advantage of
that information to perform the BLYP-SSCHA calculations
immediately close to the critical pressure and thus accurately
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describe the transition with few points. The results, included
the harmonic case, are shown in Fig. 3.

As we can see, even if at harmonic/classical level the BLYP
transition pressure increases of 83 GPa with respect to the PBE
case, with full quantum anharmonic calculations we obtain
with BLYP Pc = 114 GPa, a value of the transition pressure
only 23 GPa greater than the PBE one. Therefore, even with
BLYP the calculated critical pressure is very distant from
the experimental measurement of the pressure at which the
kink occurs. It is remarkable the different variation in the the
critical pressure, at harmonic and anharmonic levels, caused
by the change of functional used. That happens because the
whole Born-Oppenheimer potential shows a strong, complex,
functional dependence, in both the harmonic and anharmonic
regimes (i.e., for both small and large displacements around the
high-symmetry configuration). This confirms, once more, the
importance of taking into account anharmonic effects in order
to identify, for the chosen functional, the critical pressure at
which it forms a bound quantum state that breaks the cubic
symmetry.

On the experimental side, one possible interpretation of our
results is that the observed kink in the Tc(P ) curve is not related
to a Im3̄m-R3m phase transition. On lowering pressure,
the system in Im3̄m could undergo a very different, maybe
even not simply displacive, phase transition, and different
sulfur hydride stoichiometries could be involved. Indeed, it
is worthwhile to stress that a change of the position of the H
atoms is not known because the H atoms are not observable
through x-ray scattering experiments (whereas the S atoms,
as expected, appear essentially at rest through the transition,
as previously explained). However, another, more intriguing,
hypothesis is that nonhydrostatic experimental conditions have
induced the rhombohedral transition at higher pressures. In
that case, preserving the hydrostaticity during the pressure
unloading, it could be possible to obtain the transition and,
as a consequence, maintain the Tc at 200 K even at lower
pressures. Future experiments are thus required to shed light
on the high-Tc sulfur hydride behavior.

IV. SPECTRUM AND DISPERSION OF ANHARMONIC
PHONONS IN THE HIGH-PRESSURE BCC PHASE

New spectroscopic measurements in the proximity of the
observed phase transition could shed light on the structure
adopted by the high-pressure superconducting sulfur hydride
and solve the doubts discussed above. Motivated by this
consideration, in this section we use the dynamical ansatz
introduced in Ref. [24] to calculate, with SSCHA, the single-
particle spectrum of the anharmonic phonons, which can be
probed with inelastic scattering experiments (details about the
derivations in Appendix A). For the energy-force calculations
used by the SSCHA, we utilize the PBE functional. Here,
we consider σ (q,ω), the spectral function, in the point q of
the Brillouin zone, weighted with the factor ω/2π . In that
way, the ω integral over the real axis is normalized to the
number of modes, and, in the pure noninteracting SSCHA
case, the spectral function is equal to a set of Dirac delta
peaks centered at ±ωμ(q), where ω2

μ(q) are the eigenvalues

of D(S)(q). Namely,

σ (q,ω) = −ω

π
Im Tr[ω21 − D(S)(q) − �(q,ω + i0+)]−1,

(3)

where �(q,z) is the the self-energy of the noninteracting SS-
CHA quasiparticles, whose dynamics is described by D(S)(q).
The presence of peaks in the spectral function as a function of
ω signals the presence of collective vibrational excitations, i.e.,
phonon quasiparticles, having certain frequencies (energies).
The sharper the peaks, the more lasting are the quasiparticles,
their lifetime being inversely proportional to the peaks’ width.
Conversely, a broad spectral function means that anharmonic-
ity has removed the existence of sharply defined and long-lived
quasiparticles.

At this stage, we are not making any extra assumption
beyond the SSCHA itself and the dynamical ansatz. If we can
neglect the mixing between different SSCHA modes, we can
simplify Eq. (3) and obtain

σ (q,ω) =
∑

μ

1

2

[
1

π

−ImZμ(q,ω)

[ω − ReZμ(q,ω)]2 + [ImZμ(q,ω)]2

+ 1

π

ImZμ(q,ω)

[ω + ReZμ(q,ω)]2 + [ImZμ(q,ω)]2

]
(4)

with

Zμ(q,ω) =
√

ω2
μ(q) + �μμ(q,ω + i0+), (5)

where we are considering the principal value of the square
root and �μμ(q,z) is the diagonal part of the self-energy for
the SSCHA mode μ. Therefore, mode mixing is neglected
and the SSCHA modes keep their individual character in the
interaction, each of them being related to a specific, different,
contribution to the total spectral function.

