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Channel surface plasmons in a continuous and flat graphene sheet
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We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with
a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem
is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show
that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the
protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic
potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the
surface plasmons in a continuous and flat graphene sheet.
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I. INTRODUCTION

Light-matter interaction at the nanoscale is the realm of
plasmonics. In the visible and near-IR spectral range, one
generally relies on the plasmonic properties of noble metals,
such as gold, silver, and copper. On the other hand, in the
mid-infrared (IR) and in the THz, the use of noble metals is
excluded due to poor confinement of the surface plasmons.
It is in this context that graphene emerges as a platform for
plasmonics in the mid-IR and in the THz spectral range, since
this material supports strongly confined surface plasmons in
this frequency region [1,2].

In the field of plasmonics, one can distinguish between
two different types of surface plasmons. For graphene, as
for noble metals, the types are (i) surface-plasmon polaritons
(SPPs) and (ii) localized surface plasmons. The former are
propagating surface waves on the graphene surface, whereas
the latter are localized excitations in graphene nanostructures,
such as ribbons [1] and disks [2]. Thus, in general, for obtaining
localized plasmons in graphene one, has to pattern the graphene
sheet, which hinders the quality factor of these excitations.
It would be, therefore, convenient, to provide a method to
induce localized plasmons in a continuous graphene sheet.
To investigate this possibility is the purpose of this paper,
where we show the existence of transversely localized channel
plasmons.

The coupled mode of an electromagnetic field with charge
density oscillations of a conductor is called an SPP. The
synthesis of graphene and other new two-dimensional (2D)
materials opened the door to natural candidates to support
these types of surface modes, therefore creating a new field
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inside plasmonics [3–5]. The most interesting properties of the
SPP are the confinement of light below the diffraction limit
[6]. The list of applications for SPP is extensive, including
biochemical sensing [7–9], solar cells [10], optical tweezers
[11,12], and transformation optics [13,14]. In planar dielectric-
metal interfaces, the SPP is confined along the direction
transverse to the surface. However, at dielectric gaps, such as
V-shaped groove and nanogaps, such plasmons can be also be
confined along the nontranslational-invariant direction, being
classified as channel plasmon-polaritons (CPPs) [15]. Those
systems can be used to steer SPP, thus forming plasmonic
waveguides [16,17].

Inside the subfield of 2D photonics, graphene attracted
much attention due to its unique properties, including the
fact that its optical properties can be controlled externally
by electrostatic gating, originating long-lived plasmons, with
large field confinement in the THz and mid-IR spectral range
[3,18–22]. On the other hand, there are few studies on CPP
on graphene. The existing ones discuss 2D nanoslits [23] and
covered grooves and wedges [24–26]. In all these approaches,
graphene is deposited in a deformed substrate, thus assuming
the same shape of the substrate. This approach reduces the
quality factor of the SPP. Therefore, it would be ideal to find
a method where a continuous graphene sheet is deposited on
a flat substrate but would still support localized (or channel)
plasmons. Here we propose a new approach: we take a susbtrate
that is flat in one of its surfaces and patterned in the other
surface, as can be seen in Fig. 1. The graphene sheet is then
deposited on the flat region of the substrate, therefore keeping
its natural flatness.

Studies of plasmon resonances in a surface with a protu-
berance or depression were first performed in Ref. [27], for
the case of noble metals. In Ref. [28], localized plasmons in
nanoscale pertubations were studied using the integral equation
eigenvalue method, within a quasistatic approximation [29].
The scattering of SPP by a localized defect in a dielectric
with axial symmetry was performed in Ref. [30] using the
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FIG. 1. A dielectric protrusion (a) or indentation (b) below a flat
graphene sheet. The defect is assumed to have either even parity
symmetry (1D defect) or cylindrical symmetry (2D defect).

reduced Rayleigh equations [31]. There are numerous works
about plasmonic resonances in rough or periodic surfaces,
using similar procedures as the one employed for the study
of a single protuberance [32–34]. All these works refer to
noble-metal plasmonics and similar geometries have not been
yet considered for graphene.

In this paper, we calculate, using an electrostatic ap-
proximation, the plasmonic transversely localized modes of
a graphene sheet deposited on a flat substrate which has
either a protuberance or an indentation in the opposite face.
The electrostatic approximation is valid when the in-plane
momentum q is large compared to the momentum of free
radiation inside the media [35]; see Ref. [36] for a comparison
between a full electromagnetic calculation with a electrostatic
one for a heterostructure of graphene and hBN. In Sec. II,
we discuss the procedure to solve a generic 2D dielectric
protrusion in the electrostatic approximation and in Sec. III
we derive an integral equation for the Fourier coefficient of
the potential field for a generic 1D deformation. In Sec. IV, we
discuss the classification of the integral equation, the condition
for the existence of transversely localized plasmons, and the
numerical procedure. In Sec. V, we discuss our results for a
Gaussian profile.

