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Tunable ohmic environment using Josephson junction chains
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We propose a scheme to implement a tunable, wide frequency-band dissipative environment using a double
chain of Josephson junctions. The two parallel chains consist of identical superconducting quantum interference
devices (SQUIDs), with magnetic-flux tunable inductance, coupled to each other at each node via a capacitance
much larger than the junction capacitance. Thanks to this capacitive coupling, the system sustains electromagnetic
modes with a wide frequency dispersion. The internal quality factor of the modes is maintained as high as possible,
and the damping is introduced by a uniform coupling of the modes to a transmission line, itself connected to
an amplification and readout circuit. For sufficiently long chains, containing several thousands of junctions, the
resulting admittance is a smooth function versus frequency in the microwave domain, and its effective dissipation
can be continuously monitored by recording the emitted radiation in the transmission line. We show that by
varying in situ the SQUIDs’ inductance, the double chain can operate as a tunable ohmic resistor in a frequency
band spanning up to 1 GHz, with a resistance that can be swept through values comparable to the resistance
quantum Rq = h/(4e2) � 6.5 k�. We argue that the circuit complexity is within reach using current Josephson
junction technology.
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I. INTRODUCTION

Dissipation in radiofrequency (rf) superconducting quan-
tum electronic circuits [1–3] is usually detrimental, giving rise
to quantum decoherence. However, this does not necessarily
have to be the case. Remarkably, in the past decade, engineered
dissipation [4–7] played an increasingly prominent role in
quantum states stabilization [8–12] or even in error correction
schemes [13–15].

So far, low-impedance dissipative environments have dom-
inated the scene, as they are ubiquitously present in rf cir-
cuits and can be tailored using standard microwave design
strategies. Designing high impedance environments, with
an impedance comparable to the resistance quantum Rq =
h/(4e2) � 6.5 k�, has proven more challenging. Recently,
significant success has been achieved in the fabrication of
low-loss high impedance environments in the form of superin-
ductors [16–20] or metamaterials [21,22]. However, the im-
plementation of wide frequency-band, high-impedance ohmic
environments remains an unsolved problem.

Tunable, high-impedance ohmic environments are poten-
tially interesting for several applications in the field of super-
conducting electronics. For instance, quantum simulations of
fundamental models to study dissipative quantum phase transi-
tions require the exploration of extended regions in their phase
diagrams [23,24]. In a single Josephson junction, dissipation
leads to a phase transition with suppression of the quantum
tunneling of the superconducting phase when the effective
resistance shunting the junction is swept through the resistance
quantum Rq . The phase diagram of such a transition was
experimentally explored using different shunting resistances
[25,26]. In circuit QED, the ratio between the characteristic
impedance Zc of a one-dimensional (1D) microwave waveg-
uide and the quantum resistance Rq plays the role of the

effective fine-structure constant between the artificial atoms,
viz. superconducting qubits, and the electromagnetic field
[27], namely αeff = (Zc/Zvac)α ∼ Zc/Rq , with the Zvac the
impedance of the vacuum and α � 1/137.

An ultrastrong-coupling regime in circuit QED has been
achieved in experiments in resonant cavities [28,29] and in
open microwave waveguides [30], using galvanic coupling,
which is characterized by a dual scaling of the coupling
strength in matter-radiation interaction [27,31], e.g., ∼1/αeff.
This regime was also obtained experimentally in the effective
rotating frame of a driven qubit coupled to an LC resonator
[32], with a theoretical extension to an ensemble of resonators
[33]. Hence, circuit QED designs offer another realization
of the spin-boson model, a reference model in the theory
of quantum dissipation. For instance, a recent experiment
investigated transmons coupled to transmission lines with
different coupling strength [34]. Another recent approach is
based on the use of 1D arrays of Josephson junctions to
design the resonant modes of the electromagnetic environment
[35,36]. In these systems, it is desirable to have the ability to
controllably sweep the relevant parameter over a wide range,
i.e., the strength of the dissipative interaction between the
quantum system and its environment [37–39]. Varying in situ
the resistance opens the route for addressing novel issues such
as, for instance, quenching in the dissipative phase transition
by varying rapidly the external dissipation across the critical
point.

This class of environments could also be an asset for quan-
tum state preparation and stabilization [40,41] and autonomous
quantum error correction via bath engineering [42,43]. For
example, in the context of coherent cat state preparation, tuning
the dissipative strength and the characteristic impedance might
provide a significant resource [42–44].
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FIG. 1. Schematic of the two parallel Josephson junction chains
(PJJCs). The effective Josephson junctions are implemented using
SQUIDs threaded by a magnetic flux �B to achieve a tunable Joseph-
son inductance LJ = �2

0/[8π 2EJ cos(2π�B/�0)], where �0 =
h/(2e) is the flux quantum. The two chains are coupled via the
capacitances CC , with CC � CJ . Each node is inductively coupled
through the inductance LC to a balanced microstrip transmission line.
The transmission line is connected via 180◦ hybrid couplers to a
standard coaxial line, ideally without reflections, and the signal can
then be routed to a microwave amplification and readout chain.

In this work, we analyze the possibility of realizing a tunable
high-impedance environment, ohmic in a wide frequency
range, using two coupled parallel Josephson junction chains
(PJJCs), as depicted in Fig. 1. Josephson junctions (JJs) are
versatile circuit elements, with widespread use in quantum
mesoscopic systems, thanks to their intrinsic low dissipation
and amenable nonlinearity. They are the building blocks of
superconducting quantum bits (qubits) [45–47], hybrid sys-
tems [48,49], or Josephson photonic circuits [50,51]. Joseph-
son junction chains exhibit rich and interesting many-body
physical properties [52], which can be influenced relatively
accurately by circuit design and fabrication parameters. They
have constituted the platform of choice for the investigation
of quantum fluctuations of the phase induced by charge
interactions, i.e., quantum phase slips [53–63], or quantum
fluctuations of the charge induced by Josephson tunneling
[64–71].

In the phase regime, where the Josephson energy EJ =
h̄Ic/(2e), with Ic the junction critical current, dominates
over the charging energy of the junction EC = e2/(2CJ ),
with CJ the junction capacitance, Josephson junction chains
have already been investigated as custom-designed electro-
magnetic environments, implementing metamaterials [72–77],
resonators with tunable nonlinearity [78,79], or parametric
amplifiers [80]. The success of many-junction devices in the
phase regime (EJ � EC) paves the way toward more complex
architectures, such as the two coupled Josephson junction
chains we propose in Fig. 1 to implement a tunable, high-
impedance ohmic environment.

The PJJC device shown in Fig. 1 consists of two JJ
chains capacitively coupled to each other at each node and
inductively coupled to a stripline microwave transmission
line. Each element is formed by a superconducting quantum
interference device (SQUID), with EJ � EC , threaded by
a magnetic flux �B that allows tuning of the Josephson
inductance LJ = �2

0/[8π2EJ cos(2π�B/�0)]. The coupling
capacitance between the chains CC is designed to be dominant
compared to CJ (CJ � CC), which imposes a dense and linear
dispersion relation over a wide frequency range. Dissipation
is introduced via the inductive coupling (using LC) of the
chains to an on-chip microwave transmission line, which is
itself connected to an amplification and read-out circuit using
180◦ hybrid couplers to mode-match between the on-chip
transmission line and the standard 50 � coaxial cable. This
matching is important to avoid the formation of standing waves
in the transmission line, which would result in a nonuniform
coupling of the PJJC eigenmodes to the 50 � environment.

We show that for sufficiently long chains, with N in the
range of 103, the resulting real part of the impedance at the
input port of the PJJC is a smooth function versus frequency
in a band of ∼1 GHz, and its value �√

LJ /CC is tunable in
situ, straddling the resistance quantum. Additionally, due to the
fact that dissipation is introduced via coupling to a transmission
line, one can continuously monitor the photons emitted by the
device of interest, connected to the input port of the PJJC.

Notice that, in our proposal, Josephson junctions are only
used as linear inductances and could be in principle replaced
by geometric inductors. Nevertheless, Josephson inductors
are very convenient for this proposal, as they offer three
essential ingredients: (a) an intrinsically lossless medium, (b)
an ultracompact inductor, much larger than the geometric
inductance of an equivalent size wire, and (c) tunability via the
Josephson effect, when implemented in the shape of a SQUID.

