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Localization noise in deep subwavelength plasmonic devices
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The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate
that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization
modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the
local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by
mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential.
We show that local behavior of the optical beam can be understood in terms of the weighted local density of
the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high
variation in the density of states of localized modes will experience a previously unidentified localized noise.
This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability.
In particular, the resulting impact on heat-assisted magnetic recording is discussed.
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Anderson localization of light has attracted extensive atten-
tion from both application and theoretical perspectives during
the past decade [1–6]. In this context, existence of strong disor-
der can prohibit propagation of the light owing to constructive
interference of scattered waves at their point of origin. Being
an interference effect, adequate phase accumulation between
scattering events is essential for complete localization. Using
plasmonic materials, this phenomenon has been investigated
in various structures [7–9]. However, there is no indication
that Anderson localization is a significant phenomenon when
separation between plasmonic scatterers is much smaller than
the wavelength (d ≈ λ/1000).

In this paper, on the other hand, we demonstrate that, in an
ensemble of plasmonic particles, randomness in shape, size, or
position of particles can lead to Anderson localization of light
in the near-field regime, even though the distance between par-
ticles is much shorter than the wavelength. This phenomenon
can be understood from the perspective of photons hopping
between plasmonic particles. From this point of view, the
large negative value of the real part of plasmonic particles’
permittivity, separated by a dielectric, binds photons to the
particle [10–14]; however, they can hop between them through
the dipole-dipole interaction. In such systems, randomness
in the optical properties of particles can act similarly to the
random potential in the Anderson Hamiltonian (AH) and lead
to localization of photons.

Although these localized modes can be beneficial for
various applications [15–17], we study them in the context of
the uncertainty that they bring to the local-field behavior and
restrictions to the scalability of plasmonic devices, which we
denote as localization noise. In order to quantify the behavior
of the localization noise, we first study the effects of shape
and permittivity on the depolarization field of an isolated
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particle. Then, we investigate Anderson localization due to
dipole-dipole interactions in a random ensemble of plasmonic
particles. Finally, by mapping an electrostatic Hamiltonian
onto the Anderson Hamiltonian in the presence of a random
vector potential [18–20], we demonstrate that the localization
noise is an explicit consequence of variation in the local density
of states of the localized plasmonic modes. To provide a context
for our results, we investigate the influence of the localized
noise on heat-assisted magnetic recording (HAMR) [21–23],
which operates in the smallest regime feasible for a plasmonic
device.

The total electric field inside ponderable materials can be
written as a superposition of applied E0 and the depolarization
field Ed of the induced dipole moment (E = E0 + Ed ). For
a linear isotropic particle located in vacuum, the electric field
inside the particle can be written as

|E|2 = |E0|2
∑

i=x,y,z

∣∣∣∣ 1

1 + Nii(εr − 1)

∣∣∣∣
2

, (1)

where E0 is the projection of the applied field on the x, y, and
z axes, εr is the permittivity of the particle, and Nii is the de-
polarization factor along different directions (i = x,y,z) [24].

Without loss of generality, we can assume that the shape
of the particle represents deformation from a sphere (Nxx =
Nyy = Nzz = 1/3) such that Nxx + Nyy = 2/3 and Nzz =
1/3. By applying the external field on the x-y plane, two
resonances can be observed corresponding to two different
values of Nxx [Fig. 1(a)]. Depending on the permittivity of
the particle, these resonances can happen inside or outside
the acceptable range of Nxx(0 � Nxx � 2/3). For εr > 0,
resonances correspond to unacceptable values of Nxx (Nxx < 0
and Nxx > 2/3). However, for the case of εr < 0, resonances
happen at the acceptable values ofNxx , and the electric field can
be enhanced inside the particle. This is the reason for extraordi-
nary local-field enhancement in low loss plasmonic particles,
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FIG. 1. (a) Total field intensity inside an isolated particle for
different values of permittivity as a function of depolarization factor
and (b) the effect of the material loss on the field enhancement inside
the particle. Permittivity of Au and Ag is evaluated at λ = 800 nm.

such as Au and Ag. In the case of lossy metallic particles,
on the other hand, these resonances are not significant, and
most of the energy is damped as heat inside the particles. As
demonstrated in Fig. 1(b), the peak value of the electric field
decreases as Im{εr} increases. However, from the local-field
fluctuation perspective, any sort of randomness in the shape of
the particle, even for the case of lossy materials, can drastically
affect the optical response of the particles.