II. A PLANAR GRAPHENE SHEET ON A DIELECTRIC
DEFECT: 2D PROTRUSION

Let us consider the geometry of Fig. 1. There are three re-
gions in this system: the region z > 0, with dielectric function
ε1, the region between −d + ζ (x,y) < z < 0, with dielectric
function ε(ω), and the region −d + z < ζ (x,y), with dielectric
function ε2. We have to define the electrostatic potential in these
three regions.

In all regions, we write the electrostatic potential as a Fourier
integral. In the first region, we write

φ1(ρ,z,t) =
∫

dk‖
(2π )2

A(k‖)eik‖·ρ−k‖ze−iωt , (1)

where k‖ = (kx,ky) and ρ = (x,y). In the central region, both
real exponentials have to be present, that is,

φc(ρ,z,t) =
∫

dk‖
(2π )2

[B(k‖)ek‖z + C(k‖)e−k‖z]eik‖·ρ−iωt .

(2)
Finally, in the third region we have

φ2(ρ,z,t) =
∫

dk‖
(2π )2

D(k‖)eik‖·ρ+k‖ze−iωt . (3)

Next we assume that the above expressions for φc and φ2 hold
in the region of bump/protrusion. The boundary conditions are
imposed at z = 0 and at z = −d + ζ (x,y), where ζ (x,y) is
some even function, for example, an inverted Gaussian:

ζ (x,y) = −ζ0e−ρ2/s2
, (4)

where ρ2 = x2 + y2. At z = 0, the boundary conditions are the
same we have used for solving the flat graphene case discussed
in Appendix A, whereas for z = −d + ζ (x,y), the boundary
conditions are adapted from those at z = 0, considering that
σ = 0 (the optical conductivity), and therefore the normal
component of the electric displacement field, is continuous
through the interface. Although we have formulated the prob-
lem for a defect with cylindrical symmetry, we can also
consider 1D profiles, such as ζ (x) = −ζ0e−4x2/R2

, which will
be the case considered next.

III. A PLANAR GRAPHENE SHEET ON A DIELECTRIC
DEFECT: 1D PROTRUSION

From here on, we consider a 1D defect. In this case, the
Fourier representation of the field is 1D, reading

φ1(ρ,z,t) =
∫

dkx

2π
A(kx)ei(kxx+kyy)−k‖ze−iωt , (5)

and similar equations for φc and φ2. Next we want to obtain an
eigenvalue equation, thus allowing us to determine the eigen
frequencies, in terms of a single coefficient. In particular,
we want that coefficient to be A(kx). For implementing the
boundary conditions, we need an expression for the normal
derivative along the surface of the defect. This is given by

∂

∂n
= n̂ · ∇ = [1 + (∂xζ (x))2]−1/2(−∂xζ (x)∂x + ∂z). (6)

At the interface z = 0 we have simply

∂

∂n
= ∂

∂z
. (7)

Thus the boundary conditions are

φ1(ρ,0,t) = φc(ρ,0,t), (8a)

ε1
∂φ1(ρ,0,t)

∂z
−ε(ω)

∂φc(ρ,0,t)

∂z
=− iσ

ε0ω
∇2

2Dφ(ρ,0,t), (8b)

which turn into

A(kx) = B(kx) + C(kx), (9a)

−ε1A(kx) − ε(ω)[B(kx) − C(kx)] = κA(kx), (9b)
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where we defined

κ ≡ iσk‖
ε0ω

, (10)

and the solution for B(kx) and C(kx) reads

B(kx) = A(kx)
ε(ω) − ε1 − κ

2ε(ω)
≡ A(kx)f+(ω,k‖), (11a)

C(kx) = A(kx)
ε(ω) + ε1 + κ

2ε(ω)
≡ A(kx)f−(ω,k‖). (11b)

This allows us to write the field in the central region as a
function of theA(kx) alone. The next step is the implementation
of the boundary conditions at the interface z2c(x) = −d +
ζ (x). These are

φc(ρ,z2c(x),t) = φ2(ρ,z2c(x),t), (12a)

ε(ω)
∂φc(ρ,z2c(x),t)

∂n
= ε2

∂φ2(ρ,z2c(x),t)