The paper is structured as follows. In Sec. II we discuss the
admittance of a single JJ chain. We compare a phenomeno-
logical model for dissipation, based on an infinite number
of dissipationless junctions, with models for finite-size JJ
chains, formed by N dissipative junctions. In Sec. III we
analyze the effective circuit of the PJJC in Fig. 1 and show its
equivalence to a single chain formed by N JJs. In Sec. IV, we
discuss the realistically achievable values for the admittance
of the PJJC device, taking into account the limited range
of experimentally feasible parameters. Finally, we draw our
conclusions in Sec. V.

II. ADMITTANCE OF A SINGLE CHAIN FORMED
BY N LUMPED ELEMENTS

In Sec. II A we recall the emergence of an ohmic resistor
in the mathematical limit of an infinite line formed by dissipa-
tionless JJs acting as linear inductances and capacitances. In
Sec. II B we demonstrate that a similar result can be obtained
for finite chain lengths, N , if the JJ element of the chain is
intrinsically dissipative. In a first example, assuming typical
measured values for the intrinsic dissipation of the JJ, the real
part of the resulting admittance can only become a smooth
function versus frequency for chain lengths of the order N =
105. In a second example, we engineer the dissipation, and we
can obtain a smooth admittance versus frequency for much
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FIG. 2. Model for a single chain formed by an inductance LJ

in parallel to a capacitances CJ . Each island is connected by a
capacitance C0 to the ground.

shorter chains with N ∼ 103. The latter results will be directly
applicable to the PJJC device (as shown in Sec. III).

A. Ohmic admittance of a dissipationless JJ chain in the
thermodynamic limit

We consider the chain shown in Fig. 2 formed by a series
of inductances LJ , in parallel with capacitances CJ , with
C0 connecting each node to the ground. Introducing the two
admittances YJ (ω) = iωCJ + 1/(iωLJ ) and Y0(ω) = iωC0,
we write Kirchhoff’s laws for current conservation at nodes
n = 1, . . . ,N , in terms of the voltages vn = Vn(ω), in the
frequency domain

YJ (ω)(vn − vn−1) = YJ (ω)(vn−1 − vn−2) + Y0(ω)vn, (1)

with the boundary condition V0 = v0 = 0. We consider a
vector of dimension N − 1 composed of the voltage values
at nodes n = 1, . . . ,N − 1. Then, Eq. (1) can be cast in the
following tridiagonal matrix form:

⎛
⎜⎜⎜⎝

a(ω) −1 0 · · · · · ·
−1 a(ω) −1 0 · · ·
0 −1 a(ω) −1 · · ·
· · · · · · · · · · · · −1
· · · · · · 0 −1 a(ω)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

vN−1

vN−2

· · ·
· · ·
· · ·
v1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

vN

0
· · ·
· · ·
· · ·
0

⎞
⎟⎟⎟⎟⎟⎠

(2)

with a(ω) = 2 + Y0(ω)/YJ (ω).
The previous matrix has eigenvalues λk(ω) =

2[1 − cos(πk/N )] + Y0(ω)/YJ (ω) and eigenvectors ek(n) =√
2/N sin(πk n/N ) for k ∈ [1,N − 1] defined on the restricted

lattice n ∈ [1,N − 1]. The eigenvectors are orthonormal,∑N−1
n=1 ek(n)ek′(n) = δkk′ , and satisfy the completeness

relation
∑N−1

k=1 ek(n)ek(m) = δnm. The matrix appearing on

the left-hand side of Eq. (2) can be written as ¯̄Y = ¯̄U ¯̄D ¯̄U
−1

,
where ¯̄D is the diagonal matrix of the eigenvalues, and ¯̄U
( ¯̄U−1) is a matrix whose k-row (-column) are the components
of the eigenvector k. By writing the inverse of the matrix
as ¯̄Y−1 = ¯̄U ¯̄D−1 ¯̄U−1, one can express the voltage at node
N − 1 as a function of the voltage at node N , namely
vN−1 = vN

∑N−1
k=1 e2

k(n)/λk(ω), which reads

vN−1 = vN

2

N

N−1∑
k=1

YJ (ω) sin2 (πk/N)

Y0(ω) + 2YJ (ω)[1 − cos(πk/N )]
. (3)

The admittance of the chain is defined by the relation

I (ω) = YJ (ω)(vN − vN−1) ≡ Ych(ω) vN . (4)

Inserting Eq. (3) into Eq. (4), using the relation sin2(x) = [1 −
cos(x)][1 + cos(x)], and the sum

∑N−1
k=1 [1 + cos(πk/N )] =

N − 1, the admittance can be expressed as

Ych(ω) = YJ (ω)

N

(
1+

N−1∑
k=1

Y0(ω)
[
1 + cos

(
πk
N

)]
Y0(ω) + 2YJ (ω)

[
1 − cos

(
πk
N

)]
)

.

(5)

We can cast the admittance Ych(ω) of Eq. (5) as the sum of
three terms

Ych(ω) = 1

iωNLJ

+ iωC̃ + Yhar(ω). (6)

Ych(ω) is characterized by an effective inductance NLJ at small
frequency and an effective capacitance C̃ at large frequency,
given by

C̃ = CJ

N
+ C0

2N

N−1∑
k=1

cos2
(

πk
2N

)
sin2

(
πk
2N

) + C0/(4CJ )
. (7)

This same result was obtained using a different method in
previous works [59,81], with different boundary conditions
[82]. The third term Yhar(ω) in Eq. (6) is related to the
electromagnetic eigenmodes of the chain, whose spectrum
reads

ωk = 2ω0 sin [πk/(2N )]√
1 + (4CJ /C0) sin2 [πk/(2N )]

. (8)

We introduce the characteristic frequencies of the spectrum

ω0 = 1√
LJ C0

, ωJ = 1√
LJ CJ

, ωm = max
k

{ωk}, (9)

corresponding, respectively, to the frequency scale in the
linear regime, the plasma frequency of the single JJ, and
the maximum frequency of the spectrum, given by ωm =
2ω0/

√
1 + 4CJ /C0 for N � 1. Using the eigenmodes spec-

trum, Yhar(ω) can be written as

Yhar(ω) = i2ω

NLJ

N−1∑
k=1

(
1 − ω2

k

ω2
J

)(
1 − ω2

k

ω2
m

)
ω2

k − ω2 − 2iεωk

. (10)

In Eq. (10) we added phenomenologically an imaginary part
ε > 0 in the denominator, which yields a finite real part for
the admittance. From Eq. (8) for the modes, and from their
corresponding admittance in Eq. (10), in the limit of ε = 0, we
can recover previous theoretical results [59,81].

It is now interesting to discuss the behavior of Yhar(ω)
at small frequency, with πk/(2N ) � 1, such that we can
assume a linear spectrum ωk � ω0πk/N . We define K as
the approximated fraction of modes in the linear part of the
spectrum, a number that scales as K ∝ N . At low frequency,
the numerator of Eq. (10) converges to 1 (ωk � min[ωm,ωJ ]).
Then, for ω > 0 and provided that the imaginary part is much
smaller than the lowest eigenfrequency ε � ωk=1 (which is
equivalent to the requirement that Nε = const or Kε = const),
one can approximate the real part of the admittance to a sum
of Lorentzian functions

Re[Yhar(ω)] � 1

Z0

(πω0

N

) K∑
k=1

ω

ωk

ε/π

(ωk − ω)2 + ε2
, (11)
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FIG. 3. Circuit model for the JJ chain with intrinsic dissipation,
with shunt resistances RJ in parallel with each junction, and R0 in
parallel with the capacitance to the ground.

with the characteristic impedance of the line

Z0 =
√

LJ /C0. (12)

Considering the limit of infinite length of the chain N → ∞
(or equivalently K → ∞) and keeping constant the product
Nε (or Kε), the admittance of the chain, given by Eq. (11),
converge to an ohmic behavior 1/Z0.

B. Ohmic admittance of a finite-size dissipative JJ chain

In the following, we use a different approach compared to
the previous section to introduce dissipation in the JJ chain.
We review two types of dissipative 1D JJ chains, where
the dissipation can either be intrinsically associated with all
circuit elements (see Fig. 3 and Sec. II B 1), or it can be
added in a controlled manner, in parallel with the ground
capacitance C0, using a coupling inductor LC (see Fig. 5 and
Sec. II B 2). In both cases, the chain is composed of the effective
junction admittancesYJ (ω) and the effective admittances to the
groundY0(ω). Applying the current conservation at each node,
similarly to Eq. (1), we obtain

YJ (ω)(vn − vn−1) = YJ (ω)(vn−1 − vn−2) + Y0(ω)vn. (13)

Then one can repeat identically the steps following Eq. (1) in
the previous section to obtain the admittance

Ych(ω) = YJ (ω)

N

(
1 +

N−1∑
k=1

YJ (ω)Y0(ω)
[
1 + cos

(
πk
N

)]
Y0(ω) + 2YJ (ω)

[
1 − cos

(
πk
N

)]
)

.