In order to investigate the localization in a system of
randomly distributed plasmonic particles, we use an analogous
method to the discrete dipole approximation (DDA) method
[25] and write the induced dipole moment for a particle located
at ri as

pi = αiEloc(ri), (2)

where α is the polarizability and Eloc is the sum of an incident
field and the contributed field from all other particles,

Eloc(ri) = E0(ri) +
∑
i �=j

Aijpj , (3)
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FIG. 2. (a) Schematic of a random array of plasmonic particles
with long-range interaction between them, (b) localization length of
an array of particles (εr = −1) with constant separation distance,
and (c) localization length for an array of randomly located particles
(εr = −1).

where Aij is the dipole-dipole interaction matrix and can be
written as [26]

Aij = eikrij

|rij |
[
k2

(
I3×3 − rij ⊗ rij

|rij |2
)

− 1 − ik|rij |
|rij |2

(
I3×3 − 3

rij ⊗ rij

|rij |2
)]

. (4)

For the deep subwavelength regime, the retardation of the
electromagnetic wave can be ignored, and the contribution
from the other particles can be obtained from Eq. (4) by
kr −→ 0. Therefore, Eq. (3) can be considered as

S|p〉 = |E0〉, (5)

where all the interactions between the particles are included
in the tensor S and polarization modes of the system can be
described in terms of eigenvectors of S. In order to investigate
the effects of randomness on the collective response of the
particles, we calculate localization lengths of polarization
modes in a one-dimensional (1D) array of 500 spherical
plasmonic particles with a radius of 5 nm (εr = −1) with
15-nm separation for two cases: The radii of the particles
are constant, and a 20% variation is added to the particles
[Fig. 2(a)]. The separation between the particles has been
selected to be large enough (D/2R ≈ 1.5) to meet the accuracy
criteria of the DDA method (D/2R > 1.25) [27,28]. For each
case, we calculate the localization length of the eigenstates of
S using

ζ 2
n =

∫
(r − 〈r〉n)2|ψn|2dr, (6)

where ψn is the nth eigenstate of S and 〈r〉n = ∫
r|ψn|2dr . As

depicted in Fig. 2, for the case of constant distance between
the particles, the eigenstates are extended through the particle
array. On the other hand, adding randomness to the location of
the particles leads to localization of all the eigenstates. Similar
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behavior is observed for other types of randomness, such as
random size or shape.

These results can be understood more clearly by comparing
tensor S with the Anderson Hamiltonian: Randomness in
polarizability of individual particles can be interpreted as
on-diagonal random energy matrix elements in the Anderson
model, whereas the off-diagonal elements can be considered as
the hopping probability. From this perspective, the randomness
in plasmonic properties of different particles behaves similarly
to the random potential in the Anderson model. In such
systems, there is no length scale limit due to interference, and
Anderson localization of light can be achieved in the deep
subwavelength regime.

The behavior of a more complex system of particles can
be modeled in more detail by solving Maxwell’s equation and
obtaining the local-field variation. Owing to the localization
mechanism discussed above and subwavelength size and sep-
aration of the particles, retardation of electromagnetic waves
can be neglected, and Maxwell’s equations can be solved in
the quasistatic limits. By separating the incident field (E0)
from the depolarization field (Ed ) and using continuity of the
current [∇ · (εE) = 0], the depolarization potential φd in the
quasistatic limit can be written as

∇ · (∇εφd ) = ∇ · (εE0), (7)

where Ed = −∇φd and ε describes the spatial distribution of
permittivity inside the composite structure. Equation (7) can
be assumed as a system of linear equations Hφd = Q, where
H is the depolarization Hamiltonian (DH) acting on the depo-
larization potential and Q can be considered as the externally
induced charge [29]. This depolarization Hamiltonian can be
discretized to take the form of a tight-binding Hamiltonian for
noninteracting electrons,

H =
∑

i

ei |i〉〈i| +
∑
i �=j

tij |i〉〈j |, (8)

where ei is the potential at site i and tij represents hopping
between sites i and j [29,30]. By selecting the 0.5-nm mesh
size, our calculation only addresses classical effects, not, for
example, changes in permittivity owing to interface-induced
charges in electronic structures.

For random spatial distribution of a composite structure,
Eq. (8) is mathematically equivalent to the AH in the presence
of a random vector potential [31,32]. This implies localized
states as originally predicted by Anderson for random site
potentials and by later researchers for random vector potentials
(randomness in tij hopping) where delocalized states are
predicted to coexist [32,33]. In the case of DH, tij corresponds
to material permittivity between sites i and j , and ei is the
summation of the materials permittivity between site i and its
nearest neighbors (ei = −∑

j=NN tij ). Therefore, we expect
eigenstates of a randomly distributed composite material to
behave similarly to eigenstates of AH in the presence of a
random vector potential, i.e., both localized and delocalized
states should exist.

It is also beneficial to note that ei and tij are correlated in
DH, which takes a different form of randomness compared to
AH. However, we should not expect this correlation to cause
any difference in the occurrence of localized and delocalized
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FIG. 3. (a) Localization length of a 1D periodic array of 10-nm
grain (εr = −1) separated by 10-nm grain boundaries (εr = 1). The
length of the array is 500 nm, and a Dirichlet boundary condition is
used and (b) localization length of the same array as (a) when 3%
variation is added to the size of the grains.

states. Figure 3 compares the localization length of a periodic
and random 1D array of granular media. In the case of a
periodic array, 10-nm grains (εr = −1) are separated by 10-nm
grain boundaries (εr = 1). According to Fig. 3(a), most of
the eigenstates are delocalized, and the few localized modes
correspond to the boundary modes. In Fig. 3(b), we apply
3% randomness to the size of the grains without changing
their locations. In this case, as we expected, most of the
eigenstates are localized. As discussed in Ref. [29], the role
of the delocalized states can be neglected for the case of large
systems or a localized incident beam.

