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Detection of topological phase transitions through entropy measurements: The case of germanene
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We propose a characterization tool for studies of the band structure of new materials promising for the
observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron
dependence on the chemical potential may be considered as a fingerprint of the transition between topological and
trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected
to the external electric field is obtained from the first-principles calculation of the density of electronic states and
the Maxwell relation. We demonstrate that, in agreement with the recent prediction of the analytical model, strong
spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are
observed at the values of the applied bias both below and above the critical value that corresponds to the transition
between the topological insulator and trivial insulator phases, whereas the giant resonant feature in the vicinity
of the zero chemical potential is strongly suppressed at the topological transition point, in the low-temperature
limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves
as zeros in the entropy per particle dependence on the chemical potential.
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I. INTRODUCTION

In recent years, a class of new topological materials has
been theoretically predicted and experimentally studied (see
reviews [1,2]). Topological insulators are characterized by
bulk band gaps and gapless edges or surface states, that are
protected by the time-reversal symmetry and characterized by a
Z2 topological order parameter. Novel group-IV graphenelike
two-dimensional (2D) crystals, such as silicene, germanene,
and stanene are examples of the two-dimensional topological
insulators proposed in Refs. [3,4]. They attract enhanced atten-
tion nowadays because of their high potential for applications
in nanoelectronic devices of a new generation.

In this paper, we specifically consider germanene. We pro-
pose an experimental method for the detection of an electric-
field-induced transition between topological and trivial insu-
lator phases of this material. Germanene is a two-dimensional
crystal with a buckled honeycomb structure that can be
considered as a germanium-based analog of graphene [5],
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whereas it possesses a rather large spin-orbit-induced gap on
the quasiparticle spectrum. According to the recent theoretical
works, germanene appears to be a natural topological Z2

insulator [6,7]. Yet it can be brought to the conventional (trivial)
insulator phase by applying the external electric field [8–12]
perpendicular to its plane which induces a second energy gap
owing to the breaking of the inversion symmetry due to the
field and buckling.

In order to access the rich physics of topological transitions
and to design the germanene-based nanoelectronic devices one
needs precise knowledge and control over its band structure in
the far-infrared and terahertz spectral ranges. The conventional
experimental methods of the band-structure study, in particular
the optical transmission spectroscopy, may not be sufficient
because of the specific optical selection rules in a gated
germanene, the lack of tunable terahertz laser sources, and the
low interband absorption in one-monolayer crystal structures
[13,14]. Recently, a promising tool for the band-structure
studies with use of the electronic transport measurements has
been proposed and successfully tested on two-dimensional
electron gas with a parabolic dispersion [15]. This method,
based on the measurements of recharging currents in a planar

2469-9950/2018/97(20)/205442(7) 205442-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.205442&domain=pdf&date_stamp=2018-05-25
https://doi.org/10.1103/PhysRevB.97.205442


D. GRASSANO et al. PHYSICAL REVIEW B 97, 205442 (2018)

FIG. 1. The schematic of a possible experimental setup to measure entropy per particle or ∂μ/∂T in germanene or another 2D crystal. The
applied top-gate Vtg and bottom-gate Vbg voltages allow one to control independently both the chemical potential and the perpendicular electric
field. The sample and the copper sample holder are kept in thermal contact with a wire heater, which modulates their temperature and changes
the chemical potential of the sample. The value ∂μ/∂T is directly determined from the measured recharging current between the crystal and
the top electrode [15].

capacitor geometry, gives access to the entropy per particle
s = ∂S/∂n (S is the entropy per unit volume, and n is the
electron density). This characterization technique is based on
the Maxwell relation that links the temperature derivative of the
chemical potential in the system μ to the entropy per particle
s: − ∂μ/∂T = ∂S/∂n.

The modulation of the sample temperature changes the
chemical potential and, hence, causes recharging of the gated
structure where the 2D electron gas and the gate act as two
plates of a capacitor. Therefore, ∂μ/∂T may be directly
obtained in this experiment from the measured recharging
current.

