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We consider quantum rings realized in materials where the dynamics of charge carriers mimics that of two-
dimensional (2D) Dirac electrons. A general theoretical description of the ring-subband structure is developed that
applies to a range of currently available 2D systems, including graphene, transition-metal dichalcogenides, and
narrow-gap semiconductor quantum wells. We employ the scattering-matrix approach to calculate the electronic
two-terminal conductance through the ring and investigate how it is affected by Dirac-electron interference. The
interplay of pseudospin chirality and hard-wall confinement is found to distinctly affect the geometric phase
that is experimentally accessible in mesoscopic-conductance measurements. We derive an effective Hamiltonian
for the azimuthal motion of charge carriers in the ring that yields deeper insight into the physical origin of the
observed transport effects, including the unique behavior exhibited by the lowest ring subband in the normal and
topological (i.e., band-inverted) regimes. Our paper provides a unified approach to characterizing confined Dirac
electrons, which can be used to explore the design of valley- and spintronic devices based on quantum interference
and the confinement-tunable geometric phase.
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I. INTRODUCTION

Quantum rings [1] are a paradigmatic system for studying
topological effects in condensed matter. In particular, co-
herent electron transport through ballistic rings and similar
multiply connected conductors can be used to reveal phe-
nomena associated with geometric phases [2,3], including the
Aharonov-Bohm [4–6] and Aharonov-Casher [7–10] effects
as well as non-Abelian generalizations [11,12]. Besides the
coupling of charge carriers to effective gauge fields, quantum
confinement in the ring structure turns out to also importantly
affect coherent-electron interference [13–15], which further
increases possibilities for its experimental control and appli-
cation for novel electronic-device functionalities.

Our present paper is motivated by the recent interest
in two-dimensional (2D) materials with Dirac-like charge
carriers such as single-layer graphene [16–18], single-layer
transition-metal dichalcogenides [19,20], and quantum wells
in narrow-gap semiconductors [21,22] such as HgTe [23,24]
and InAs/GaSb [25,26]. These condensed-matter realizations
of 2D Dirac electrons necessarily carry a two-valued fla-
vor degree of freedom [27]. Ring structures in single-layer
graphene have previously been studied by analytical and
numerical solution of continuum-model-based Dirac equations
[28–34] and also numerical tight-binding calculations [32–36].
The bound states in a ring conductor realized in narrow-gap
semiconductor quantum wells were also considered [37,38].
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Very recently, a theoretical study of quantum rings in MoS2

has been performed [39]. Experimental realizations have been
achieved in HgTe/HgCdTe quantum wells [40], graphene
[41–45], and MoS2 [46].

In contrast to previous theoretical studies that have largely
focused on the specifics of various materials systems, we
present a broadly applicable and systematic description of
the electronic structure and quantum-interference effects in
2D-Dirac-electron quantum-ring conductors based on a com-
pletely general subband-k · p approach. We obtain an effective
Hamiltonian for the azimuthal motion of ring-confined Dirac-
like charge carriers that provides deeper insight into character-
istic features of the electronic subband structure and allows us
to explore physical implications for quantum-transport effects.
Complementing existing work that has largely focused on
persistent currents in isolated Dirac rings [28–32,38] or studied
transport through a particular Dirac-ring realization numeri-
cally [34,35], we present analytic results for the two-terminal
conductance. In typical experiments [40–45] and previous
numerical studies [34,35], the entire structure consisting of the
ring conductor and external leads was made out of the same
material. This motivated us to discuss in detail the case of
flavor-conserving scattering of Dirac electrons at the ring-lead
junctions. We identify a purely confinement-induced contribu-
tion to the geometric phase, which turns out to have opposite
sign for the two flavors of 2D Dirac electrons propagating in
the ring. We use this observation to explore possible uses of
ring conductors as flavortronic devices [47].

The remainder of this paper is organized as follows.
We start by introducing the generic model Hamiltonian
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describing two-flavor 2D-Dirac electrons in a variety of
materials in Sec. II. The general subband-k · p description
of Dirac-electron rings is developed in Sec. III. As part of
the derivation, the radial hard-wall-confinement problem
for Dirac electrons is solved (Sec. III A) and an effective
Hamiltonian for the azimuthal motion of charge carriers in the
ring is obtained (Sec. III B). Armed with the understanding
of Dirac-ring subband structure, Sec. IV discusses how
quantum-interference effects are exhibited in the conductance
through the ring. Our scattering-matrix approach is introduced
in Sec. IV A, and the fully general two-terminal transmission
function for a clean ring with flavor-conserving scattering at
the ring-lead junctions is presented. Possible applications of
Dirac rings as flavortronics devices are explored in Sec. IV B.
We summarize our conclusions in Sec. V, and relevant
mathematical details are given in the Appendices.