In order to quantify the localization noise, we introduce the
parameter ρ(r) as a weighted local density of localized states
in the following form:

ρ(�r) =
∑

n

∣∣∣∣∇ψn

λn

∣∣∣∣
2

, (9)

where ψn and λn are the nth eigenfunction and eigenvalue
of DH, respectively. ρ(�r) can be understood as the summa-
tion of the depolarization field intensity of different eigen-
modes where the depolarization field of each mode is En

d =
−∇ψn/λn. Using this definition, the behavior of the local field
can be understood in terms of ρ(�r), and spatial fluctuation in
ρ(�r) can be considered as a source of localization noise in
subwavelength plasmonic devices.

In order to develop a comprehensive framework, we study
the fluctuation of ρ(�r) (localization noise) on the performance
of HAMR. In HAMR, plasmonic near-field transducers (NFTs)
have been used for focusing light on the recording media
and increasing its temperature [Fig. 4(a)]. By controlling the
temperature, the coercivity of magnetically hard recording
grains can be controlled and an ∼5× increase in the areal
density of hard disk drives can be achieved. In HAMR, each
bit of information is usually stored on a cluster of ∼10 metallic
grains (∼5-nm FePt) that are separated by ∼1-nm grain
boundaries. As a result, the optical beam generated by the NFT
should have a diameter smaller than 40 nm. The accuracy of this
recording process greatly depends on the grain’s temperature:
A 3% variation in the recording temperature can significantly
decrease the signal-to-noise ratio of the system. Despite the
high sensitivity of the device and the potential for randomness
of local fields at the deep subwavelength regime, impacts of
the local-field variation inside the recording media have been
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FIG. 4. (a) Schematic of a lollipop NFT and (b) normalized
average absorption power per volume of FePt of eight different
recording media as a function of observation window radius. The
average size of the FePt grains is assumed to be 9 nm separated
by 1-nm SiO2 grain boundaries. The recording layer is located atop
an 8-nm MgO seed layer and a 60-nm gold heat sink. The distance
between the NFT and the recording media is also assumed to be
8 nm.

neglected in most studies by utilizing effective medium theory
[34,35].

In Fig. 5, ρ(�r) is compared with a FDTD [36] simulation
in an arbitrary realization of HAMR media. For the FDTD
simulation, we use the total field scatter field method to
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FIG. 5. (a) Weighted density of state of the localized modes inside
HAMR media containing FePt (n = 3.3 + 4.3i) grains separated by
4-nm SiO2 (n = 1.5) grain boundaries and (b) field intensity inside
the same media as (a) calculated by the finite difference time-domain
(FDTD) method.

locally shine a circular polarized plane wave on the recording
media: It excites all local modes. For calculating ρ(�r), a two-
dimensional (2D) version of the depolarization Hamiltonian
is evaluated based on the general approach for calculating the
2D Kirchhoff Hamiltonian [29]. According to Fig. 5, there is
good agreement between the ρ(�r) and the FDTD simulation.
Therefore, topography of ρ(�r) can be used for engineering of
the HAMR media.

As depicted in Fig. 5, the location of the hot spots cannot be
explained from the perspective of individual particle geometry.
For an isolated particle, we expect to observe enhancement
in the electric field at sharp corners owing to the lightening
rod effect. However, according to Fig. 5, particles with similar
shapes and sizes respond differently to the incident optical
beam: Sharp corners with similar angles cause different field
enhancements, the intensity of the electric field is different
around particles with similar geometry, and there is no con-
sistent size dependency in the field enhancement. These ob-
servations suggest that Anderson localization is the dominant
field enhancement mechanism in an ensemble of plasmonic
particles and that studying geometry of isolated particles can
lead to misleading results.

Consequences of these localized modes in the HAMR
performance can be demonstrated more clearly by calculating
the average absorption power as a function of the observation
window for different realizations of granular recording media.
For this purpose, we calculate absorption power per unit
volume of FePt for eight different recording media in a circular
observation window with the radius located below the lollipop
NFT [34]. According to Fig. 4, for a large observation window,
the effects of randomness of the localized depolarization
modes are averaged out. However, for r < 25 nm, which
is in the operating length scale of HAMR, randomness in
the localized mode can add a significant variation in the
absorption power. This variation in the absorption power leads
to variation in the temperature of the recording media, which
is usually considered to be the main source of noise in HAMR
but is typically attributed to much different (nonoptical)
sources.

In conclusion, we show that enhancement of the
depolarization field, and thus energy absorption, of metallic
particles greatly depends on their shapes. This shape
dependency can lead to Anderson localization of light in
the deep subwavelength regime. In the case of randomly
distributed clusters of particles, we show that the electrostatic
Hamiltonian maps onto the Anderson Hamiltonian for
electrons in the presence of a random vector potential, and the
localized mode of the depolarization field is responsible for the
randomness in the local field. We also demonstrate that optical
nanodevices, such as HAMR, that operate on a length scale
that is comparable to these localized modes, will experience a
localization noise that can significantly affect their scalability.
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