The entropy per particle is an important characteristic
per se of any many-body system. The link between the
measurable s(μ) and the electronic density of states (DOS)
allows extracting the latter from the numerical fit of the results
of recharging current measurements with a precision that may
exceed one of optical experiments in the particular case of
gapless or narrow gap crystals [15]. The entropy per particle
also governs the thermoelectric and thermomagnetic properties
of the system entering explicitly to the expressions for the
Seebeck and Nernst-Ettingshausen coefficients [16,17].

The entropy per particle in 2D fermionic systems is expected
to exhibit a strongly nonmonotonic dependence on the chemi-
cal potential in some cases. Recently, it has been theoretically
predicted [18] that, in a quasi-two-dimensional electron gas
with a parabolic dispersion, the entropy per electron should
exhibit quantized peaks where the chemical potential crosses
the size-quantized levels. The amplitude of such peaks in the
absence of scattering depends only on the subband quantization
number, and it is independent of the material parameters,
the shape of the confining potential, the electron effective
mass, and temperature. Very recently the behavior of s as a
function of the chemical potential, temperature, and the gap
width for gapped Dirac materials has been studied analytically
using the model quasiparticle spectrum [19]. Special attention
has been paid to low-buckled Dirac materials [6,7], e.g.,
silicene [20] and germanene [5]. It has been demonstrated
that the resonant dip and peak structure at the zero chemical
potential and the entropy spikes in the s(μ) dependence char-
acterize any fermionic system with multiple discontinuities
in the DOS.

In the present paper, we study the entropy per electron
dependence on the chemical potential of the electron gas in
a germanene crystal subjected to the external electric field
applied perpendicularly to the crystal plane.

Figure 1 shows a possible experimental setup to measure
the entropy per particle or ∂μ/∂T using dual-gated geometry
for band-gap engineering (see, for example, Ref. [21]). The
top-gate Vtg and bottom-gate Vbg voltages are applied to change
the density of the carriers and the perpendicular electric field
independently. Time modulation of the sample temperature
changes the chemical potential and leads to the current flow
between the germanene sheet and the top gate. The entropy
per particle as a function of the chemical potential would
be extracted from the recharging currents measurements as
described in Ref. [15].

Our paper is organized as follows: In Sec. II we describe
the theoretical approach used to model the entropy per particle
and explain how we calculate the electronic properties of
germanene from the first principles. In Sec. III we present the
results of modeling and show how the entropy per particle
dependence on the chemical potential is changing at the
transition point between the topological insulator and the trivial
insulator phases. Finally, the conclusions are given in Sec. IV.

II. THEORETICAL METHODS

A. Entropy per particle

The ab initio calculations of the germanene electronic band
structure allow extracting the value of critical electric-field Ec

where the transition between the topological and the trivial
phases takes place. The same ab initio calculations provide us
by the detailed dependence of the one-electron DOS per spin,

D(ε) =
N∑

i=1

∫
BZ

dk
(2π )2

δ(ε − εi,k), (1)

with i running over all the bands up to the N th one. In its turn
D(ε) can be related to the entropy per particle. For the Fermi
system this dependence is given by a general relation [18,19],

s(μ,T ) = 1

T

∫ ∞
−∞ dε D(ε)(ε − μ) cosh−2

(
ε−μ

2T

)
∫ ∞
−∞ dε D(ε) cosh−2

(
ε−μ

2T

) , (2)

where we set the Boltzmann constant kB = 1.
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Note that the entropy per particle is rather sensitive to the
electron-hole asymmetry [see the numerator of Eq. (2)] and
plays an important role for the detection of the Lifshitz topo-
logical transition [22]. Whereas in the DOS or conductivity
the Lifshitz transitions manifest themselves as weak cusps,
in the thermoelectric power [directly related to s(μ,T )] giant
singularities occur. Such a singularity can be considered as a
smoking gun of the topological Lifshitz transition. Intuitively,
one can expect that the sensitivity of s(μ,T ) to topological
transformations of the Fermi surface would give an opportunity
to trace out various types of topological transitions. In the
present paper we demonstrate that s(μ,T ) indeed offers the
opportunity to identify the transition between the topological
and the trivial insulator, whereas the entropy feature character-
izing this transition is quite different from one characteristic
of the Lifshitz transition.