The form of Eq. (4) resembles the superposition of
Lorentzians, but with frequency-dependent widths and shifts,
meaning that the actual form can be quite different from the
superposition of true Lorentzian functions. However, Eq. (4) in
some cases can be usually expressed with good approximation
as a sum of Lorentzians

σ (q,ω) =
∑

μ

1

2

[
1

π

�μ(q)

[ω − {ωμ(q) + 	μ(q)}]2 + [�μ(q)]2

+ 1

π

�μ(q)

[ω + {ωμ(q) + 	μ(q)}]2 + [�μ(q)]2

]
, (6)

where

	μ(q) = ReZμ(q,ω̃μ(q)) − ωμ(q), (7a)

�μ(q) = −ImZμ(q,ω̃μ(q)) (7b)

are the shift (with respect to the corresponding SCHA fre-
quency) and the half-width at half-maximum (HWHM) of the
μ mode, respectively, and ω̃μ(q) satisfies the self-consistent
relation

ReZμ(q,ω̃μ(q)) = ω̃μ(q). (8)
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Full Lorentzian Perturbative

FIG. 4. Phonon spectral function σ (q,ω) for H3S at 130 GPa and 0 K at N (q = [0.0,0.5, − 0.5] in 2π/a units, where a is the lattice
parameter). The yellow filled area indicates the result obtained with the full formula of Eq. (3). Since the mode mixing is negligible (for
symmetry) the same result is obtained with Eq. (4). The blue solid line indicates the spectrum calculated in the Lorentzian approximation
[Eqs. (8), (6), and (7)]. The center of these Lorentzians defines the anharmonic phonon frequencies. They are indicated with vertical lines in
the lower panel with gray background. The dashed magenta line indicates the spectrum in the SSCHA perturbative limit [Eqs. (6) and (9)].

It is worthwhile to stress that replacing Eq. (4) with Eq. (6) is a
further approximation beyond the mode-mixing negligibility.
It means, by construction, that each mode identifies an anhar-
monic phonon with definite energy (shifted with respect to the
corresponding SCHA quasiparticle energy) and lifetime.

Finally, when the SCHA self-energy is a small perturbation
of the SCHA free propagator (which, however, does not mean
that we are in a perturbative regime with respect to the harmonic
approximation), σ (q,ω) has the no mode-mixing Lorentzians
form of Eq. (6) with, in particular,

	μ(q) = 1

2ωμ(q)
Re�μμ(q,ωμ(q) + i0+), (9a)

�μ(q) = − 1

2ωμ(q)
Im�μμ(q,ωμ(q) + i0+). (9b)

We give an example of these different levels of approxi-
mations for the spectral function in Fig. 4, where we show
σ (q,ω) of H3S at 130 GPa, 0 K temperature, in the point N

of the Brillouin zone, i.e., in the point q = [0.0,0.5, − 0.5] in
2π/a units, where a is the lattice parameter. Since the spectral
function is an even function of ω, we plot this function only on
the positive axis. In the examined case, Eqs. (3) and (4) give the
same result (yellow area), i.e., the mode mixing can be safely
neglected, because of symmetry reasons. However, as we can
see comparing the yellow area with the solid blue line obtained
with Eqs. (8), (6), and (7), the spectrum is not Lorentzian
for all the modes. Only at low energies we have very narrow
peaks, well fitted by Lorentzians, whereas at high energies
the spectrum is very broad and we do not have well-defined
quasiparticles. We also show, with a dashed magenta line, the
spectrum corresponding to the SSCHA perturbative approach,
i.e., Lorentzians with shifts and widths given by Eqs. (9). As
expected, the result is not good. Even at low energies, where the

spectrum has the form of Lorentzians superposition, a better
result is obtained through the nonperturbative calculation of
shifts and widths.

The Lorentzian shape at low energies but a complex ex-
tremely broad feature at high energies are features present
in the phonon spectrum of the high-pressure Im3̄m phases
of H3S and D3S throughout the Brillouin zone. In Fig. 5
we show the anharmonic phonon dispersion for H3S and
D3S at three pressures in the Im3̄m phase and 0 K, along a
high-symmetry path of the Brillouin zone. They are calculated
through the Lorentzian approximation, i.e., the blue lines and
the blue areas indicate the centers ωμ(q) + 	μ(q) and the full
widths at half-maximum (FWHM) 2�μ(q) of the Lorentzians,
respectively. The figure confirms the general trend. At low
energy, we have well-defined phonons, i.e., very small widths.
At high energies, the widths are very large and we do not have
well-defined quasiparticles, the widths increasing as the critical
pressure is approached. Thus, the corresponding phonons have
very short lifetime and decay into the lower-energy ones. These
short-lived phonons are related to hydrogen, mainly to the
modes parallel to the H-S bonds (bond-stretching modes) as
it can be seen from the projected phonon density of states
in Ref. [9]. It is also interesting to compare the anharmonic
contribution to the phonon linewidth presented here with the
contribution due to the electron-phonon interaction calculated
in Ref. [9]. Remarkably, the hydrogen bond-stretching modes
also show the largest electron-phonon linewidth. The anhar-
monic contribution to the phonon linewidths of the high-energy
modes is similar in magnitude to the electron-phonon coupling
one (see Fig. 2 bottom panel in Ref. [23]), underlining once
more the crucial role of anharmonicity in this superconductor.
In Fig. 5 we also plot the H3S harmonic dispersion in the
same phase (Im3̄m symmetry). At the two lower pressures
considered, we observe imaginary harmonic phonons, i.e., the
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135 GPa158 GPa211 GPa

Anharmonic HarmonicFWHM
(H

arm
onic)

(A
nharm

onic)
(A

nharm
onic)

FIG. 5. Harmonic and anharmonic (at 0 K) phonon dispersions for H3S and D3S at three pressures (same pressure on each column) in the
Im3̄m phase. The blue lines and the blue areas in the anharmonic plots indicate the centers ωμ(q) + 	μ(q) and the full widths at half- maximum
(FWHM) 2�μ(q) of the Lorentzians calculated with Eqs. (6), (7), and (8).