(14)

In the next two subsections, we apply this result to two
hypothetic circuit implementations: (i) the case of intrinsic
dissipation associated with any real superconducting circuit
element, and (ii) a particular implementation of engineered
dissipation, using resistive on-chip thin films. We refer to
them as intrinsic dissipation and engineered dissipation,
respectively.

1. JJ chain with intrinsic dissipation

We introduce dissipation by considering the inductances
and capacitances to be nonideal elements, indicated by the
resistances RJ and R0 in the circuit model of Fig. 3. RJ takes
into account the finite dissipation in a single JJ, potentially
associated with (nonequilibrium) quasiparticles above the
superconducting gap [83,84] or other imperfections of the JJ
dielectric barrier [85]. Similarly, R0 accounts for dielectric

losses in C0. Then we have

YJ (ω) = iωCJ + 1/(iωLJ ) + 1/RJ , (15)

Y0(ω) = iωC0 + 1/R0. (16)

Focusing on the limit in which the two shunt resistances are
much larger than the characteristic resistance of the chain,
RJ ,R0 � Z0, following a method analogous to the one used in
the previous sections, one can find the following approximate
expression for the 1D JJ chain admittance:

Y(0)
JJ (ω) � i2ω

NLJ

A(0)(ω)

(
1 − ω2

ω2
J

) N−1∑
k=1

(
1 − ω2

k

ω2
m

)
ω2

k − ω2 − iωη
(0)
k

,

(17)

with the spectrum ωk given by Eqs. (8) and (9). As expected,
Eqs. (17) and (10) have a similar form [86]. The complex
amplitude A(0)(ω) = 1 − i/(ωR0C0) in Eq. (17) reduces to
∼1 at frequency ωR0C0 � 1, and the damping coefficients
for each mode k are given by

η
(0)
k = 1

R0C0
+

(
1

RJ CJ

− 1

R0C0

)
ω2

k

ω2
J

. (18)

Notice that the damping is independent of the eigenmode
number for frequencies ωk � ωJ .

For N � 1, it is expected that the admittance of the system
saturates to a smooth function of frequency. The typical length
at which the discreteness of the modes disappears is reached
when

N � πR0/Z0, (19)

i.e., the spacing between the low-frequency modes is much
smaller than the width of the individual peaks. Since in typical
JJ chains R0 ∼ 100 M� [17], with a characteristic impedance
of the JJ chain Z0 ∼ k�, from Eq. (19) we get a minimum
required number of junctions N � 105, a number that is
difficult to achieve in experimental JJ devices.

In Fig. 4 we plot the calculated real part of the JJ chain
admittance, following Eq. (17), for N = 105. The inset shows
the same calculation for a short chain with N = 25 to evi-
dence the discrete mode structure of the JJ chain admittance.
For N = 105, the admittance at low frequency still shows
large-amplitude oscillations caused by the discreteness of the
eigenmodes spectrum, pointing out that even longer chains are
needed to achieve an ohmic behavior in JJ chains with intrinsic
dissipation.

2. JJ chain with engineered dissipation

Hereafter, we neglect the large intrinsic resistances RJ and
R0 associated with the dissipative part of nonideal capacitances
and inductances. As shown in Fig. 5, we assume YJ (ω) to be
a pure imaginary admittance, whereas the element Y0(ω) is
constructed using an ideal capacitance CC , in parallel with the
series combination RC and LC ,

YJ (ω) = iωCJ + 1/(iωLJ ), (20)

Y0(ω) = iωCC + 1

RC + iωLC

. (21)
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FIG. 4. The admittance of the 1D JJ chain with intrinsic dissipa-
tion [following Eq. (17)] for N = 105 and parameters C0/CJ = 10,
R0 = RJ = 5 × 104Z0. For clarity, the inset shows the results for a
much shorter chain, with N = 25.

The inductance LC opens a gap in the spectrum and the
eigenmodes are now given by

�k = 2√
LJ CC

√
sin2 [πk/(2N )] + LJ /(4LC)

1 + (4CJ /CC) sin2 [πk/(2N )]
, (22)

with the maximum frequency of the spectrum given by
ωm = 2

√
[1/LJ + 1/(4LC)]/(CC + 4CJ ), and the minimum

frequency ωc = 1/
√

LCCC for N � max[1,π
√

CJ /CC]. It is
also convenient to introduce the characteristic impedance

ZC =
√

LJ /CC. (23)

Focusing on the frequency range containing the spectrum,
ωc < ω < ωm, and in the regime

CJ � CC, LJ � LC,
RC

ZC

√
LJ

LC

� 1, (24)

using the method of Sec. II A, we obtain an approximate
expression for the real part of the admittance of the chain:

YJJ(ω) � i2ω

NLJ

A(ω)

(
1 − ω2

ω2
J

) N−1∑
k=1

(
1 − �2

k

ω2
m

)
�2

k − ω2 − iωηk(ω)
.

(25)

FIG. 5. Circuit model for the JJ chain with engineered dissipation.
The dissipative element RC is introduced using a coupling inductor
LC , in parallel with the coupling capacitor CC connected to the
ground.

FIG. 6. The admittance of the 1D JJ chain with engineered dissi-
pation [following Eq. (25)] for N = 5000 and parameters LC/LJ =
10, RC/ZC = 0.1, and different ratios CC/CJ . For clarity, the inset
shows the results for a much shorter chain, with N = 25, for CC/CJ =
30.

The complex amplitude A(ω) and the functions ηk(ω) are now
given by

A(ω) =
(

1 − ω2
c

ω2
− iRC

ωLC

)[
1 + LJ /(4LC)

1 − CJ CC/(LJ LC)

]
, (26)

ηk(ω) = RC/LC

1 − CJ LJ /(CCLC)

(
1 − �2

k − ω2
c

ω2

)
. (27)

Notice that the damping coefficients for each mode are
frequency-dependent, and they increase up to RC/LC as the
frequency decreases toward the minimum frequency of the
spectrum. As we will show in the next paragraph, the resulting
increase of the spectral linewidth of the modes at lower
frequencies allows a decrease by two orders of magnitude of
the minimum required N , compared to the previous section.

In the limit N � π
√

LC/LJ , we can estimate the length
above which the discreteness of the modes disappears in the
admittance,

N � π (LC/LJ )
3
4

√
ZC/RC. (28)

For experimentally feasible parameters such as RC = 50 �,
ZC ∼ k�, and LC/LJ = 10, the minimum required number
of JJs is N ∼ 103. Using these parameters, in Fig. 6 we plot
the calculated real part of the 1D JJ chain admittance according
to Eq. (25) for N = 5000. We observe a smooth behavior
of the admittance in a wide frequency range, although some
oscillations due to the granularity of the spectrum still appear in
the high-frequency range. These oscillations are a consequence
of the fact that the mode damping decreases as the frequency
approaches the upper edge of the spectrum; see Eq. (27).

We conclude this section by emphasizing that the introduc-
tion of dissipation in a 1D JJ chain via a coupling inductor
to the ground (see Fig. 5) allows the design of quasi-ohmic
dissipative environments, functioning in a relatively wide band.
The required system parameters, such as chain lengths in
the range of 103, although ambitious, are not unrealistic for
state-of-the-art JJ technology.
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FIG. 7. (a) Equivalent circuit of the PJJC shown in Fig. 1. The
microstrip transmission line is modeled as a resistance RC . This
floating configuration is convenient to connect the PJJA impedance
to a probe system such as a transmon (b) or flux (c) qubit.

III. ADMITTANCE OF THE DOUBLE CHAIN WITH
ENGINEERED DISSIPATION

Following the design of a 1D JJ chain with engineered
dissipation introduced in Fig. 5, in this section we discuss
a similar proposal, the PJJC device shown in Fig. 1, where
dissipation is not added via on-chip dissipative elements, like
in Sec. II B 2, but rather by a uniform coupling to a microwave
transmission line, which could also allow the continuous
monitoring of the dissipated energy.

We analyze theoretically an equivalent circuit of the PJJC,
as shown in Fig. 7, which captures one essential ingredient of
the PJJC proposal, namely a uniform dissipation distributed
along the nodes of the chain. The resulting PJJA impedance
can be connected to a probe system, for example a flux [87,88]
or transmon [89] qubit, coupled via the inductance LP . The
microstrip transmission line, which is ideally reflectionless and
matched to a standard coaxial cable (50 �), acts as a resistor RC

at each node of the chain. Under the condition of local mirror
reflection symmetry for the two chains, we show that the PJJC
is equivalent to a single chain connected directly to the ground
via CC , as shown in Fig. 5. Hereafter, we assume the relevant
regime CC � CJ and neglect the junction capacitance CJ to
simplify the formulas, although the treatment can be extended
to the case CJ �= 0. Similarly, we consider the local ground
capacitance of each island negligible, i.e., C0 � CC .