B. Ab initio calculations of the DOS

Our calculations of the DOS and the electronic band struc-
ture of germanene are based on density functional theory (DFT)
as implemented in the QUANTUM ESPRESSO package [23,24].
The single-particle Schrödinger equation as formulated by
Kohn-Sham [25],(

− h̄2

2m
∇2 + vext(r) +

∫
n(r′)

|r − r′|dr′ + vxc(r)

)
ψKS

i,k

= εKS
i,k ψKS

i,k (3)

(vext is the electron-ion potential and vxc is the exchange-
correlation potential) is solved self-consistently through the
wave-functions’ expansion on plane-wave basis sets with use
of the periodic boundary conditions. For the germanium atoms
we use the norm-conserving scheme [26], the valence elec-
tronic configuration 3d104s24p2, and the generalized gradient
approximation Perdew-Burke-Ernzerhof [27] (GGA-PBE) for
the exchange and correlation potential. After accurate conver-
gence tests on the total energy results, an energy cutoff of
90 Ry has been selected.

We model our 2D crystal as an infinite xy plane of germa-
nium atoms in the honeycomb geometry. The theoretical lattice
constant for the hexagonal cell, obtained by minimization of
the total energy, was determined to be a = 4.04 Å with a
low-buckling configuration (δLB = 0.68 Å), in agreement with
previous results [28]. Since the periodic boundary conditions
are being enforced over all axes, the use of supercells large
enough to avoid spurious interactions between periodic im-
ages is required. After tests over the computed potential and
energies, we use a supercell containing 32 Å of vacuum along
the z direction.

In the absence of the spin-orbit (SO) interaction the ger-
manene spectrum represents a perfect Dirac cone characterized
by gapless fermions with the Fermi velocity of about 0.5 ×
106 m/s. By switching on the SO interaction a small gap �SO

opens at the K,K ′ points of the Brillouin zone (BZ), and the
bands’ linearity is lost, leading to the appearance of gapped
fermions [29–31]. We obtain a value of the gap of 24 meV, in
agreement with the previous GGA-PBE results. It is slightly
below the value of 33 meV found with use of nonlocal hybrid
exchange and correlation functionals [32].

The gaps in the electronic spectrum can be further modified
by applying an external field (bias) perpendicular to the ger-
manene plane. This is performed by superimposing a sawtooth
potential along the z direction of the crystal. The properties of
the system have been studied for different values of the applied
bias, ranging from 0 to 0.4 V/Å.

For the DOS calculations a very high-energy resolution is
needed in order to observe the small differences in low-energy
features induced by the different electric fields. For this reason,
we used a refined mesh of 12 000 × 12 000 × 1 Monkhorst-
Pack [33] k points in the BZ cropped around K(K ′) with a
radius of 0.02 × 2π/a.

A topological phase transition should be observed at the spe-
cific value of the applied field E = Ec where the fundamental
electronic gap closes. As was mentioned before, at the electric
fields below this value, germanene is a topological insulator
whereas above the critical field it becomes a trivial insulator
[10,11]. In order to prove it, we calculate the topological
invariant Z2 [34]. This invariant is indicative of the realization
of the quantum spin Hall effect [3]. It acquires the values of
0, for a trivial phase, or 1 for a topological phase. In a system
that obeys the inversion symmetry, Z2 can be defined as [35]

(−1)Z2 =
N∏

n=1

ξ2n(K), (4)

where ξ2n(K) = ±1 is the eigenvalue of the parity operator
calculated at the time-reversal invariant momenta (TRIM)
points for each 2nth band. One easily sees that Z2 can acquire
only two values: Z2 = 0,1.

The topological invariant Z2 has been computed here by
applying the Wilson loop method, following the evolution of
the Wannier charge centers on a plane containing the TRIM
points [3,36,37] as implemented in Z2PACK [38]. This method
yields a correct result even if the inversion symmetry is broken
by the application of an electric field.

III. RESULTS AND DISCUSSION

A. Effect of spin-orbit and electric field on the
electronic properties

In the absence of external electric fields, germanene crystals
possess the inversion symmetry which, together with time-
reversal symmetry, leads to the spin degenerate energy bands.
The application of bias brakes the inversion symmetry causing
the lifting of the spin degeneracy. The eigenvalues for each
band are computed by solving the Kohn-Sham equation (3).
The corresponding band structure at K and K ′ points can be
approximated by the relation [3,9],

εc/v
η,σ = ± 1

2 (�SO − ση�el). (5)

Here �SO is the spin-orbit splitting of 24 meV, �el is the split-
ting induced by the electric field, η = ±1 and σ = ±1 are the
valley (K and K ′) and spin (↑ , ↓) subscripts, respectively, and
c andv denote the conduction and valence bands corresponding
to the ± signs in the equation.