Im3̄m phase is not stable in the harmonic approximation, as
already seen in Sec. III, Fig. 3. Indeed, at these pressures the
stable harmonic structure is R3m.

In Tables I, II, and III we list the anharmonic phonon
frequencies and the FWHM widths for the � = [0.0,0.0,0.0],
H = [−1.0,0.0,0.0], and N = [0.0,0.5, − 0.5] points of the
Brillouin zone (2π/a units). These results are obtained with the
Lorentzian approximation, thus the listed frequencies corre-
spond to ωμ(q) + 	μ(q) and the full widths at half-maximum
(FWHM) to 2�μ(q). Particularly interesting are the phonon
energies and widths calculated at �, these being directly
accessible with Raman and infrared scattering experiment [6]
(in the Im3̄m phase there are only infrared-active modes, in
the R3m phase there are Raman-active modes too). As we
can see, in � the lifetime of the anharmonic phonons remains

long, even quite close to the phase transition (linewidth at most
around 2 meV), i.e., the zone-center anharmonic phonons are
well-defined quasiparticles.

V. CONCLUSIONS

We have presented a DFT-based first-principles study of the
high-pressure superconducting hydrogen (deuterium) sulfide,
which has a record Tc of 203 K at approximately 150 GPa,
aiming to shed light on the existing experimental evidence
and clarify the phase diagram. This system, according to the
majority of studies, has stoichiometry H3S (D3S) and on lower-
ing pressure, around 150 GPa (160 GPa), undergoes a possible
phase transition, as deduced from a kink in the Tc evolutions as
function of pressure. According to DFT calculations, this phase
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TABLE I. Anharmonic phonon frequency ω and full width at half-maximum (FWHM) at �, for H3S and D3S, at 0 K, at three pressures in
the Im3̄m phase. Infrared activity (I) for the modes is indicated. Frequencies and linewidths are given in meV units.

135 GPa 158 GPa 211 GPa
� = [0.0,0.0,0.0] Mode Degeneracy Activity ω FWHM ω FWHM ω FWHM

T1u 3 I 73.0 0.2 83.7 0.2 91.9 0.2
H3S T1u 3 I 122.3 1.7 143.4 2.3 174.2 1.5

T2u 3 175.9 2.2 180.5 2.2 193.7 2.1

T1u 3 I 38.4 0.1 50.8 0.1 64.7 0.0
D3S T1u 3 I 90.9 1.8 105.0 1.1 127.0 0.9

T2u 3 124.6 1.5 127.7 1.5 137.1 2.0

transition is a rhombohedral displacement from the Im3̄m to
the R3m structure, with hydrogen-bond desymmetrization and
occurrence of trigonal lattice distortion of sulfur atoms.

Early XRD experiments, which can access only to the S
atoms positions, observed a very small trigonal distortion,
compatibly with previous DFT calculations. However, a more
recent work [5] that directly synthesized H3S at high pressure
suggests that the Im3̄m transforms to the R3m below 140 GPa,
with a huge trigonal lattice distortion. Our results, which
show a weak functional dependence, confirm however that an
Im3̄m → R3m transition would have a very small impact on
the S atoms, which essentially would remain on a bcc lattice,
whereas the largest effect would be on the position of the H
atoms. Moreover, our calculations suggest that the observed
large trigonal distortion, involving the S atoms, could probably
be explained by unwanted nonhydrostatic conditions in the
DAC experiment.

After determining the weak rhombohedral distortion that
would be associated to the R3m–Im3̄m transition, and as-
suming that it is of second order (as widely reputed), we
calculate the transition pressure Pc at which it would occur
in a conventional hydrostatic setting. We use the SSCHA
with DFT, to include quantum anharmonic effects, and a new
method based on the free-energy Hessian, which guarantees
higher precision with respect to the finite-difference approach
previously used within SSCHA.

Using PBE for the DFT energy/force calculations needed
by the SSCHA, we find that the Im3̄m phase dominates the
high-Tc pressure range, and we estimate the Im3̄m → R3m

transition pressure at 91 and 107 GPa for H3S and D3S,
respectively. The consistent mass effect and the difference with

respect to the PBE classical harmonic value (173 GPa) demon-
strate the importance of taking into account anharmonicity and
making use of a full quantum approach.