We quantize the circuit of Fig. 7 using the standard method
to construct the Lagrangian and equations of motion for a
quantum electromagnetic circuit formed by lumped elements

[90]. We use the phase nodes variables �n,s , with n = 1, . . . ,N

and s = a,b for the two chains connected via the capacitances
CC . The index n runs from n = 1, . . . ,N − 1 for the two
chains, with the boundary condition �0 = 0. The index n = N

is for the probe system, the qubit, formally described by the
node phases �N,a,�N,b. For �n,s , with n = 1, . . . ,N − 1, the
dynamics of the system is ruled by the equations of motion

CC

d2(�n,a − �n,b)

dt2
= − 2

LJ

(2�n,a − �n−1,a − �n+1,a)

−
∫ +∞

−∞
dt ′ 2Yc(t − t ′)

d�n,a

dt ′
(29)

and

CC

d2(�n,b − �n,a)

dt2
= − 2

LJ

(2�n,b − �n−1,b − �n+1,b)

−
∫ +∞

−∞
dt ′ 2Yc(t − t ′)

d�n,b

dt ′
, (30)

with the external admittance

Yc(t) = θ (t)e−t/τc /LC, Yc(ω) = 1/(RC + iωLC), (31)

where θ (t) is the theta function, and τc = LC/RC . It is now
convenient to introduce the phase differences

φn = �n,a − �n,b. (32)

We can also define equivalently the variables corresponding to
the average local phase ∼�n,a + �n,b. We remark that a finite
CJ does not introduce any coupling between the two families
of modes. Then, taking the difference between the equations
of motion (29) and (30), we get

CC

d2φn

dt2
= − 1

LJ

(2φn − φn−1 − φn+1)

−
∫ +∞

−∞
dt ′Yc(t − t ′)

dφn

dt ′
. (33)

We remark that, for a system characterized by local capac-
itances C

(n)
C and inductances L

(n,a)
J , L

(n,b)
J , Eq. (33) remains

valid if mirror reflection symmetry is present. The set of
equations (33), valid for n = 1, . . . ,N − 1, can be cast in the
following matrix form:

CC

d2 �φ′

dt2
= −

¯̄MTB

LJ

�φ′ −
∫ +∞

−∞
dt ′Yc(t − t ′)

d �φ′(t ′)
dt ′

+ 1

LJ

⎡
⎢⎣

0
0
· · ·
φN

⎤
⎥⎦, (34)

with the vector T �φ′ = (φ1, . . . ,φn, . . . ,φN−1), and the tight-
binding matrix ( ¯̄MTB)nm = 2δnm − δn−1,m − δn+1,m. After the
unitary transformation θk = ∑N−1

n=1 ek(n)φn that diagonalizes
the tight-binding matrix ( ¯̄MTB)nm, with eigenvalues and eigen-
vectors

λk = 2

[
1 − cos

(
πk

N

)]
, ek(n) =

√
2

N
sin

(
πkn

N

)
(35)
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for k = 1, . . . ,N − 1, we obtain the equation

CC

d2θk

dt2
= − λk

LJ

θk −
∫ +∞

−∞
dt ′Yc(t − t ′)

dθk

dt ′
+ek(N − 1)

LJ

φN.

(36)

Notice that the dissipative term is not changed after the
transformation from the local node variables to the harmonic
modes of the double chain. Going in the frequency space
via Fourier transform, we have an inhomogeneous solution
of Eq. (36),

θk(ω) = χk(ω)ek(N − 1)φN (ω) (37)

with the dimensionless susceptibility

χk(ω) =
(

i
τc

− ω
)
/(LJ CC)

ω3 − i
τc

ω2 − �2
kω + i

τc

(
�2

k − ω2
c

) ≡
3∑

i=1

A
(k)
i

ω − z
(k)
i

,

(38)

where the eigenfrequencies of the modes �k are given by
Eq. (22), z

(k)
i correspond to the roots of the cubic in the

denominator of χk(ω) in Eq. (38), and the factors A
(k)
i are

given in Appendix A. After some algebra (see Appendix A
for details), we can express the solution

θk(t) = −ek(N − 1)
∫ +∞

−∞
dt ′θ (t − t ′)

3∑
i=1

A
(k)
i

zk
i

eiz
(k)
i (t−t ′) dφN

dt ′

+ ek(N − 1)

λk

φN (t). (39)

Finally, we consider the equation for the node associated with
the probe system (the qubit, at node n = N ) in terms of the
phase difference φN . For simplicity, we set LP = LJ and write

d

dt

(
∂Lq

∂φ̇N

)
= ∂Lq

∂φN

− 1

LJ

(φN − φN−1)

= ∂Lq

∂φN

− φN

LJ

+ 1

LJ

N−1∑
k=1

ek(N − 1)θk, (40)

with Lq the Lagrangian function of the phase difference of the
qubit probe: its explicit form is not relevant for our analysis.
Inserting the solution Eq. (39) into Eq. (40), we get the equation
for the phase difference φN of the qubit,

d

dt

(
∂Lq

∂φ̇N

)
= ∂Lq

∂φN

− φN

NLJ

−
∫ +∞

−∞
dt ′Ych(t − t ′)

dφN

dt ′
,

(41)

in which we used the property
∑N−1

k=1 e2
k(N − 1)/λk = 1 −

1/N , and we set the admittance of the double chain to

YJJ (t) = θ (t)

LJ

N−1∑
k=1

e2
k(N − 1)

3∑
i=1

A
(k)
i

zk
i

eiz
(k)
i t . (42)

By using some algebraic relations of the root z(k)
i (see Appendix

A for details), we derive the final expression for the admittance
in Eq. (42) in frequency space,

YJJ(ω) = i2ω

NLJ

(
1 − ω2

c

ω2
− i

ωτc

) N−1∑
k=1

(
1 + LJ

4LC

)(
1 − �2

k

ω2
m

)
�2

k − ω2 − iωγk(ω)
,

(43)

FIG. 8. The frequency-dependent admittance of the PJJC can be
tuned in situ by a perpendicular magnetic field �B , threading the
SQUID junctions of the PJJC device in Fig. 1. The reduced flux bias
is defined as f = 2π�B/�0. The admittance and the frequency are,
respectively, scaled with the characteristic impedance Z

(0)
C = ZC(0)

and the plasma frequency ω
(0)
J = ωJ (0) at zero flux f = 0. The

PJJC parameters are the following: N = 8000, CJ /CC = 0.25, and
at f = 0 the inductance ratio LC/L

(0)
J = 10 and the resistance ratio

RC/Z
(0)
C = 0.025.

with the damping functions

γk(ω) = 1

τc

(
1 − �2

k − ω2
c

ω2

)
. (44)

Equations (43) and (44) represent the goal of this section: the
admittance YJJ(ω) corresponds exactly to the limit CJ /CC →
0 of the admittance YJJ(ω) in Eq. (25) of a single chain with
engineered interaction, for LJ � LC .

To summarize, we showed that the effective circuit shown
in Fig. 7 (case CJ � CC) for the PJJC device of Fig. 1
is equivalent to the admittance of the single JJ chain with
engineered dissipation discussed in Sec. II B 2 for vanishing
junction capacitance CJ = 0. Therefore, in the following we
will use Eqs. (25), (26), and (27) to calculate the PJCC admit-
tance for circuits with experimentally feasible parameters.