II. TWO-FLAVOR 2D-DIRAC HAMILTONIAN

The motion of electrons in 2D materials is described by
an envelope-function Hamiltonian that can be written in the
generic two-flavor 2D-Dirac form [51]

H =
(
H(k) 0

0 H∗(−k)

)
≡
(
H(+) 0

0 H(−)

)
, (1a)

H(±) = ±γ (k± σ− + k∓ σ+) + �(k)

2
σ3 + ε(k) σ0, (1b)

where σ± = (σ1 ± i σ2)/2 are ladder operators for the eigen-
states of the diagonal Pauli matrix σ3 that correspond to the
k = 0 conduction and valence-band states, σ0 is the 2 × 2
identity matrix, and k± := kx ± i ky in terms of Cartesian
components of the in-plane wave vector k ≡ (kx,ky). The
parameter γ characterizes the interband coupling, and the gap
and electron-hole-asymmetry terms are of the general form

�(k) = �0 + 2γ

k�

k2 , (2a)

ε(k) = ε0 + ξ
γ

k�

k2 , (2b)

with contributions quadratic in k arising generically due to the
influence of remote bands [21,52]. The parameter k� is the
wave-vector scale at which remote-band contributions ∝k2 to
the gap become comparable to the interband coupling∝γ k, and
the dimensionless number ξ is a measure of broken electron-
hole symmetry. As ε0 constitutes an irrelevant uniform shift
in energy, we set ε0 = 0 for convenience. The values of
parameters in the Hamiltonian (1b) for specific materials are
given in Table I. Systems with �0 > 0 are ordinary, i.e.,
nontopological, insulators. In contrast, �0 < 0 signifies the
band inversion occurring in topological insulators [53].

Switching to polar coordinates r = (r,ϕ), we take k ≡ i∇ to
be an operator in real-space representation and note the relation

k± = e±iϕ/2(kr ± i kϕ) e±iϕ/2 , (3)

with the Hermitian operators [55]

kr = −i

(
∂r + 1

2r

)
, (4a)

kϕ = −i
∂ϕ

r
. (4b)

TABLE I. Parameters in the effective 2D-Dirac Hamiltonians for
electrons in some representative single-layer (SL) atomic crystals and
semiconductor quantum wells (QW).

γ (eV Å) �0 (eV) k� (Å
−1

) ξ

SL graphenea 6.4 �0.01 0.17 0.026
SL MoS2

b 3.0 1.7 0.91 0.89
HgTe/CdTe QWc 3.7 −0.020 0.053 0.74
InAs/GaSb QWd 0.37 −0.016 0.0056 0.088

aReferences [18,54].
bReference [20].
cReference [53], p. 64 (HgTe well width: 7.0 nm).
dReference [53], p. 65 (InAs/GaSb well widths: 10 nm/10 nm).

As the Hamiltonians H(±) commute with total angular
momentum J (±)

z = −ih̄ σ0 ∂ϕ ± h̄ σ3/2, it is useful to switch
to a representation of diagonal J (±)

z using the transformation

U±(ϕ) = exp(∓i σ3 ϕ/2). (5)

It is straightforward to obtain

H(τ ) = Uτ (ϕ)
(
H(τ )

r + H(τ )
ϕ

)
U†

τ (ϕ), (6)

where τ = ± labels the two flavors of 2D-Dirac electrons, and

H(τ )
r = τ γ kr σ1 + �0

2
σ3 + γ

k�

(σ3 + ξ σ0)k2
r , (7a)

H(τ )
ϕ = γ kϕ σ2 + γ

k�

(σ3 + ξ σ0)

(
k2
ϕ − τ σ3

kϕ

r

)
(7b)

describe their motion in radial and azimuthal coordinates. The
expressions (7) form the basis for our further study of quantum
states in ring conductors.