However, the obtained values for Pc are quite lower than
the pressures at which the Tc(P ) kinks for H3S and D3S are
observed. Calculations performed with BLYP, in place of PBE,
confirm the “disagreement” as they give Pc =114 GPa for H3S.
These results are quite surprising since the approximations
inherent to the SSCHA method should tend to overestimate,
not underestimate, the critical pressure. Several hypotheses can
be formulated to account for this result. In particular, there
are three main possibilities. From the computational side, it
could be a failure of the approximated exchange-correlation
functionals used within DFT to compute the energy/forces used
by the SSCHA. Future quantum Monte Carlo calculations,
for example, could shed light on this doubt. On the other
side, it could be a signal that the interpretation of some
experimental results should be reconsidered. For example,
the observed kink in the Tc(P ) curve could be not related
to the Im3̄m → R3m transition. Maybe it could be not a
simple H3S displacive transition, but a more complex phase
transition involving different hydrogen sulfide stoichiometries.
Another possibility, more intriguing, is that in experiments
the occurrence of some anisotropy on pressure release has
induced early the rhombohedral transition. Since the transition
is associated to an abrupt decrease of the Tc, keeping under
control this aspect would make possible to maintain a high
critical temperature even at lower pressures.

These considerations surely stimulate the execution of new
measurements. In particular, more spectroscopic experiments
(i.e., Raman and infrared spectroscopy) in proximity of

TABLE II. Anharmonic phonon frequency ω and full width at half-maximum (FWHM) at H = [−1.0,0.0,0.0] (2π/a units, a lattice
parameter), for H3S and D3S, at 0 K, at three pressures in the Im3̄m phase. Frequencies and linewidths are given in meV units.

135 GPa 158 GPa 211 GPa
H = [−1.0,0.0,0.0] Degeneracy ω FWHM ω FWHM ω FWHM

3 43.2 0.0 42.1 0.0 41.9 0.0
3 90.6 0.3 83.5 0.1 85.1 0.2H3S 3 143.1 9.7 163.7 6.4 185.3 1.4
3 173.2 3.1 186.4 5.8 210.3 8.8

3 38.8 0.0 39.1 0.0 40.4 0.0
3 64.6 0.0 63.6 0.2 61.9 0.0D3S 3 104.3 5.9 114.6 2.1 132.4 0.9
3 125.9 4.7 132.6 4.6 153.6 3.7
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TABLE III. Anharmonic phonon frequency ω and full width
at half-maximum (FWHM) at N = [0.0,0.5, − 0.5] (2π/a units, a

lattice parameter), for H3S and D3S, at 0 K, at three pressures in the
Im3̄m phase. Frequencies and linewidths are given in meV units.

135 GPa 158 GPa 211 GPa
N = [0.0,0.5, − 0.5] ω FWHM ω FWHM ω FWHM

34.2 0.0 36.2 0.0 39.8 0.0
48.1 0.0 52.4 0.0 59.5 0.0
61.2 0.0 64.8 0.0 70.9 0.1

101.6 0.2 104.0 0.3 102.8 0.4
127.8 0.3 131.0 0.2 136.7 0.4
128.4 5.1 143.5 1.1 151.4 1.0H3S 133.1 0.4 144.7 0.5 152.4 1.3
138.9 1.3 146.6 1.7 154.1 0.7
143.0 1.7 149.5 6.0 186.1 1.5
166.5 2.7 172.6 1.9 186.2 2.2
209.6 38.3 186.5 18.9 213.2 13.9
229.1 23.0 240.2 31.5 226.2 21.0

33.1 0.0 34.5 0.0 39.8 0.0
48.0 0.0 52.5 0.1 59.6 0.0
61.4 0.1 64.0 0.1 68.7 0.0
76.2 0.1 76.0 0.1 74.1 0.0
88.6 3.7 95.2 0.1 99.8 0.1
92.9 0.2 101.0 2.1 108.7 0.6

D3S 98.8 0.8 104.0 0.5 109.4 0.8
101.5 0.4 104.8 0.6 115.2 0.5
106.0 0.4 106.8 0.3 127.7 1.8
115.6 16.0 124.1 1.6 132.7 2.1
118.8 1.5 131.4 13.9 151.6 3.6
155.1 34.6 139.7 15.2 157.5 5.3

the phase transition could shed light on the true phases
involved. In order to facilitate the comparison with future
spectroscopic experiments, we used a dynamic extension
of the SSCHA to calculate the spectrum and dispersion of
anharmonic phonons for H3S and D3S at high pressure in
the Im3̄m phase, at 0 K. The results, among other things,
confirm the huge anharmonicity of the system and that a
nonperturbative method like the SSCHA has to be adopted.
In general, at high energies, we find large broadening of the
phonon spectra (involving H atoms modes), thus invalidating
the model of well-defined long-lasting phonon quasiparticles
characterized by a finite-width Lorentzian spectrum. Indeed,
the very low relaxation time for these modes indicates
strong phonon-phonon scattering and decay into lower-energy
phonon modes. However, the vibrational spectra at zone center
(accessible, e.g., by infrared spectroscopy) have very small
broadening (at most linewidth around 2 meV) and anharmonic
phonon quasiparticles are well defined.
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APPENDIX A: THEORETICAL METHOD

We study the lattice dynamics of H3S and D3S in the Born-
Oppenheimer (BO) approximation, thus we consider the quan-
tum Hamiltonian for the atoms defined by the BO potential en-
ergy V (R). With R we are denoting in component-free notation
the quantity Rαs(l), which is a collective coordinate that com-
pletely specifies the atomic configuration of the crystal. The in-
dex α denotes the Cartesian direction, s labels the atom within
the unit cell, and l indicates the three-dimensional lattice vec-
tor. In what follows, we will also use a single composite index
a = (α,s,l) to indicate Cartesian index, atom index, and lattice
vector together. Moreover, in general, we will use bold letters
to indicate also other quantities in component-free notation.