∂n
. (12b)

The boundary condition Eq. (12a) is simply given by∫
dkx

2π
A(kx)ei(kxx+kyy)[f+(ω,k‖)ek‖z2c(x)+f−(ω,k‖)e−k‖z2c(x)]

=
∫

dkx

2π
D(kx)ei(kxx+kyy)ek‖z2c(x). (13)

The second boundary condition, Eq. (12b), reads

ε2

∫
dkx

2π
D(kx)

[
−∂ζ (x)

∂x
ikx + k‖

]
ei(kxx+kyy)ek‖z2c(x) (14)

= ε(ω)
∫

dkx

2π
A(kx)ei(kxx+kyy)

[
f+(ω,k‖)ek‖z2c(x)

×
(

− ∂ζ (x)

∂x
ikx + k‖

)
+ f−(ω,k‖)e−k‖z2c(x)

×
(

−∂ζ (x)

∂x
ikx − k‖

)]
. (15)

Now we need to combine Eqs. (13) and (15) for obtaining
a single integral equation for the coefficient A(kx). This is a
more difficult task since we have the function z2c(x) in the
exponent together with derivatives of ζ (x). For circumventing
this difficulty, we introduce the Fourier representation of the
exponential eαζ (x) as

eαζ (x) = 1 + α

∫
dQ

2π
J (α; Q)eiQx, (16)

where

J (α; Q) =
∫

dxe−iQx eαζ (x) − 1

α
. (17)

Equation (16) also implies that

∂ζ (x)

∂x
eαζ (x) = 1

α

∂eαζ (x)

∂x
=

∫
dQ

2π
iQJ (α; Q)eiQx. (18)

Equations (16) and (18) allow the simplification of Eqs. (13)
and (15). For eliminating the D(kx) coefficient, we multiply

FIG. 2. Transversely localized plasmon dispersion. The solid red
curve is the solution for �(qy,ω) = 0. For ω > ωspp, the system
admits continuous solutions, otherwise the solutions are transversely
localized plasmons. The parameters used are ε1 = 1.4, ε2 = 1, ε =
4, EF = 0.2 eV, d = 2 μm, R = 25 μm, and ζ0 = 25 μm. The solid
(dotted) blue curves are even (odd) solutions. We depict the first four
transversely localized plasmon modes for the parameters considered.

Eq. (13) by (
iqx

∂ζ (x)

∂x
+ q‖

)
e−i(qxx+qyy)eq‖ζ (x), (19)

where q‖ = q =
√

q2
x + q2

y , and multiply Eq. (15) by
e−i(qxx+qY y)eq‖ζ (x). We then use Eqs. (16) and (18), and integrate
over ρ = (x,y). After lengthy calculations, we obtain a single
equation involving the coefficient A(kx) only:

�(q,ω)A(qx) =
∫ ∞

−∞
dP Kqy ,ω(qx,P )A(P ), (20)

where p̂ = p/p, q̂ = q/q, p = (P,qy), q = (qx,qy), and

�(q,ω) = [ε2 − ε(ω)]−1{[ε2 − ε(ω)]e−qdf+(ω,q)

+ [ε2 + ε(ω)]eqdf−(ω,q)}, (21)

with the kernel:

Kqy ,ω(qx,P ) = pJ (q − p; qx − P )f−(ω,p)epd (1 − p̂ · q̂)

−pJ (q + p; qx − P )f+(ω,p)e−pd

× (1 + p̂ · q̂). (22)

IV. NUMERICAL SOLUTION

Equation (20) is a homogeneous integral equation. In the
following, we discuss the classification of the integral equation
as a Fredholm equation of the second or third kind depending
on the values of qy and ω. If the equation

�
(√

q2
y + q2

x ,ω
)

= 0, (23)

has real solutions for a real qx , the integral Eq. (20) is a
Fredholm equation of the third kind. If not, it is a Fredholm
equation of the second kind. The curve �(qy,ω) = 0 separates
the two regimes (see Fig. 2): the continuous solution and the
localized plasmon states (see next section for details). As we
have h̄ω � 2EF , the interband contributions are negligible.
Thus we use the Drude formula for the optical conductivity of
graphene without sacrificing accuracy.
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From the curve �(qy,ω) = 0, we can test the valid-
ity of the electrostatic approximation. Noting that the de-
caying factor without the electrostatic approximation reads
κi =

√
q2

y + q2
x − εiω

2/c2, i = 1,2,3, we have calculated for
qx = 0, qy = 0.4 μm−1, and EF = 0.3 eV that the deviation
1 − κi/qy is no more than 4% in the worst case scenario. There-
fore, for the parameters used in the figures, the electrostatic
approximation is justifiable.