As is seen from Eq. (5) four linear bands show up now at
the K and four at the K ′ points. They are separated in energy
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FIG. 2. Density of states computed within DFT for the external
electric fields below/at/above the critical value Ec: E = 0.10 V/Å
(orange solid line), 0.23 V/Å (green dashed line), and 0.36 V/Å (blue
dotted line). The zero denotes the Fermi energy. The insets: zoom of
the DOS near the Fermi energy (upper panel) and the electronic band
structure in a close proximity of the high-symmetry point K (lower
panel).

as described by a spin-dependent gap,

�η,σ = εc
η,σ − εv

η,σ . (6)

Since the time-reversal symmetry is still present, the relation
εη,σ = ε−η,−σ for the band dispersion holds.

The DOS is calculated using Eq. (1). The corresponding
results are shown in Fig. 2 for a wide energy range. A

broadening of the δ function in Eq. (1) of 50 meV (0.3 meV
for the upper inset) has been used. We can observe that
the low-energy DOS exhibits the expected linear behavior for
the unbiased germanene. The applied electric field leads to the
appearance of the gaplike feature in the DOS.

By using Eq. (5) one can obtain the values of �SO and
�el for different electric fields as shown in Fig. 3(c). It can be
seen that the former is independent of the field E and remains
equal to 24 meV, whereas the latter shows a linear dependence
on E. The splitting �el reaches the value of �SO at Ec =
0.23 V/Å which marks the critical field for the topological
phase transition.

We can see in Fig. 3(c) that the electronic gap �el depends
linearly on the applied electric field. For the values of the field
below the critical one (E < Ec) the smallest (fundamental)
gap decreases until it closes up completely at E = Ec. In
this regime, germanene is a topological insulator, whereas, for
larger field values (E > Ec), the smallest electronic gap opens
up again, and germanene becomes a trivial insulator.

In what concerns the topological state of germanene we
found that Z2 = 1 for all values of electric field below Ec and
Z2 = 0 otherwise as shown in Fig. 3(a).

B. Dependence of the entropy on the applied electric field

As has been shown in the previous work [19], in the case
of a crystal characterized by two nonzero energy gaps, the
dependence s(μ) exhibits two distinct structures in both the
electron μ > 0 and the hole μ < 0 doped regions. The first
one is a giant resonant feature in the vicinity of the zero
chemical potential, and the second one is a spike of the height
s = 2 ln 2/3 at the edge of the larger gap. These resonances
are apparent in the low-temperature limit.

Our results for the entropy per particle s for germanene are
presented in Fig. 4.

FIG. 3. (a) Computed topological invariant (Z2) at different values of the external electric field. (b) The electronic band structure near the K

point of the Brillouin zone computed at different values of the external electric field. (c) The variation of the spin-orbit (�SO ) and electric-field-
(�el-) induced splittings with the increase in the external electric field.
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FIG. 4. The entropy per electron s vs the chemical potential μ in
eV in the vicinity of the Dirac point for three values of electric-field
E: (a) T = 4 K, (b) T = 10 K, (c) T = 50 K. The insets in (a) and
(b) show the zoomed domains with the entropy spikes of the height
s = 2 ln 2/3 at low temperatures.

The entropy spikes occur both above and below the transition
between the topological and the trivial insulator phases as well
as exactly at the transition point Ec = 0.23 V/Å [see the insets
of Figs. 4(a) and 4(b)]. The most prominent result of the present
paper is that the strong resonant feature of the entropy per
particle in the close vicinity of the Dirac point μ = 0 is nearly
fully suppressed at the transition point Ec whereas it occurs
for values of the electric field below and above it.