III. RING-CONFINED DIRAC ELECTRONS

We assume the ring structure to be defined by an axially
symmetric mass confinement [56]

HV =
(

V (r) σ3 0
0 V (r) σ3

)
. (8)

Because of the axial symmetry of the potential V (r), the 2 × 2
Schrödinger equations

[H(τ ) + V (r) σ3]|
(τ )〉 = E |
(τ )〉 (9a)

can be written as

Uτ (ϕ)
[
H(τ )

r + H(τ )
ϕ + V (r) σ3

]
U†

τ (ϕ) |
(τ )〉 = E |
(τ )〉 ,

(9b)

motivating the separation Ansatz

|
(τ )〉 = eilϕ Uτ (ϕ)
1√
2πr

∣∣�(τ )
l

〉
, (10)

where we introduced the azimuthal quantum number l. This
transforms Eq. (9b) into the Schrödinger equation for a con-
fined Dirac particle in one spatial dimension [21,57–60],[

H(τ )
1D + V (r) σ3 + V (τ )

l (r)
]∣∣�(τ )

l

〉 = E
(τ )
l

∣∣�(τ )
l

〉
, (11)
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with

H(τ )
1D = −iτ γ σ1

d

dr
+ �0

2
σ3 − γ

k�

(σ3 + ξ σ0)
d2

dr2
(12a)

and the centrifugal-barrier contribution

V (τ )
l (r) = γ

l

r

{
σ2 + 1

k�r
[l(σ3 + ξ σ0) − τ (σ0 + ξ σ3)]

}
.

(12b)

In the spirit of subband-k · p theory [61,62], we start by
considering Eq. (11) for l = 0 [63],

[
H(τ )

1D + V (r) σ3
]∣∣�(τ,n)

0

〉 = E
(τ,n)
0

∣∣�(τ,n)
0

〉
, (13)

and then use the eigenstates |�(τ,n)
0 〉 as a new basis to calculate

the ring-subband dispersions E
(τ,n)
l . Here the radial quantum

number n = ±1,±2, . . . labels the ring subbands with the
usual convention E

(τ,n)
0 > E

(τ,n′)
0 for n > n′. A general eigen-

state with l 	= 0 is thus expressed as a superposition of basis

states,∣∣�(τ,n)
l

〉 = ∑
n′>0

(
a

(τ,n)
ln′

∣∣�(τ,n′)
0

〉+ b
(τ,n)
ln′

∣∣�(τ,−n′)
0

〉)
, (14)

with coefficients a
(τ,n)
ln′ and b

(τ,n)
ln′ that need to be determined by

solving the eigenvalue equation

H(τ )
l

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(τ,n)
l1

b
(τ,n)
l1

a
(τ,n)
l2

b
(τ,n)
l2

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E
(τ,n)
l

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(τ,n)
l1

b
(τ,n)
l1

a
(τ,n)
l2

b
(τ,n)
l2

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

with the new Hamiltonian matrix

H(τ )
l =

⎛
⎜⎜⎝
(
H(τ )

l

)
1,1

(
H(τ )

l

)
1,2 . . .(

H(τ )
l

)
2,1

(
H(τ )

l

)
2,2 . . .

...
...

. . .

⎞
⎟⎟⎠ (16a)

whose 2 × 2 sub-blocks are given by

(
H(τ )

l

)
n,n′ =

(
E

(τ,n)
0 δnn′ + 〈V (τ )

l (r)
〉(τ )
n,n′

〈
V (τ )

l (r)
〉(τ )
n,−n′〈

V (τ )
l (r)

〉(τ )
−n,n′ E

(τ,−n)
0 δnn′ + 〈V (τ )

l (r)
〉(τ )
−n,−n′

)
. (16b)

Here 〈O〉(τ )
n,n′ ≡ 〈�(τ,n)

0 |O|�(τ,n′)
0 〉 for any operator O, and δnn′

is the Kronecker symbol.
In the electron-hole-symmetric case (i.e., when ξ = 0), the

energy-reflection symmetry [64]

σ2
[
H(τ )

1D,ξ=0 + V (r) σ3
]
σ2 = −[H(τ )

1D,ξ=0 + V (r) σ3
]

(17)

holds, implying the relations

E
(τ,−n)
0,ξ=0 = −E

(τ,n)
0,ξ=0 , (18a)∣∣�(τ,−n)