A. Continuous solution

We first assume that Eq. (23) has solutions for real
qx = ±q0

x . In this condition, Eq. (20) has no regular solutions,
howeve, considering a generalized functional space, the solu-
tion has the form [37]

A(qx) = α1δ
(
qx − q0

x

) + α2δ
(
qx + q0

x

) + Areg(qx), (24)

where q0
x is the solution of Eq. (23) and Areg(qx) is the regular

part of the A(qx). The coefficients α1 and α2 are determined
putting Eq. (24) back to Eq. (20) and making qx = q0

x . We can
separate the odd and even solutions by making α2 = ±α1. In
the case that we set the protrusion to zero (ζ0 = 0), the regular
part Areg(qx) = 0, and we simply recover the solution for the
protrusion-free problem. Equation (24) can be interpreted as
the sum of the propagating waves from the protrusion-free
problem α1δ(qx − q0

x ) + α2δ(qx + q0
x ) plus a term that comes

from the geometric effect of the protrusion.
The integral equation satisfied by the regular part of the

solution is obtained substituting Eq. (24) back to Eq. (20):

α1Kqy ,ω

(
qx,q

0
x

) + α2Kqy ,ω

(
qx, − q0

x

)

+
∫ ∞

−∞
dP Kqy ,ω(qx,P )Areg(P ) = �(q,ω)Areg(qx), (25)

where we used the property obtained by the construction of the
function Eq. (24):

�
(√

q2
y + q2

x ,ω
)
A(qx) = �

(√
q2

y + q2
x ,ω

)
Areg(qx). (26)

Now, making qx = ±q0
x , the coefficients αi satisfy the system

of equations:

α1Kqy ,ω

(
q0

x ,q0
x

) + α2Kqy ,ω

(
q0

x ,−q0
x

)
+

∫ ∞

−∞
dP Kqy ,ω

(
q0

x ,P
)
Areg(P ) = 0, (27a)

α1Kqy ,ω

(−q0
x ,q

0
x

) + α2Kqy ,ω

(−q0
x , − q0

x

)
+

∫ ∞

−∞
dP Kqy ,ω

(−q0
x ,P

)
Areg(P ) = 0, (27b)

using the following kernel property Kqy ,ω(qx,P ) =
Kqy ,ω(−qx,−P ) and that Areg(P ) = ±Areg(−P ) we obtain:∫ ∞

−∞
dP

[
Kqy ,ω(qx,P ) − Kqy ,ω

(
q0

x ,P
)]

Areg(P )

= �(q,ω)Areg(qx), (28)

so, for a given qy and ω, one has to solve Eq. (28) to obtain
the field in the presence of the protrusion. Note that we have a
continuous set of frequencies in this case.

B. Transversely localized plasmons

In the case where Eq. (23) has no real solutions for qx ,
Eq. (20) is a homogeneous Fredholm equation of the second
kind. This equation, for a given qy , has solutions for some
particular values of ω. In the following, we consider the case
where ε(ω) = ε, that is, the dielectric function is independent
of the frequency. In this case, Eq. (20) can be rewritten as

λ(ω)D1(qx,qy)A = D2(qx,qy)A, (29)

where we have the following integral operators:

D1(qx,qy)A = q2
[ε2

ε
sinh(qd) + cosh(qd)

]
A(qx) + ε2 − ε

2ε

∫ ∞

−∞

dP

2π
p
[
J (q + p,qx − P )e−pd

(
q2

y + pq + Pqx

)
+J (q − p,qx − P )epd

(
q2

y − pq + Pqx

)]
A(P ), (30a)

D2(qx,qy)A = q

2ε
[(ε2 − ε)(ε − ε1)e−qd + (ε2 + ε)(ε + ε1)e+qd ]A(qx) + ε2 − ε

2ε

∫ ∞

−∞

dP

2π

[
(ε − ε1) × J (q + p,qx − P )e−pd

× (
q2

y + pq + Pqx

) + (ε + ε1)J (q − p,qx − P )epd
(
q2

y − pq + Pqx

)]
A(P ), (30b)

and we defined

λ(ω) = −i
σ (ω)

ε0ω
, (31)

that has the dimension of length. To obtain those results we
used

f+(ω,p) = ε − ε1

2ε
+ λ(ω)p

2ε
, (32a)

f−(ω,p) = ε + ε1

2ε
− λ(ω)p

2ε
. (32b)