In order to take into account quantum effects and anhar-
monicity at a nonperturbative level, we use the self-consistent
harmonic approximation (SCHA) in its stochastic implementa-
tion [22,24]. This is a variational mean-field method that allows
to find an approximate estimation for the positional free energy
F (Rαs(l)), i.e., the free energy of the crystal as a function
of the average atomic position Rαs(l) (the centroids). For a
given centroid R, the SCHA free energy is obtained through
an auxiliary quadratic Hamiltonian, the SCHA Hamiltonian
HR, that minimizes an opportune functional. In particular,
this allows to find F (R; ξ ), the positional free energy as
a function of an external parameter ξ like, for example,
the temperature or, as in the case examined in this paper,
the volume. Given ξ , the equilibrium configuration Req(ξ )
corresponds to the minimum of F (R; ξ ) with respect to R.
In a displacive second-order phase transition, according to
Landau’s theory [27], there is a critical value ξc such that
at ξ > ξc the equilibrium configuration Req(ξ ) is in a high-
symmetry configuration Rhs but, on lowering the value of the
parameter, Rhs becomes a saddle point at ξc and Req(ξ ) moves
to a lower-symmetry configuration. As a consequence, the free-
energy Hessian evaluated in Rhs, ∂

2F/∂R∂R|Rhs;ξ , at ξ > ξc

is positive definite but it develops one or multiple negative
eigendirections at ξc. Therefore, by evaluating the free-energy
Hessian in Rhs and studying its spectrum as a function of ξ ,
we can predict the occurrence of a displacive second-order
phase transition, estimate the critical value ξc, and calculate the
distortion pattern that reduces the free energy by considering
the negative eigendirections. For notation clarity, from now on
the dependence on ξ will be understood.

The SCHA free-energy Hessian in a centroid R can be
computed by using the analytic formula (in component-free
notation) [24]

∂2F

∂R∂R = � +
(3)

��(0)
[
1 −

(4)

��(0)
]−1 (3)

� (A1)

with

� =
〈 ∂2V

∂ R∂ R

〉
ρHR

,

(3)

� =
〈

∂3V

∂ R∂ R∂ R

〉
ρHR

,
(4)

� =
〈

∂4V

∂ R∂ R∂ R∂ R

〉
ρHR

, (A2)
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where the averages are with respect to the density matrix of the
SCHA Hamiltonian HR, i.e., ρHR = e−βHR/tr[e−βHR ], and
β = (kbT )−1 where kb is the Boltzmann constant and T is the
temperature. In Eq. (A1) the value at z = 0 of the fourth-order
tensor �(z) is used. For a generic complex number z, this tensor
is defined, in components, by

�abcd (z) = −1

2

∑
μν

F (z,ωμ,ων)

×
√

h̄

2Maωμ

ea
μ

√
h̄

2Mbων

eb
ν

√
h̄

2Mcωμ

ec
μ

√
h̄

2Mdων

ed
ν , (A3)

with Ma the mass of the atom a, ω2
μ and ea

μ eigenvalues
and corresponding eigenvectors of the matrix �ab/

√
MaMb,

respectively, and

F (z,ων,ωμ) = 2

h̄

[
(ωμ + ων)[1 + nB(ωμ) + nB(ων)]

(ωμ + ων)2 − z2

− (ωμ − ων)[nB(ωμ) − nB(ων)]

(ωμ − ων)2 − z2

]
, (A4)

where nB(ω) = 1/(eβh̄ω − 1) is the bosonic occupation num-
ber. Expanding the geometric series in Eq. (A1) and retaining
only the first term beyond the SCHA matrix �, i.e., the

so-called bubble
(3)

��(0)
(3)

�, we can write

∂2F

∂R∂R � � +
(3)

��(0)
(3)

�. (A5)

In the cases studied here, this is sufficient to obtain converged
results (Appendix B).

Dividing the free-energy Hessian in the equilibrium config-
uration by the square root of the masses, we define

D(F ) = M− 1
2

∂2F

∂R∂R

∣∣∣∣
Req

M− 1
2 , (A6)

where we have indicated withMab = δabMa the mass matrix. A
lattice instability corresponds to a softening of an eigenvalue of
D(F ). D(F ) is the quantum, anharmonic, temperature-dependent
generalization of the standard temperature-independent har-
monic dynamical matrix

D(0) = M− 1
2

∂2V

∂ R∂ R

∣∣∣∣
R(0)

eq

M− 1
2 , (A7)

where R(0)
eq is the temperature-independent minimum of V (R).