IV. PJJC ADMITTANCE WITH EXPERIMENTALLY
FEASIBLE PARAMETERS

In the PJJC, each Josephson inductance is tuned by the ap-
plied magnetic flux as LJ = L

(0)
J / cos(f ) with f = 2π�B/�0

the reduced magnetic flux and L
(0)
J = �2

0/(8π2EJ ) the zero-
field inductance. The plasma frequency of the Josephson
junctions, as well as the eigenmodes of the chain, are also flux-
tunable. From Eq. (23) it directly follows that the characteristic
impedance ZC(f ) can be tuned in situ by the biasing field �B

through the SQUID loops composing the PJJC (see Fig. 1).
An example of the scaled admittance of the PJJC for different
flux biases is reported in Fig. 8. As expected, increasing the
Josephson inductance by applying an external magnetic flux
leads to a decrease of the admittance of the system, accompa-
nied by a slight change in the overall frequency dependence.
The frequency range in which the PJJC admittance can be
considered ohmic reduces with applied flux. Depending on the
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FIG. 9. The effective resistance of the PJJC electromagnetic
environment shown in Fig. 1, vs frequency, for experimentally
relevant circuit parameters. We chose RC = 50 � and, at flux bias
f = 0, the characteristic impedance Z

(0)
C = 4 k�, with a plasma

frequency ω
(0)
J = 15 GHz. The other PJJC parameters are N = 8000,

CC/CJ = 4, and the inductance ratio LC/L
(0)
J = 10 at f = 0. Notice

that as we increase the flux bias f , the effective resistance of the
environment increases to values above the resistance quantum. The
value of f can be increased beyond the 0.35π threshold shown in
the figure, which will further increase the effective resistance of the
PJJC device. However, the frequency range where the resistance can
be considered ohmic will continue to decrease, while the chain will
become increasingly nonlinear.

desired application of the PJJC, one can trade by design its flux
tunability for a wide bandwidth with ohmic behavior, or vice
versa.

In Fig. 9 we show an example of the PJJC impedance for
a circuit with experimentally feasible parameters, with a char-
acteristic impedance Z

(0)
C = 4 k� and the plasma frequency

ω
(0)
J = 15 GHz at f = 0. The Josephson inductance at zero

flux is LJ = 86 nH, the junction capacitance CJ = 1.3 fF, and
the coupling capacitance CC = 5.2 fF. The required coupling
inductance LC = 10LJ is in the superinductance regime [16].
It can be implemented either using an array of JJs [17,18] or a
high kinetic inductance thin film, such as granular aluminum,
or niobium and titanium nitrides [91–94]. Below 5 GHz,
the curves appear flat in a range of ∼1 GHz at f = 0, and
∼0.5 GHz for flux bias f = 0.35π . In this frequency range,
the impedance of the PJJC can be tuned by the biasing magnetic
field from ∼5 k� up to ∼9 k�.

The single photon nonlinearity introduced by the JJs can be
estimated based on Ref. [78] to be in the range of 100 kHz.
This value is orders of magnitude lower than the linewidth of
the PJJC modes (see the inset of Fig. 6), and it can be ignored
for low power applications.

V. SUMMARY

We have demonstrated that the parallel Josephson junction
chain device shown in Fig. 1 can implement a tunable ohmic
environment over a frequency band of the order of GHz, with
an effective resistance that can be tuned through the resistance
quantum Rq = 6.5 k�. The PJJC can be connected to any two-

terminal device under test, such as a superconducting qubit or
a resonator, and its dissipation can be continuously monitored
using a low-noise rf amplification chain.

The PJJC principle of operation can also be applied for
constituent SQUIDs with different geometries, such as the
ones proposed in Refs. [18,22], implementing even higher
impedances and resulting in larger effective resistances. It
is also worth mentioning that the rapid increase of the PJJC
resistance at low frequencies (see Fig. 9) protects the device
from low-energy thermal excitations.

We believe that the tunable, high-impedance ohmic envi-
ronment implemented by the PJJC will be a useful instrument
in the route toward quantum simulations of dissipative phase
transitions, or the engineering of environments for autonomous
quantum error correction schemes.
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APPENDIX: SUSCEPTIBILITY FOR THE k
HARMONIC MODES

In this appendix, we list the main steps of the calculations
leading to the main results Eqs. (43) and (44), in Sec. III, for the
admittance of the double shown in Fig. 7. The solution for the
dynamics of the harmonic modes connected to the probe qubit
in frequency space is given by Eq. (37) with the susceptibility
for the single eigenmode k defined by Eq. (38) and with factors
given by

A
(k)
1 = −

(
z

(k)
1 − i

τc

)
/(LJ CC)(

z
(k)
1 − z

(k)
2

)(
z

(k)
1 − z

(k)
3

) , (A1)

and similar definitions of A
(k)
2 ,A

(k)
3 . The roots of the cubic

satisfy Veta’s relations

z
(k)
1 + z

(k)
2 + z

(k)
3 = i/τc, (A2)

z
(k)
1 z

(k)
2 + z

(k)
2 z

(k)
3 + z

(k)
1 z

(k)
3 = −�2

k, (A3)

z
(k)
1 z

(k)
2 z

(k)
3 = (i/τc)

(
ω2

c − �2
k

)
. (A4)

We also have the sum rules

3∑
i=1

A
(k)
i

z
(k)
i

= 1

ω2
c − �2

k

, (A5)

3∑
i=1

A
(k)
i

z
(k)
i

(
ω − z

(k)
i

) =
1 + ω2−iω/τc−�2

k

�2
k−ω2

c

ω3 − i
τc

ω2 − ω2
kω + i

τc

(
ω2

k − ω2
c

) . (A6)
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We consider the solution in time, which reads

θk(t) = αk

3∑
i=1

iA
(k)
i

∫ t

−∞
dt ′eiz

(k)
i (t−t ′)φN (t ′)

= αk

3∑
i=1

A
(k)
i

z
(k)
i

[
−φN (t) +

∫ t

−∞
dt ′eiz

(k)
i (t−t ′) dφN (t ′)

dt ′

]
,

(A7)

in which we set αk = ek(N − 1) = √
2/N sin[πk(N − 1)/N ]

and we have used the fact that lim�t→−∞ eiz
(k)
i �tφN (t + �t) =

0 since the roots have positive imaginary parts. The weighted
sum over modes reduces to

N−1∑
k=1

αkθk(t) = −
(

N−1∑
k=1

α2
k

3∑
i=1

A
(k)
i

z
(k)
i

)
φN (t)

+
N−1∑
k=1

α2
k

3∑
i=1

A
(k)
i

z
(k)
i

∫ t

−∞
dt ′eiz

(k)
i (t−t ′)φ̇N (t ′)

= N − 1

N
φN (t)+LJ

∫ +∞

−∞
dt ′YJJ(t−t ′)

dφN (t ′)
dt ′

,

(A8)

with the admittance of the chain given by

YJJ(t) = θ (t)

LJ

N−1∑
k=1

α2
k

3∑
i=1

A
(k)
i

zk
i

eiz
(k)
i (t−t ′). (A9)

In the frequency domain, the admittance reads

YJJ(ω) = − i

LJ

N−1∑
k=1

α2
k

3∑
i=1

A
(k)
i

z
(k)
i (ω − z

(k)
i )

. (A10)

Using Veta’s relations Eqs. (A2)–(A4) and the sum rules
Eqs. (A5) and (A6), we can obtain the main results Eqs. (43)
and (44).

[1] A. A. Clerk, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf,
Rev. Mod. Phys. 82, 1155 (2010).

[2] M. Devorert and R. J. Schoelkopf, Science 339, 1169 (2013).
[3] U. Vool and M. Devoret, Int. J. Circ. Theor. Appl. 45, 897 (2017).
[4] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and

P. Zoller, Phys. Rev. A 78, 042307 (2008).
[5] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and

P. Zoller, Nat. Phys. 4, 878 (2008).
[6] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Nat. Phys. 5,

633 (2009).
[7] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.

Büchler, Nat. Phys. 6, 382 (2010).
[8] C. C. Gerry and E. E. Hach, Phys. Lett. A 174, 185 (1993).
[9] B. M. Garraway and P. L. Knight, Phys. Rev. A 49, 1266 (1994).

[10] R. L. de Matos Filho and W. Vogel, Phys. Rev. Lett. 76, 608
(1996).

[11] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77, 4728
(1996).

[12] L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, and
T. J. Kippenberg, Nat. Phys. 13, 787 (2017).

[13] Z. Leghtas, U. Vool, S. Shankar, M. Hatridge, S. M. Girvin, M. H.
Devoret, and M. Mirrahimi, Phys. Rev. A 88, 023849 (2013).

[14] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M.
Reagor, L. Frunzio, R. J. Schoelkopf, and M. Mirrahimi, Science
347, 853 (2015).

[15] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K.
Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio,
S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Science 352, 1087 (2016).

[16] V. E. Manucharyan, J. Koch, and L. I. Glazman, Science 326,
113 (2009).

[17] N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, and M. H.
Devoret, Phys. Rev. Lett. 109, 137002 (2012).

[18] M. T. Bell, I. A. Sadovskyy, L. B. Ioffe, A. Y. Kitaev, and M. E.
Gershenson, Phys. Rev. Lett. 109, 137003 (2012).

[19] I. M. Pop, K. Geerlings, G. Catelani, R. J. Schoelkopf, L. I.
Glazman, and M. H. Devoret, Nature (London) 508, 369 (2014).