The integral operators D1 and D2 do not depend on the fre-
quency ω. To proceed, we discretize the integrals in Eqs. (30a)

and (30b). First we apply a cutoff in the momentum P :
∫ ∞
−∞ →∫ �

−�
, and � is chosen to be large enough such that the solution

converges (we checked that all boundary conditions are obeyed
by the numerical solution). The integral can be discretized
by applying Gauss-Legendre quadrature. This will reduce the
integral [Eq. (29)] to a generalized eigenvalue problem:

λ(ω)D1a = D2a, (33)

where D1/2 are N × N matrix, with N the number of Gauss
points, and a is a vector with dimension N that represents the
discretized version of the function A(qx). Solving Eq. (33),
we have the spectrum of eigenvalues λn(qy). The plasmon
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frequency then is given by the solution of

λ(ω) = λn(qy). (34)

If we assume that the conductivity of graphene is given by the
Drude formula:

σ (ω) = σ0
4i

π

EF

h̄ω + ih̄γ
, (35)

with σ0 = e2/(4h̄), EF the Fermi energy, and γ the relaxation
rate, the plasmon dispersion is given by

ωn(qy) =
√

4cα
EF

h̄

1

λn(qy)
− i

γ

2
, (36)

with α = 1/137 the fine structure constant and c the speed of
light. We can see from Eq. (36) that the transversely-localized
plasmon linewidth is half that of the relaxation rate γ in
graphene. We have also compared the result obtained from (36)
with a calculation that also included interband contributions to
the optical conductivity and the difference for the frequency
of the surface plasmons obtained as the solution of Eq. (34) is
less than 1%.

Recalling the condition for the existence of transversely
localized plasmons, the solution of equation �(qy,ω) = 0
is

λ(ω) = b(qy)

qy

, (37)

with

b(qy) = ε(ε2 + ε1) + (ε2 + ε1ε2) tanh(qyd)

ε + ε2 tanh(qyd)
, (38)

and using the definition of λ(ω), Eq. (31):

ωspp(qy) =
√

4cα
EF

h̄

qy

b(qy)
− i

γ

2
. (39)

Using the condition that, for the transversely localized
plasmons, λn(qy) < λ(qy), we arrive at

λn(qy)qy > b(qy). (40)

The latter relation defines the region of existence of SPP and
does not depend on properties of the graphene sheet; that is, it
is a purely geometric condition.

Once we compute the coefficient A(qx), the coefficients
B(qx) and C(qx) are calculated using Eqs. (11a) and (11b):

B(kx) = A(kx)
ε(ω) − ε1 − κ

2ε(ω)
, (41a)

C(kx) = A(kx)
ε(ω) + ε1 + κ

2ε(ω)
. (41b)

The equation for D(qx) can be obtained from the boundary
condition Eq. (13), using the same procedure that was used to
obtain the Eq. (20):

qe−qdD(qx) +
∫ ∞

−∞

dP

2π
J (q + p,qx − P )e−pd

(
q2

y + pq + qxP
)
D(P )

= q

(
ε − ε1

2ε
e−qd + ε + ε1

2ε
eqd − qλ(ω)

sinh(qd)

ε

)
A(qx) +

∫ ∞

−∞

dP

2π

[(
q2

y + pq + Pqx

)
f+(ω,p)J (q + p,qx − P )e−pd

+ (
q2

y − pq + Pqx

)
f−(ω,p)J (q − p,qx − P )epd

]
A(P ), (42)

which can be written in a matrix from as

G1d = G2a, (43)

where G1 and G2 are the discrete versions of the operators
appearing in Eq. (42) and d is the corresponding discretized
D(qx) vector. From the previous equation, we have the ele-
mentary solution:

d = G−1
1 G2a, (44)

which, since a has been previously obtained, readily gives the
values for d by matrix multiplication.

V. RESULTS

From here on, we consider that the protrusion/indentation
is described by a Gaussian profile:

ζ (x) = −ζ0e
−4x2/R2

, (45)

with the sign of ζ0 defining the two different cases schemati-
cally illustrated in Figs. 1(a) and 1(b). In Appendix B, we cal-
culate the J (α; Q) function [Eq. (17)] for the Gaussian profile.

From here on, we will consider the transversely localized
plasmons case only, that is, for a given qy , the maximum

frequency that we consider is given by Eq. (39). Otherwise
specified, we use the following parameters: ε1 = 1.4, ε2 =
1, ε = 4, EF = 0.2 eV, γ = 0, d = 2 μm, R = 250 μm, and
ζ0 = 25 μm. The numerical parameters are N = 100 Gauss
numbers and the cutoff � = 12/ζ0. These parameters illustrate
the implications of the method, but choosing other values
amounts to quantitative changes only.