Notice that the free-energy dynamical matrix D(F ) is obtained
from the positive-definite (by construction) auxiliary “SSCHA
dynamical matrix”

D(S) = M− 1
2 �|Req

M− 1
2 , (A8)

plus a second term [see Eq. (A1)]. It is this second term that
allows to have zero and negative eigenvalues (i.e., instabilities).

Since in this work we are considering a crystal, we can
take advantage of lattice periodicity and Fourier transform
the relevant quantities with respect to the lattice indices. That
allows to make independent analysis for each q point in the
Brillouin zone. We define the Fourier transform of the atomic

(BLYP)

SSCHA
Free energy Hessian

FIG. 6. Squared frequency of the T1u mode at � of H3S in the
Im3̄m phase, as a function of the pressure, for D(F ) [Eq. (A6)] and
D(S) [Eq. (A8)], calculated with BLYP. While D(S) is positive definite
and thus cannot have negative eigenvalues, D(F ) has zero eigenvalues
at the critical pressure for which the mode drives a transition to the
R3m phase.

position as

Rαs(q) = 1

Nc

∑
l

e−iqlRαs(l), (A9)

and the Fourier transform of the SCHA force constants as
(n)

�α1s1...αnsn
(q1, . . . ,qn)

= 1

Nc

∑
l1...ln

ei(q1 l1+···+qn ln)
(n)

�α1s1...αnsn
(l1, . . . ,ln), (A10)

where with
(n)

� we are indicating the objects defined in Eq. (A2)
for a generic integer n (however, notice that for n = 2 we did
not use any superscript in that definition). Nc is the number
of unit cells l comprising the supercell considered, i.e., the
number of q points of the corresponding commensurate mesh
in the first Brillouin zone of the reciprocal space. Therefore,
in the H3S case considered here, since there are 4 atoms in
the unit cell, for each point q the D(0)(q), D(S)(q), and D(F )(q)
are 12 × 12 matrices. We indicate with ω2

μ(q) and ea
μ(q)

the eigenvalues and corresponding eigenvectors of D(S)(q),
respectively. Diagonalizing the free-energy dynamical matrix
D(F )(q), we can study a structural instability with respect to
a distortion having the lattice modulation characterized by
the pseudomomentum q. In Fig. 6 we show the different role
played by D(F )(q) and the positive-definite D(S)(q). We consider
H3S and the eigenvalue of these two matrices for the T1u

mode in �, calculated with BLYP (see Fig. 3 in Sec. III).
By construction, D(S)(q) cannot have negative eigenvalues,
whereas D(F )(q) has zero eigenvalue in correspondence of a
second-order structural instability.

As shown in Ref. [24], in the context of the SCHA it
is possible to formulate an ansatz to give an approximate
expression to the one-phonon Green function G(z) for the
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variable
√

Ma(Ra − Ra
eq):

G−1(z) = z21 − (D(S) + �(z)), (A11)

where �(z) is the SCHA self-energy, given by

�(z) = M− 1
2

(3)

��(z)
[
1 −

(4)

��(z)
]−1 (3)

� M− 1
2 . (A12)

Correctly, in the static limit we recover the free-energy dy-
namical matrix [cf. Eqs. (A1), (A6) with Eqs. (A11), (A12)]:

−G−1(0) = D(S) + �(0) = D(F ). (A13)

Analogously to the free-energy Hessian, Eq. (A12) can be
expanded in series and in this paper we find sufficient to retain

only the first term, the so-called bubble
(B)

�(z):

�(z) ≈
(B)

�(z) = M− 1
2

(3)

��(z)
(3)

� M− 1
2 . (A14)

From G(z) we calculate the one-phonon spectral function
−2 Im Tr[G(ω + i0+)]. Peaks in the spectral function as a
function of ω signal the presence of collective vibrational exci-
tations, i.e., phonon quasiparticles, having certain frequencies
(energies). The sharper are the peaks the more lasting are these
quasiparticles, their life-time being inversely proportional to
the width, whereas a broad spectral function means that
anharmonicity has removed the existence of quasiparticles with
definite identity. These are the kinds of information that can
be probed with inelastic scattering experiments, for example.

We take advantage of the lattice periodicity also in
this case and, Fourier transforming with respect to the
lattice indices, we consider separated spectral functions
−2 Im Tr[G(q,ω + i0+)] for each q point in the Brillouin zone.
Moreover, we find convenient to consider the spectral function
weighted with the factor ω/2π ,

σ (q,ω) = −ω

π
Im Tr[G(q,ω + i0+)] (A15)

= −ω

π
Im Tr[ω21 − (D(S)(q) + �(q,ω + i0+))]−1 (A16)

because itsω integral over the real axis gives the total number of
modes and, in the zero self-energy case, it gives equal Dirac-
delta peaks at ±ωμ(q), where ωμ(q) are the noninteracting
SCHA boson frequencies.