[20] L. Grünhaupt, N. Maleeva, S. T. Skacel, M. Calvo, F. Levy-
Bertrand, A. V. Ustinov, H. Rotzinger, A. Monfardini, G.
Catelani, and I. M. Pop, arXiv:1802.01858.

[21] A. Stockklauser, P. Scarlino, J. V. Koski, S. Gasparinetti, C. K.
Andersen, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, and A.
Wallraff, Phys. Rev. X 7, 011030 (2017).

[22] W. Zhang, W. Huang, M. E. Gershenson, and M. T. Bell, Phys.
Rev. Appl. 8, 051001 (2017).

[23] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[24] U. Weiss, Quantum Dissipative Systems, 4th ed. (World Scien-
tific, Singapore, 2012).

[25] J. S. Penttilä, Ü. Parts, P. J. Hakonen, M. A. Paalanen, and E. B.
Sonin, Phys. Rev. Lett. 82, 1004 (1999).

[26] J. S. Penttilä, P. J. Hakonen, M. A. Paalanen, Ü. Parts, and E. B.
Sonin, Physica B 284, 1832 (2000).

[27] M. H. Devoret, S. Girvin, and R. Schoelkopf, Ann. Phys. 16, 767
(2007).

[28] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. García-Ripoll, D. Zueco, T. Hümmer, E. Solano,
A. Marx, and R. Gross, Nat. Phys. 6, 772 (2010).

[29] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and
K. Semba, Nat. Phys. 13, 44 (2016).

[30] P. Forn-Díaz, J. J. García-Ripoll, B. Peropadre, J. L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu
Nat. Phys. 13, 39 (2017).

[31] B. Peropadre, D. Zueco, D. Porras, and J. J. García-Ripoll, Phys.
Rev. Lett. 111, 243602 (2013).

[32] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H.
Rotzinger, M. Weides, and A. V. Ustinov, Nat. Commun. 8, 779
(2017).

[33] J. Leppäkangas, J. Braumüller, M. Hauck, J.-M. Reiner, I.
Schwenk, S. Zanker, L. Fritz, A. V. Ustinov, M. Weides, and
M. Marthaler, Phys. Rev. A 97, 052321 (2018).

205429-9

https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1002/cta.2359
https://doi.org/10.1002/cta.2359
https://doi.org/10.1002/cta.2359
https://doi.org/10.1002/cta.2359
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1016/0375-9601(93)90756-P
https://doi.org/10.1016/0375-9601(93)90756-P
https://doi.org/10.1016/0375-9601(93)90756-P
https://doi.org/10.1016/0375-9601(93)90756-P
https://doi.org/10.1103/PhysRevA.49.1266
https://doi.org/10.1103/PhysRevA.49.1266
https://doi.org/10.1103/PhysRevA.49.1266
https://doi.org/10.1103/PhysRevA.49.1266
https://doi.org/10.1103/PhysRevLett.76.608
https://doi.org/10.1103/PhysRevLett.76.608
https://doi.org/10.1103/PhysRevLett.76.608
https://doi.org/10.1103/PhysRevLett.76.608
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1038/nphys4121
https://doi.org/10.1038/nphys4121
https://doi.org/10.1038/nphys4121
https://doi.org/10.1038/nphys4121
https://doi.org/10.1103/PhysRevA.88.023849
https://doi.org/10.1103/PhysRevA.88.023849
https://doi.org/10.1103/PhysRevA.88.023849
https://doi.org/10.1103/PhysRevA.88.023849
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1126/science.1175552
https://doi.org/10.1126/science.1175552
https://doi.org/10.1126/science.1175552
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1103/PhysRevLett.109.137003
https://doi.org/10.1103/PhysRevLett.109.137003
https://doi.org/10.1103/PhysRevLett.109.137003
https://doi.org/10.1103/PhysRevLett.109.137003
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
http://arxiv.org/abs/arXiv:1802.01858
https://doi.org/10.1103/PhysRevX.7.011030
https://doi.org/10.1103/PhysRevX.7.011030
https://doi.org/10.1103/PhysRevX.7.011030
https://doi.org/10.1103/PhysRevX.7.011030
https://doi.org/10.1103/PhysRevApplied.8.051001
https://doi.org/10.1103/PhysRevApplied.8.051001
https://doi.org/10.1103/PhysRevApplied.8.051001
https://doi.org/10.1103/PhysRevApplied.8.051001
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevLett.82.1004
https://doi.org/10.1103/PhysRevLett.82.1004
https://doi.org/10.1103/PhysRevLett.82.1004
https://doi.org/10.1103/PhysRevLett.82.1004
https://doi.org/10.1016/S0921-4526(99)03041-0
https://doi.org/10.1016/S0921-4526(99)03041-0
https://doi.org/10.1016/S0921-4526(99)03041-0
https://doi.org/10.1016/S0921-4526(99)03041-0
https://doi.org/10.1002/andp.200710261
https://doi.org/10.1002/andp.200710261
https://doi.org/10.1002/andp.200710261
https://doi.org/10.1002/andp.200710261
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1103/PhysRevA.97.052321
https://doi.org/10.1103/PhysRevA.97.052321
https://doi.org/10.1103/PhysRevA.97.052321
https://doi.org/10.1103/PhysRevA.97.052321


GIANLUCA RASTELLI AND IOAN M. POP PHYSICAL REVIEW B 97, 205429 (2018)

[34] L. Magazzù, P. Forn-Díaz, R. Belyansky, J.-L. Orgiazzi, M. A.
Yurtalan, M. R. Otto, A. Lupascu, C. M. Wilson, and M. Grifoni,
Nat. Commun. 9, 1403 (2018).

[35] J. P. Martinez, S. Leger, N. Gheereart, R. Dassonneville,
L. Planat, F. Foroughi, Y. Krupko, O. Buisson, C. Naud,
W. Guichard, S. Florens, I. Snyman, and N. Roch,
arXiv:1802.00633.

[36] M. Goldstein, M. H. Devoret, M. Houzet, and L. I. Glazman,
Phys. Rev. Lett. 110, 017002 (2013).

[37] R. Yagi, S.-i. Kobayashi, and Y. Ootuka, J. Phys. Soc. Jpn. 66,
3722 (1997).

[38] C. H. van der Wal, F. K. Wilhelm, C. J. P. M. Harmans, and
J. E. Mooij, Europhys. J. B 31, 111 (2003).

[39] P. J. Jones, J. A. M. Huhtamäki, J. Salmilehto, K. Y. Tan, and M.
Möttönen, Sci. Rep. 3, 1987 (2013).

[40] F. Pastawski, L. Clemente, and J. I. Cirac, Phys. Rev. A 83,
012304 (2011).

[41] J. Tuorila, M. Partanen, T. Ala-Nissila, and M. Möttönen, npj
Quantum Inf. 3, 27 (2017).

[42] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16,
045014 (2014).

[43] J. Cohen and M. Mirrahimi, Phys. Rev. A 90, 062344 (2014).
[44] J. Cohen, W. C. Smith, M. H. Devoret, and M. Mirrahimi, Phys.

Rev. Lett. 119, 060503 (2017).
[45] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
[46] J. M. Martinis, Quantum Inf. Proc. 8, 81 (2009).
[47] G. Wendin, Rep. Prog. Phys. 80, 106001 (2017).
[48] Z.-L. Xiang, S. Ashhab, J. You, and F. Nori, Rev. Mod. Phys.

85, 623 (2013).
[49] J. M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J.

Hakonen, and M. A. Sillanpää, Nature (London) 494, 211
(2013).

[50] M. Hofheinz, F. Portier, Q. Baudouin, P. Joyez, D. Vion, P. Bertet,
P. Roche, and D. Esteve, Phys. Rev. Lett. 106, 217005 (2011).

[51] M. C. Cassidy, A. Bruno, S. Rubbert, M. Irfan, J. Kammhuber,
R. N. Schouten, A. R. Akhmerov, and L. P. Kouwenhoven,
Science 355, 939 (2017).

[52] R. Fazio, Phys. Rep. 355, 235 (2001).
[53] H. S. J. van der Zant, C. J. Muller, L. J. Geerligs, C. J. P. M.

Harmans, and J. E. Mooij, Phys. Rev. B 38, 5154 (1988).
[54] K. A. Matveev, A. I. Larkin, and L. I. Glazman, Phys. Rev. Lett.