A. Parity

The kernel of the integral Eq. (20) obeys the identity

K(qx,P ) = K(−qx,−P ), (46)

and the function �(qx,ω) is even in the qx variable. From
this condition, the solutions can be classified in odd and
even. Therefore, the limits of integration can be changed as:∫ �

−�
→ ∫ �

0 , which simplifies the numerical solution.

B. Scale invariance

Here we consider how the spectrum changes upon a
scale transformation. Making the scale transformation:
d → ξd, R → ξR, ζ0 → ξζ0 and qy → qy/ξ makes
the kernels of Eq. (29) transform Eq. (30a) to
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FIG. 3. Dependence on the ratio ζ0/R. The black line at ≈11 THz
is the solution for �(qy,ω) = 0, i.e., the maximum frequency for
transversely localized plasmons. Parameters: ε1 = 1.4, ε2 = 1, ε =
4, EF = 0.2 eV, d = 2 μm, R = 250 μm, qy = 0.1 μm−1. We clearly
see that for ζ0/R ≈ 0.2, the frequency of the transversely localized
plasmon reaches a plateau.

D1(qx,qy) → ξ−2D1(qx/ξ,qy/ξ ) and Eq. (30b) D2(qx,qy) →
ξ−1D2(qx/ξ,qy/ξ ). Therefore, the eigenvalue λn of the
matrix Eq. (29) transforms to λn → ξλn. From Eq. (36),
the frequency of the transversely localized plasmon scale as
ωn(qy) → ξ−1ωn(qy/ξ ). This simple transformation of the
eigen frequencies upon a scale transformation is due to the
electrostatic limit we have considered from the outset.

From this discussion, only the ratios ζ0/R and d/R matter
for the calculation of the dispersion relation. In Fig. 3, we
show the dependence on the plasmon frequency for fixed R

and d as function of ζ0, where we can see clearly two regimes:
for ζ0/R < 0.2, we have a fast change in the localization
frequency starting from the continuous solution (maximum
localized frequency), and for ζ0/R > 0.2 the system reaches a
plateau and the change in the plasmon frequency is negligible.

C. Discussion

First we show in Fig. 4 the solution for the generalized
eigenvalue problem Eq. (29) for the first even and odd solutions
and qy = 0.4 μm−1, where we can see that the functions A(qx)
approach zero for qxζ0 ≈ 2.

FIG. 4. Solutions for the generalized eigenvalue problem. The
solid red (dashed blue) curve is the first even (odd) solution. Parame-
ters: ε1 = 1.4, ε2 = 1, ε = 4, EF = 0.2 eV, d = 2 μm, R = 250 μm,
ζ0 = 25 μm, qy = 0.4 μm−1.

Using Eqs. (11a), (11b), and (42) we can compute all the
other functions B(qx), C(qx), and D(qx). The potential field
can be calculated now from [see Eqs. (1), (2), and (3)]:

φ1(x,0,z,0) =
∫ ∞

−∞

dP

2π
A(P )eiPxe−pz, (47a)

φc(x,0,z,0) =
∫ ∞

−∞

dP

2π
eiPx(B(P )e−pz + C(P )epz),

(47b)

φ2(x,0,z,0) =
∫ ∞

−∞

dP

2π
D(P )eiPxepz, (47c)

where, for simplicity, we are only interested for the results to
y = 0 and t = 0, because of time and y− translation invari-
ance. The electric field can be obtained from E = −∇φ, with
Ey,i = −ikyφi , where i = 1,2,c labeling the three regions. The
other two components are

Ex,1(x,y = 0,z,t = 0) = −i
∫ ∞

−∞

dP

2π
PA(P )eiPxe−pz,

(48a)

Ez,1(x,y = 0,z,t = 0) =
∫ ∞

−∞

dP

2π
pA(P )eiPxe−pz,

(48b)

and similar expressions for the regions 2 and c. First we note
that from the parity symmetry of the system, the normalization
of the field A(P ) can be chosen such that φi will be always a
real quantity. With a real φi , the electric fields Ex,i and Ez,i

will also be real and Ey,i will be a pure imaginary quantity, i.e.,
it will always be out-of-phase by π/2 with the other electric
field components.