It is important to note that the appearance of the second
step in the electronic density of states due to the lifted spin
degeneracy of the Brillouin zone has a dramatic effect on s.
In particular, the resonant feature in the vicinity of the zero
chemical potential is strongly pronounced if the DOS exhibits
two steps (see the upper inset in Fig. 2). Indeed, for |μ| �
T � �+1,+1 it was obtained [19] that

s(T ,μ,�+1,+1) � μ�+1,+1

2T 2
. (7)

For the critical field E = Ec the gap �+1,+1 = 0 so that the
DOS exhibits only one step and

s(T ,μ,0) = μ

T
, |μ| � T . (8)

Clearly at very low temperatures the peak at finite �+1,+1 is
much stronger than the one for �+1,+1 = 0.

The disappearance of the characteristic entropy resonance
can be considered as a signature of the topological phase tran-
sition in germanene. We are confident that this analysis would
help extracting the important band parameters of topological
2D crystals from the recharging current measurements. We also
mention that the plasmon modes and Friedel oscillation can be
used to detect the topological phase transition in silicene and
germanene even when the Fermi level does not lie in the band
gap as suggested by Chang et al. [39].

C. Van Hove singularities in the entropy per particle
dependence on the chemical potential on a large energy scale

Scanning of the chemical potential on a large energy
scale is challenging from the experimental view. Possibly this
could be performed by combining electrostatic and chemical
dopings. Nevertheless, the behavior of the entropy per particle
at large values of the chemical potential is worth analyzing
theoretically as it offers some nontrivial features. Figure 5
shows s(μ) in comparison with the DOS for three values
of the applied field. We note that both energy and entropy
scales in Fig. 5 are orders of magnitude different from those
in Fig. 4 so that the high-energy features in s(μ) are several
orders of magnitude weaker than the resonant feature at the
zero chemical potential discussed above. In particular, the
disappearance of the resonant feature at the critical field Ec

cannot be recognized in Fig. 5(b) due to the small range of
shown values of s. Nevertheless, these features represent a
significant interest. Using Eq. (2) it is easy to see that the
extrema of the dependence of D(μ) are converted to the zeros
of s(μ). Indeed, assuming that D(μ) is a smooth function
one may expand it near the extremum of μex and obtain that
s(μ) ∝ D′(μex) [19] where the derivative D′(μex) changes sign
at the extrema of μex. Since van Hove singularities correspond
to the sharp peaks in the DOS, they show up in the dependence
s(μ) as the strong positive peak and negative dip structures.
Note that even the discussed above the giant negative dip
and positive peak structure near the zero chemical potential
might be interpreted as a reflection of the negative V - and
U -like shape peaks of the DOS. This demonstrates that the
experimental investigation of s(μ) in a wider range of energies
can be useful for tracing out van Hove singularities and their
evolution in the perpendicularly applied electric field.

IV. CONCLUSIONS

We have studied fingerprints of the topological phase
transitions and DOS singularities in two-dimensional materials
with use of the ab initio calculations. We show that the
entropy per particle dependence on the chemical potential
is highly sensitive to the DOS. In particular, at the critical
field corresponding to the transition point between topological
and trivial insulator phases, the strong resonant feature of the
entropy per particle at the zero chemical potential disappears.
Moreover, at the Van Hove singularities of the DOS the entropy
per particle passes through zero (dip-peak features). Based on
these theoretical findings, we propose an experimental method
of detection of the critical transition points and density of states
singularities in novel structures and materials.
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FIG. 5. The entropy per electron s vs the chemical potential μ in eV for three values of electric-field E for T = 4 K: (a) E = 0.10 V/Å,
(b) E = 0.23 V/Å, (c) E = 0.36 V/Å. The dashed lines show the corresponding DOS obtained by the ab initio calculation.

The found characteristic feature of the entropy per particle
close to the transition between the trivial and the topological
insulators might become the smoking gun also for other types
of topological transitions in novel systems. For instance, in the
recent work of Wang and Fu [40] the authors demonstrated the
possibility of transition between the trivial and the topological
superconductors [41]. It is worth noting that in superconductors
with different pairing symmetries placed in a magnetic field the
vortex entropy is different. Being subjected to the gradient of
temperature, the vortices move along the gradient, resulting in
the appearance of the flow of entropy, which can be directly
measurable by the Nernst signal. Hence, one could expect that

the latter can be an appropriate tool for the study of such
transitions.
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