89, 096802 (2002).
[55] I. M. Pop, I. Protopopov, F. Lecocq, Z. Peng, B. Pannetier,

O. Buisson, and W. Guichard, Nat. Phys. 6, 589 (2010).
[56] F. Maibaum, S. V. Lotkhov, and A. B. Zorin, Phys. Rev. B 84,

174514 (2011).
[57] I. M. Pop, B. Douçot, L. Ioffe, I. Protopopov, F. Lecocq, I.

Matei, O. Buisson, and W. Guichard, Phys. Rev. B 85, 094503
(2012).

[58] V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L.
I. Glazman, and M. H. Devoret, Phys. Rev. B 85, 024521
(2012).

[59] G. Rastelli, I. M. Pop, and F. W. J. Hekking, Phys. Rev. B 87,
174513 (2013).

[60] R. Süsstrunk, I. Garate, and L. I. Glazman, Phys. Rev. B 88,
060506 (2013).

[61] A. Ergül, J. Lidmar, J. Johansson, Y. Azizoğlu, D. Schaeffer, and
D. B. Haviland, New J. Phys. 15, 095014 (2013).

[62] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 93, 094506
(2016).

[63] A. Ergül, T. Weißl, J. Johansson, J. Lidmar, and D. B. Haviland,
Sci. Rep. 7, 11447 (2017).

[64] Z. Hermon, E. Ben-Jacob, and G. Schön, Phys. Rev. B 54, 1234
(1996).

[65] D. B. Haviland and P. Delsing, Phys. Rev. B 54, R6857
(1996).

[66] S. Corlevi, W. Guichard, F. W. J. Hekking, and D. B. Haviland,
Phys. Rev. B 74, 224505 (2006).

[67] S. V. Syzranov, K. B. Efetov, and B. L. Altshuler, Phys. Rev.
Lett. 103, 127001 (2009).

[68] J. Homfeld, I. Protopopov, S. Rachel, and A. Shnirman, Phys.
Rev. B 83, 064517 (2011).

[69] N. Vogt, R. Schäfer, H. Rotzinger, W. Cui, A. Fiebig, A.
Shnirman, and A. V. Ustinov, Phys. Rev. B 92, 045435
(2015).

[70] K. Cedergren, S. Kafanov, J. L. Smirr, J. H. Cole, and T. Duty,
Phys. Rev. B 92, 104513 (2015).

[71] K. Cedergren, R. Ackroyd, S. Kafanov, N. Vogt, A. Shnirman,
and T. Duty, Phys. Rev. Lett. 119, 167701 (2017).

[72] A. L. Rakhmanov, A. M. Zagoskin, S. Savel’ev, and F. Nori,
Phys. Rev. B 77, 144507 (2008).

[73] C. Hutter, E. A. Tholén, K. Stannigel, J. Lidmar, and D. B.
Haviland, Phys. Rev. B 83, 014511 (2011).

[74] D. Zueco, J. J. Mazo, E. Solano, and J. J. García-Ripoll, Phys.
Rev. B 86, 024503 (2012).

[75] B. Peropadre, D. Zueco, F. Wulschner, F. Deppe, A. Marx, R.
Gross, and J. J. García-Ripoll, Phys. Rev. B 87, 134504 (2013).

[76] M. Taguchi, D. M. Basko, and F. W. J. Hekking, Phys. Rev. B
92, 024507 (2015).

[77] M. A. Iontsev, S. I. Mukhin, and M. V. Fistul, Phys. Rev. B 94,
174510 (2016).

[78] T. Weißl, B. Küng, E. Dumur, A. K. Feofanov, I. Matei, C. Naud,
O. Buisson, F. W. J. Hekking, and W. Guichard, Phys. Rev. B
92, 104508 (2015).

[79] P. R. Muppalla, O. Gargiulo, S. I. Mirzaei, B. Prasanna
Venkatesh, M. L. Juan, L. Grünhaupt, I. M. Pop, and G.
Kirchmair, Phys. Rev. B 97, 024518 (2018).

[80] C. Eichler, Y. Salathé, J. Mlynek, S. Schmidt, and A. Wallraff,
Phys. Rev. Lett. 113, 110502 (2014).

[81] G. Rastelli, M. Vanević, and W. Belzig, New J. Phys. 17, 053026
(2015).

[82] In this work, the boundary condition is that the chain is connected
to the ground at the end, so that the wave functions of the modes
vanish at this point. This explains the difference of a factor 2
inside the cos function for the eigenfrequencies of the chain
studied in this work with respect to the frequency of the harmonic
modes in a Josephson junction ring studied in Refs. [81] and [59].

[83] U. Vool, I. M. Pop, K. Sliwa, B. Abdo, C. Wang, T. Brecht,
Y. Y. Gao, S. Shankar, M. Hatridge, G. Catelani, M. Mirrahimi,
L. Frunzio, R. J. Schoelkopf, L. I. Glazman, and M. H. Devoret,
Phys. Rev. Lett. 113, 247001 (2014).

[84] C. Wang, Y. Y. Gao, I. M. Pop, U. Vool, C. Axline, T. Brecht,
R. W. Heeres, L. Frunzio, G. Catelani, L. I. Glazman, and R. J.
Schoelkopf, Nat. Commun. 5, 5836 (2014).

[85] C. Wang, C. Axline, Y. Y. Gao, T. Brecht, Y. Chu, L. Frunzio,
M. H. Devoret, and R. J. Schoelkopf, Appl. Phys. Lett. 107,
162601 (2015).