From Eqs. (47a)–(48b), we calculate the potential and
electrical field in Fig. 5, for the first even solution and in
Fig. 6 for the first odd solution in a Gaussian 1D protrusion.
For those solutions the plasmon frequencies are ωeven = 14.04
THz and ωodd = 14.05 THz, respectively. The even solution
has a node at x = 0, as it should, and the field strength, as
can be seen in the panel D of Fig. 5, is concentrated in the
x axis for x ≈ 0.25 R = 60 μm and in the y axis around
y ≈ 0.1ζ0 ≈ 2.5 μm, far below the wave number λ = 134 μm
for the light in air. We have verified that the fields obtained
by Eqs. (47a)–(48b) satisfy all the boundary conditions. In
Figs. 7 and 8, we show the transversely localized plasmons in
a groove (Gaussian indentation), where we can see that the field
is less localized in the y axis in comparison with the protrusion
case. However, the indentation “squeezes” the plasmon in the
central region. A remarkable characteristic of the electrostatic
approximation is that all the fields profiled are only a geometric
solution of the integral equation, that is, they do not depend on
the properties of the graphene sheet. However, they can only
exist if Eq. (34) has a solution. Therefore, without the graphene
sheet, there are no transversely localized plasmons.

We also note that the Fermi-energy EF can be used to
tune the frequency of the transversely localized plasmons
as per Eq. (36). Another important result of our study is
that the transversely localized plasmon dispersion is always
below the usual SPP dispersion (see Fig. 2). Therefore, for a
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FIG. 5. Transversely localized plasmon potential and electric fields for the system illustrated in Fig 1(a). The black line shows the boundary
between the regions of dielectric ε and ε2 and the gold line represents the graphene sheet. The color represents the intensity of the field
in arbitrary units. The electric fields in panels (b), (c), and (d) are normalized by the maximum value of the total electric field. For the
panels (b) and (c), the red and blue colors define a change of phase of π . We show the results for the first even solution. (a) Potential field,
(b) x− component of the electric field, (c) z− component of the electric field, (d) Square of the absolute value of the electric field. Parameters:
ε1 = 1.4, ε2 = 1, d = 2 μm, R = 250 μm, ζ0 = 25 μm, qy = 0.4 μm−1. Note that those fields do not depend on the properties of the graphene
sheet.

FIG. 6. The same as Fig. 5, but now for the first odd solution.
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FIG. 7. Transversely localized plasmon potential and electric fields for the system illustrated in Fig. 1(b). The black line shows the
boundary between the regions of dielectric ε and ε2 and the gold line represents the graphene sheet. The color represents the intensity of
the field in arbitrary units. The electric fields in panels (b), (c), and (d) are normalized by the maximum value of the total electric field. For
panels (b) and (c), the red and blue colors define a change of phase of π . We show the results for the first even solution. (a) Potential field,
(b) x− component of the electric field, (c) z− component of the electric field, (d) square of the absolute value of the electric field. Parameters:
ε1 = 1, ε2 = 6, ε = 1.4, d = 27 μm, R = 250 μm, ζ0 = −23 μm, qy = 0.4 μm−1.

FIG. 8. The same as Fig. 7, but now for the first odd solution.

205435-8



CHANNEL SURFACE PLASMONS IN A CONTINUOUS AND … PHYSICAL REVIEW B 97, 205435 (2018)

FIG. 9. Charge density at the graphene sheet. Solid red (dashed
blue) curve is the first even (odd) solution. Parameters: ε1 = 1.4,

ε2 = 1, ε = 4, EF = 0.2 eV, d = 2 μm, R = 250 μm, ζ0 = 25 μm,
qy = 0.4 μm−1.

given frequency, the wavelength of the transversely localized
plasmons is always smaller than its value for a continuous
graphene sheet on a homogeneous dielectric, implying a higher
degree of confinement of the plasmons in a dielectric with a
protrusion/indentation.

The charge density can be calculated using the equivalent
of Eq. (A4):

n2D(x) = −λ(ω)
∫ ∞

−∞

dP

2π

(
P 2 + k2

y

)
A(P )eiPx, (49)

and we show the charge density for the first two modes in the
groove in Fig. 9, where we can see again that the charge is
localized around x ≈ 0.5R the center of the wedge. Finally,
we note that we have used a Gaussian profile but our approach
can be used for any differentiable profile.