Evaluation of Eq. (A16) requires the inversion of a matrix,
which in some cases can be computationally demanding.
However, this is not necessary if the mode mixing can be
neglected, i.e., if the coupling between different eigenmodes
of D(S)(q), induced by the self-energy �(q,ω + i0+), can be
neglected:

�μν(q,ω + i0+) � δμν�νν(q,ω + i0+), (A17)

where �μν(q,z) = ∑
ab �ab(q,z)ea

μ(−q)eb
ν (q) is the SCHA

self-energy in the basis of the SCHA modes. In that case

Tr[ω21 − (D(S)(q) + �(q,ω + i0+))]−1

=
∑

ν

1

ω2 − ω2
ν(q) − �νν(q,ω + i0+)

, (A18)

and, with some manipulations, from Eq. (A16) we obtain

σ (q,ω) =
∑

μ

1

2

[
1

π

−ImZμ(q,ω)

[ω − ReZμ(q,ω)]2 + [ImZμ(q,ω)]2

+ 1

π

ImZμ(q,ω)

[ω + ReZμ(q,ω)]2 + [ImZμ(q,ω)]2

]
(A19)

with

Zμ(q,ω) =
√

ω2
μ(q) + �μμ(q,ω + i0+), (A20)

where we are considering the principal value of the square root.
Thus, the negligibility of the mixing mode maintains separated
the individuality of the SCHA modes in the interaction, each
of them being related to a specific, different, contribution to
the total spectral function.

The form of Eq. (A19) resembles a superposition of
Lorentzians, but with frequency-dependent widths and shifts,
meaning that the actual form, in general, can be quite dif-
ferent from the superposition of true Lorentzian functions.
However, considering a ω̃μ(q) that satisfies the self-consistent
relation

ReZμ(q,ω̃μ(q)) = ω̃μ(q), (A21)

Eq. (A19) can be usually expressed with good approximation
as a sum of Lorentzians

σ (q,ω) =
∑

μ

1

2

[
1

π

�μ(q)

[ω − {ωμ(q) + 	μ(q)}]2 + [�μ(q)]2

+ 1

π

�μ(q)

[ω + {ωμ(q) + 	μ(q)}]2 + [�μ(q)]2

]
,

(A22)

where

	μ(q) = ReZμ(q,ω̃μ(q)) − ωμ(q), (A23a)

�μ(q) = −ImZμ(q,ω̃μ(q)) (A23b)

are shift (with respect to the SCHA frequency) and half-
width at half-maximum (HWHM) of the μ mode, respectively.
Replacing Eq. (A19) with Eq. (A22) is a further approximation
beyond the mode-mixing negligibility. It implies that each
mode identifies an anharmonic phonon with definite energy
(shifted with respect to the corresponding SCHA quasiparticle
energy) and lifetime (inverse of the Lorentzian width).

Finally, we consider the case in which the SCHA self-
energy is a small perturbation of the SCHA free propagator
(it is worthwhile to stress that this does not mean that we
are in a perturbative regime with respect to the harmonic
approximation). According to perturbation theory, in that case
at lowest order ω2

ν(q) + �νν(q,ω + i0+) are eigenvalues of
D(S)(q) + �(q,ω + i0+), thus Eqs. (A18), (A19), (A20) follow
with, in particular,

Zμ(q,ω) � ωμ(q) + �μμ(q,ω + i0+)

2ωμ(q)
. (A24)

Moreover, since �μμ(q,ω + i0+) 
 ωμ(q), the self-
consistent relation (A21) is satisfied with the SCHA frequency,
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Phonon frequency
SSCHA

Phonon linewidth

FIG. 7. H3S in the Im3̄m phase, at 0 K and 185 GPa. SCHA
dispersion curves, ωμ(q), anharmonic phonon dispersion curves,
ωμ(q) + 	μ(q), and linewidths, 2�μ(q), calculated with Eqs. (A18),
(A19), (A20).

i.e., ω̃μ(q) = ωμ(q). Therefore, in the SCHA perturbative
limit we have Eq. (A22) with shift and HWHM given by

	μ(q) = 1

2ωμ(q)
Re�μμ(q,ωμ(q) + i0+), (A25a)

�μ(q) = − 1

2ωμ(q)
Im�μμ(q,ωμ(q) + i0+) , (A25b)

respectively.
We conclude this appendix by showing that the SSCHA

dynamical matrix is only an auxiliary quantity, which in
general cannot be used to describe dynamic properties, i.e.,
it does not describe the physical phonons. In Fig. 7, for
H3S in the Im3̄m phase, at 0 K and 185 GPa, we show
the the dispersion curves of the SCHA matrix D(S)(q), i.e.,
the SCHA frequencies ωμ(q), and true phonon dispersion in
the Lorentzian approximation ωμ(q) + 	μ(q), with linewidth
2�μ(q), as it is calculated with Eqs. (A20), (A21), and (A23)
(see also Fig. 5 in Sec. IV). The true phonon dispersion and
the SCHA dispersion are very different. Moreover, notice
that, by construction, no linewidth is associated to the SCHA
dispersion curves (the SCHA quasiparticles are noninteracting,
i.e., we are discarding the self-energy, thus there is zero
linewidth, i.e., they have infinite lifetime).