205429-10

https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/s41467-018-03626-w
http://arxiv.org/abs/arXiv:1802.00633
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1143/JPSJ.66.3722
https://doi.org/10.1143/JPSJ.66.3722
https://doi.org/10.1143/JPSJ.66.3722
https://doi.org/10.1143/JPSJ.66.3722
https://doi.org/10.1140/epjb/e2003-00015-9
https://doi.org/10.1140/epjb/e2003-00015-9
https://doi.org/10.1140/epjb/e2003-00015-9
https://doi.org/10.1140/epjb/e2003-00015-9
https://doi.org/10.1038/srep01987
https://doi.org/10.1038/srep01987
https://doi.org/10.1038/srep01987
https://doi.org/10.1038/srep01987
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1038/s41534-017-0027-1
https://doi.org/10.1038/s41534-017-0027-1
https://doi.org/10.1038/s41534-017-0027-1
https://doi.org/10.1038/s41534-017-0027-1
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1103/PhysRevA.90.062344
https://doi.org/10.1103/PhysRevA.90.062344
https://doi.org/10.1103/PhysRevA.90.062344
https://doi.org/10.1103/PhysRevA.90.062344
https://doi.org/10.1103/PhysRevLett.119.060503
https://doi.org/10.1103/PhysRevLett.119.060503
https://doi.org/10.1103/PhysRevLett.119.060503
https://doi.org/10.1103/PhysRevLett.119.060503
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1007/s11128-009-0105-1
https://doi.org/10.1007/s11128-009-0105-1
https://doi.org/10.1007/s11128-009-0105-1
https://doi.org/10.1007/s11128-009-0105-1
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/nature11821
https://doi.org/10.1103/PhysRevLett.106.217005
https://doi.org/10.1103/PhysRevLett.106.217005
https://doi.org/10.1103/PhysRevLett.106.217005
https://doi.org/10.1103/PhysRevLett.106.217005
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1016/S0370-1573(01)00022-9
https://doi.org/10.1016/S0370-1573(01)00022-9
https://doi.org/10.1016/S0370-1573(01)00022-9
https://doi.org/10.1016/S0370-1573(01)00022-9
https://doi.org/10.1103/PhysRevB.38.5154
https://doi.org/10.1103/PhysRevB.38.5154
https://doi.org/10.1103/PhysRevB.38.5154
https://doi.org/10.1103/PhysRevB.38.5154
https://doi.org/10.1103/PhysRevLett.89.096802
https://doi.org/10.1103/PhysRevLett.89.096802
https://doi.org/10.1103/PhysRevLett.89.096802
https://doi.org/10.1103/PhysRevLett.89.096802
https://doi.org/10.1038/nphys1697
https://doi.org/10.1038/nphys1697
https://doi.org/10.1038/nphys1697
https://doi.org/10.1038/nphys1697
https://doi.org/10.1103/PhysRevB.84.174514
https://doi.org/10.1103/PhysRevB.84.174514
https://doi.org/10.1103/PhysRevB.84.174514
https://doi.org/10.1103/PhysRevB.84.174514
https://doi.org/10.1103/PhysRevB.85.094503
https://doi.org/10.1103/PhysRevB.85.094503
https://doi.org/10.1103/PhysRevB.85.094503
https://doi.org/10.1103/PhysRevB.85.094503
https://doi.org/10.1103/PhysRevB.85.024521
https://doi.org/10.1103/PhysRevB.85.024521
https://doi.org/10.1103/PhysRevB.85.024521
https://doi.org/10.1103/PhysRevB.85.024521
https://doi.org/10.1103/PhysRevB.87.174513
https://doi.org/10.1103/PhysRevB.87.174513
https://doi.org/10.1103/PhysRevB.87.174513
https://doi.org/10.1103/PhysRevB.87.174513
https://doi.org/10.1103/PhysRevB.88.060506
https://doi.org/10.1103/PhysRevB.88.060506
https://doi.org/10.1103/PhysRevB.88.060506
https://doi.org/10.1103/PhysRevB.88.060506
https://doi.org/10.1088/1367-2630/15/9/095014
https://doi.org/10.1088/1367-2630/15/9/095014
https://doi.org/10.1088/1367-2630/15/9/095014
https://doi.org/10.1088/1367-2630/15/9/095014
https://doi.org/10.1103/PhysRevB.93.094506
https://doi.org/10.1103/PhysRevB.93.094506
https://doi.org/10.1103/PhysRevB.93.094506
https://doi.org/10.1103/PhysRevB.93.094506
https://doi.org/10.1038/s41598-017-11670-7
https://doi.org/10.1038/s41598-017-11670-7
https://doi.org/10.1038/s41598-017-11670-7
https://doi.org/10.1038/s41598-017-11670-7
https://doi.org/10.1103/PhysRevB.54.1234
https://doi.org/10.1103/PhysRevB.54.1234
https://doi.org/10.1103/PhysRevB.54.1234
https://doi.org/10.1103/PhysRevB.54.1234
https://doi.org/10.1103/PhysRevB.54.R6857
https://doi.org/10.1103/PhysRevB.54.R6857
https://doi.org/10.1103/PhysRevB.54.R6857
https://doi.org/10.1103/PhysRevB.54.R6857
https://doi.org/10.1103/PhysRevB.74.224505
https://doi.org/10.1103/PhysRevB.74.224505
https://doi.org/10.1103/PhysRevB.74.224505
https://doi.org/10.1103/PhysRevB.74.224505
https://doi.org/10.1103/PhysRevLett.103.127001
https://doi.org/10.1103/PhysRevLett.103.127001
https://doi.org/10.1103/PhysRevLett.103.127001
https://doi.org/10.1103/PhysRevLett.103.127001
https://doi.org/10.1103/PhysRevB.83.064517
https://doi.org/10.1103/PhysRevB.83.064517
https://doi.org/10.1103/PhysRevB.83.064517
https://doi.org/10.1103/PhysRevB.83.064517
https://doi.org/10.1103/PhysRevB.92.045435
https://doi.org/10.1103/PhysRevB.92.045435
https://doi.org/10.1103/PhysRevB.92.045435
https://doi.org/10.1103/PhysRevB.92.045435
https://doi.org/10.1103/PhysRevB.92.104513
https://doi.org/10.1103/PhysRevB.92.104513
https://doi.org/10.1103/PhysRevB.92.104513
https://doi.org/10.1103/PhysRevB.92.104513
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1103/PhysRevB.77.144507
https://doi.org/10.1103/PhysRevB.77.144507
https://doi.org/10.1103/PhysRevB.77.144507
https://doi.org/10.1103/PhysRevB.77.144507
https://doi.org/10.1103/PhysRevB.83.014511
https://doi.org/10.1103/PhysRevB.83.014511
https://doi.org/10.1103/PhysRevB.83.014511
https://doi.org/10.1103/PhysRevB.83.014511
https://doi.org/10.1103/PhysRevB.86.024503
https://doi.org/10.1103/PhysRevB.86.024503
https://doi.org/10.1103/PhysRevB.86.024503
https://doi.org/10.1103/PhysRevB.86.024503
https://doi.org/10.1103/PhysRevB.87.134504
https://doi.org/10.1103/PhysRevB.87.134504
https://doi.org/10.1103/PhysRevB.87.134504
https://doi.org/10.1103/PhysRevB.87.134504
https://doi.org/10.1103/PhysRevB.92.024507
https://doi.org/10.1103/PhysRevB.92.024507
https://doi.org/10.1103/PhysRevB.92.024507
https://doi.org/10.1103/PhysRevB.92.024507
https://doi.org/10.1103/PhysRevB.94.174510
https://doi.org/10.1103/PhysRevB.94.174510
https://doi.org/10.1103/PhysRevB.94.174510
https://doi.org/10.1103/PhysRevB.94.174510
https://doi.org/10.1103/PhysRevB.92.104508
https://doi.org/10.1103/PhysRevB.92.104508
https://doi.org/10.1103/PhysRevB.92.104508
https://doi.org/10.1103/PhysRevB.92.104508
https://doi.org/10.1103/PhysRevB.97.024518
https://doi.org/10.1103/PhysRevB.97.024518
https://doi.org/10.1103/PhysRevB.97.024518
https://doi.org/10.1103/PhysRevB.97.024518
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1088/1367-2630/17/5/053026
https://doi.org/10.1088/1367-2630/17/5/053026
https://doi.org/10.1088/1367-2630/17/5/053026
https://doi.org/10.1088/1367-2630/17/5/053026
https://doi.org/10.1103/PhysRevLett.113.247001
https://doi.org/10.1103/PhysRevLett.113.247001
https://doi.org/10.1103/PhysRevLett.113.247001
https://doi.org/10.1103/PhysRevLett.113.247001
https://doi.org/10.1038/ncomms6836
https://doi.org/10.1038/ncomms6836
https://doi.org/10.1038/ncomms6836
https://doi.org/10.1038/ncomms6836
https://doi.org/10.1063/1.4934486
https://doi.org/10.1063/1.4934486
https://doi.org/10.1063/1.4934486
https://doi.org/10.1063/1.4934486


TUNABLE OHMIC ENVIRONMENT USING JOSEPHSON … PHYSICAL REVIEW B 97, 205429 (2018)

[86] Equation (17) still contains a part of renormalized, high-
frequency capacitance, in contrast to Eq. (10), which includes
only the contribution of the harmonic modes. Since we are
interested in the real part in Re[YJJ(ω)], this difference is not
important.

[87] J. E. Mooij, Science 285, 1036 (1999).
[88] I. Chiorescu, Science 299, 1869 (2003).
[89] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R.

Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev.
B 77, 180502 (2008).

[90] M. H. Devoret, in Quantum Fluctuations (Les Houches Session
LXIII) (Elsevier, Amsterdam, 2002), p. 1.

[91] H. Rotzinger, S. T. Skacel, M. Pfirrmann, J. N. Voss,
J. Münzberg, S. Probst, P. Bushev, M. P. Weides, A. V.
Ustinov, and J. E. Mooij, Supercond. Sci. Technol. 30, 025002
(2017).

[92] A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M.
J. Rooks, A. Frydman, and D. E. Prober, Nanotechnology 21,
445202 (2010).

[93] N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. P. DiVin-
cenzo, L. DiCarlo, and L. M. K. Vandersypen, Phys. Rev. Appl.
5, 044004 (2016).

[94] M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei,
A. D. Córcoles, M. Steffen, and D. P. Pappas, Appl. Phys. Lett.
97, 232509 (2010).

205429-11

https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.1081045
https://doi.org/10.1126/science.1081045
https://doi.org/10.1126/science.1081045
https://doi.org/10.1126/science.1081045
https://doi.org/10.1103/PhysRevB.77.180502
https://doi.org/10.1103/PhysRevB.77.180502
https://doi.org/10.1103/PhysRevB.77.180502
https://doi.org/10.1103/PhysRevB.77.180502
https://doi.org/10.1088/0953-2048/30/2/025002
https://doi.org/10.1088/0953-2048/30/2/025002
https://doi.org/10.1088/0953-2048/30/2/025002
https://doi.org/10.1088/0953-2048/30/2/025002
https://doi.org/10.1088/0957-4484/21/44/445202
https://doi.org/10.1088/0957-4484/21/44/445202
https://doi.org/10.1088/0957-4484/21/44/445202
https://doi.org/10.1088/0957-4484/21/44/445202
https://doi.org/10.1103/PhysRevApplied.5.044004
https://doi.org/10.1103/PhysRevApplied.5.044004
https://doi.org/10.1103/PhysRevApplied.5.044004
https://doi.org/10.1103/PhysRevApplied.5.044004
https://doi.org/10.1063/1.3517252
https://doi.org/10.1063/1.3517252
https://doi.org/10.1063/1.3517252
https://doi.org/10.1063/1.3517252