VI. CONCLUSIONS

In this paper, we have developed an approach of creating
transversely localized plasmons in a flat graphene sheet. This
is possible in a configuration where graphene rests on a
flat substrate with the opposite surface of the latter showing
a protrusion or an indentation (a defect). The transversely
localized plasmons dispersion relation appears below the
dispersion relation of the propagating plasmons when graphene
rests on a flat dielectric of thickness d. Above this latter
dispersion relation, we have found a continuum of states,
which would be needed for describing scattering by the defect.
Therefore, we have shown that a defect (in this case with
even symmetry) can trap localized surface plasmons. Since
the defect is 1D, the wave number along the axis of symmetry
of the defect is well defined and, therefore, this defect can also
act as a channel for propagation of the transversely localized
surface plasmons. This geometry has the advantage of being
unnecessary to pattern the graphene sheet, therefore it works
without deteriorating the electronic mobility of graphene. The
generalization of the problem dealt in this paper to a 2D defect
is straightforward, involving only extra computer power. This
is no impediment as our codes are fast enough and run in a
laptop in only a few minutes.
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APPENDIX A: A PLANAR GRAPHENE SHEET

Let us assume a graphene sheet located at z = 0 in the
xy−plane. The graphene is capped by two dielectrics with
dielectric functions ε1, for z > 0, and ε2, for z < 0. We want
to find the spectrum of graphene SPP. The solution of Laplace’s
equation for z > 0 reads

φ1(ρ,z,t) = A1e
ik‖·ρe−k‖ze−iωt ≡ φ1(ρ,z,ω)e−iωt , (A1)

where k‖ = (kx,ky) and ρ = (x,y), and for z < 0 it is given by

φ2(ρ,z,t) = A2e
ik‖·ρek‖ze−iωt ≡ φ2(ρ,z,ω)e−iωt . (A2)

The boundary conditions are

φ1(ρ,0,t) = φ2(ρ,0,t) (A3a)

ε1
∂φ1(ρ,0,t)

∂n
− ε2

∂φ2(ρ,0,t)

∂n
= −n2D(ρ,0,t)

ε0
, (A3b)

where n2D(ρ,0,t) is the charge density in graphene, whose
time dependence can be explicitly made as n2D(ρ,0,t) =
n2D(ρ,0,ω)e−iωt . The first boundary condition expresses the
continuity of the electrostatic potential and the second one
the discontinuity of the normal component of the displace-
ment vector. In addition, the electronic density obeys the
continuity equation in frequency space: iωn2D(ρ,0,ω) =
∇2D · J2D(ρ,0,ω), where ∇2D = (∂/∂x,∂/∂y). Since the
electric current density obeys Ohm’s law, J2D(ρ,0,ω) =
−σ∇2Dφ(ρ,0,ω), it follows that

iωn2D(ρ,0,ω) = −σ∇2
2Dφ(ρ,0,ω) = σk2

‖φ(ρ,0,ω). (A4)

Finally, we have for the 2D electronic density the result

n2D(ρ,0,ω) = − iσ

ω
k2
‖φ(ρ,0,ω). (A5)

The first boundary condition implies A1 = A2 and the second
boundary condition gives

−ε1k‖ − ε2k‖ = iσ

ωε0
k2
‖ (A6)

or

ε1

k‖
+ ε2

k‖
+ iσ

ωε0
= 0, (A7)
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which is the condition giving the dispersion relation of the SPP
in graphene, Note that for σ = 0, we recover the condition
giving the dispersion of SPP at the interface between two
dielectrics. In general, we should have written the electrostatic
potential as

φ1(ρ,z,t) =
∫

dk‖
(2π )2

A1(k‖)eik‖·ρe−k‖ze−iωt , (A8)

and an identical expression for φ2(ρ,t), except for the depen-
dence e−k‖z, which should by replaced by ek‖z. This way of
writing the electrostatic potential is appropriate for discussing
rough surface and defects.

APPENDIX B: THE CASE OF A GAUSSIAN PROFILE

In this Appendix, we give the evaluation of the function
J (α; Q) for the Gaussian profile. This is accomplished by

expanding the exponential of ζ (x) in the integrand, that is,

J (α; Q) =
∫ ∞

−∞
dxe−iQx eαζ (x) − 1

α

=
∞∑

n=1

∫ ∞

−∞
dxe−iQx αn−1

n!
ζ n(x). (B1)

Therefore, we need to compute the integral (the Fourier
transform of a Gaussian)

I (n; Q) = (−ζ0)n
∫ ∞

−∞
dxe−iQxe−4nx2/R2

= (−ζ0)n
R

√
π

2
√

n
e−Q2R2/(16n). (B2)

We have then

J (α; Q) = R2√π

2

∞∑
n=1

(αR)n−1

√
nn!

(−ζ0/R)ne−Q2R2/(16n), (B3)

which is a purely geometric quantity.
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