APPENDIX B: CALCULATION DETAILS

We performed plane-wave density-functional theory
[30–32] (DFT) and density-functional perturbation theory [33]
(DFPT) calculations using the QUANTUM ESPRESSO pack-
age [34]. We used the generalized gradient approximation

3x3x3
2x2x2

FIG. 8. Squared T1u optical mode frequency at � of the free
energy dynamical matrix D(F ) as a function of pressure for H3S
(upper panel) and D3S (lower panel), using a 2 × 2 × 2 (full dots)
and 3 × 3 × 3 (empty dots) supercell in the SSCHA calculation. In
both cases, the static bubble used to compute D(F ) with D(S) through
Eq. (A13), is calculated with Eq. (B1), integrating on a 12 × 12 × 12
grid.

(GGA) for the exchange-correlation functional [35], under the
Perdew-Burke-Ernzherhof (PBE) and the Becke-Lee-Yang-
Parr [36,37] (BLYP) parametrizations. We used ultrasoft pseu-
dopotentials [38], a plane-wave cutoff energy of 60 Ry for
the kinetic energy and 600 Ry for the charge density, and
a Hermite-Gaussian smearing of 0.04 Ry. For the unit-cell
calculation, the integration in reciprocal space was performed
on a 32 × 32 × 32 Monkhorst-Pack grid [39] of the Brillouin
zone (BZ). This mesh was adjusted accordingly in the supercell
calculations. The self-consistent solution of the Kohn-Sham
equations was obtained when the total energy changed by
less than 10−9 Ry. The harmonic phonon dispersion was
obtained with Fourier interpolation after DFPT calculation
performed on a 12 × 12 × 12 Monkhorst-Pack grid of the BZ.
The harmonic ZPE contribution reported in Sec. II has been
calculated with Fourier interpolation after DFPT calculation
performed on a 6 × 6 × 6 Monkhorst-Pack grid of the BZ.
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The stochastic self-consistent harmonic approximation (SS-
CHA) calculations [22,24] were performed using 3 × 3 × 3
(for PBE) and 2 × 2 × 2 (for BLYP) supercells, and pop-
ulations of the order of 103 elements. For the self-energy
�(z) [Eq. (A12)], we considered only the first term in the
expansion of the geometric series, i.e., we considered only

the bubble
(B)

�(z) [Eq. (A14)]. Indeed, we verified that, in our
case, the terms beyond the bubble give a contribution of order
at most of 0.1 %, thus within the statistical error. The bubble
self-energy (in reciprocal space and SCHA-mode components)
was explicitly computed through the formula

(B)

�μν(q,z) = − 1

8Nc

∑
q1q2ρ1ρ2

∑
G

δ−q+q1+q2,G

× F (z,ωρ1 (q1),ωρ2 (q2))
ωρ1 (q1)ωρ2 (q2)

×
(3)

Dμρ1ρ2 (−q,q1,q2)
(3)

Dρ1ρ2ν(−q1, − q2,q),

(B1)

where
(3)

Dabc = (3)

�abc/
√

MaMbMc, and G are the reciprocal
lattice vectors. In principle, one should sum on the q-grid

commensurate with the supercell used to compute
(3)

� with

SSCHA. However, the short range of
(3)

� allows to interpolate
it on a finer grid [40]. This accelerates, for the calculation of
the self-energy, the convergence in the SSCHA supercell size.

In our calculations we found sufficient to use an inter-
polation grid of 12 × 12 × 12 (even smaller) for the static

self-energy
(B)

�(q,0). In Fig. 8 we compare the squared optical
eigenvalue in � of D(F ), for H3S and D3S, computed with
the SSCHA and using a 2 × 2 × 2 and a 3 × 3 × 3 supercell.

As said,
(3)

� has been interpolated on a 12 × 12 × 12 grid.
The energy-force calculations were computed with DFT-PBE.
As we can see, with the SSCHA calculation on a 2 × 2 × 2
supercell the result is already almost converged.

For the dynamical case, the quantity �(q,ω + i0+) with
ω �= 0 is estimated by calculating �(q,ω + iδ), where δ is a
small but finite positive value. The smaller is the value of δ, the
more accurate is the result, but the slower is the convergence.
We considered δ = 1 meV, and an 80 × 80 × 80 interpolation

grid for
(3)

�.
The anharmonic phonon dispersion has been computed

with Eqs. (A20), (A21), (A22), and (A23). The self-consistent
condition (A21) has been reached with an iterative procedure
in a few steps. In order to accelerate the SSCHA convergence
on the supercell used, we interpolated on the 12 × 12 × 12
also the short-range difference between the SSCHA matrices
D(S) (computed on the 3 × 3 × 3 grid) and harmonic ones D(0)

on the same grid. Therefore, in place of the “pure” SSCHA
dynamical matrices, we used the matrices

[
D(S)

3×3×3 − D(0)

3×3×3

]
interp.

12×12×12

+ D(0)

12×12×12 , (B2)

where the subscript m × m × m indicates the grid of the
calculation.
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