0,ξ=0

〉 = σ2

∣∣�(τ,n)
0,ξ=0

〉
. (18b)

As a result, all matrix elements in Eq. (16b) can then be
expressed in terms of matrix elements between eigenstates for
positive energies with labels n,n′ > 0,

〈O〉(τ )
n,−n′

ξ=0−→ 〈Oσ2〉(τ )
n,n′ , (19a)

〈O〉(τ )
−n,n′

ξ=0−→ 〈σ2O〉(τ )
n,n′ , (19b)

〈O〉(τ )
−n,−n′

ξ=0−→ 〈σ2Oσ2〉(τ )
n,n′ , (19c)

which simplifies further calculations.
In general, Eq. (15) can be solved only numerically. It turns

out, however, that a hierarchy of relative importance emerges
among the 2 × 2 sub-blocks in Eq. (16a) in the limit of narrow
rings, which can be exploited to obtain useful approximate
analytical results. We develop this approach in the following
using the specific situation of a hard-wall confinement. As a
first step, the l = 0 eigenstates are determined, as discussed in
Sec. III A. We then use these states as basis states for calculating

the l 	= 0 eigenstates of a hard-wall-confined ring structure
according to the procedure outlined formally in Eqs. (14) and
(15). Identification of the most important couplings in Eq. (16a)
then yields an effective model for the azimuthal motion of
ring-confined two-flavor 2D-Dirac electrons given in Sec. III B.

A. Hard-wall-confined quantum ring: l = 0 states

To be specific, we now assume a hard-wall potential

V (r) =
{

0 for R − W
2 < r < R + W

2
∞ elsewhere

, (20)

where W and R denote, respectively, the ring’s width and
average radius. We find the l = 0 eigenstates, i.e., solutions of
Eq. (13), for this potential by forming a general superposition
of same-energy eigenstates of H(τ )

1D and applying hard-wall
boundary conditions at the inner and outer ring radii. See
Appendix A for details of the calculation.

Figure 1 illustrates the dependence of the l = 0 ring energies
on the gap parameter �0, with the latter normalized to the
size-quantization energy EW = γ /W > 0. Identical energies
are obtained for the two series of bound states distinguished
by the flavor quantum number τ = ±. The n = ±1 subbands
behave qualitatively differently from the other subbands (those
having |n| > 1) in that they can lie below the 2D-Dirac
gap edges for sufficiently negative values of �0, in which
case they correspond to hybridized quantum-spin-Hall edge
states [66]. In particular, the energy gap between the lowest
conduction (n = +1) and highest valence (n = −1) subbands
vanishes in the limit −�0  EW . As we will see below, the
low-energy electron dynamics in this limit turns out to be

205421-3



L. GIOIA, U. ZÜLICKE, M. GOVERNALE, AND R. WINKLER PHYSICAL REVIEW B 97, 205421 (2018)

n=1

n=−2
n=−3

n=−1

n=2
n=3

FIG. 1. Spectrum of l = 0 bound-state energies for a hard-wall-
confined ring structure as a function of the 2D-Dirac gap parameter �0

measured in units of the size-quantization energy EW = γ /W . Solid
(dashed) red, blue, and black curves correspond to subbands with
n = 1, 2, and 3 (n = −1, −2, and −3), respectively. The thin dotted
green lines indicate the position of the 2D-Dirac gap edges ±|�0|/2.
Except for �0, band-structure parameters used in the calculation were
fixed at values applicable to a 7-nm HgTe quantum well [65], and
we set k�W = 26.6. [For reference, the 7-nm HgTe quantum-well
gap satisfies �0/(2EW ) = −5.48.] All energy levels are twofold
degenerate in the flavor degree of freedom distinguished by τ = ±.
The n = ±1 levels lying below the 2D-Dirac gap edges constitute
hybridized quantum-spin-Hall edge states.

ultrarelativistic, massless-1D-Dirac-like. In contrast, subbands
with |n| > 1 have gapped energy dispersions that satisfy
E

(τ,±n)
0 ≷ ± max{EW,|�0|/2} and therefore exhibit nonrel-

ativistic, ordinary-Schrödinger-like behavior in sufficiently
narrow rings for any value of �0.

The situation simplifies considerably in the ordinary-2D-
Dirac limit where �(k) → �0 and ε(k) → 0. Firstly, the
subband energies for l = 0 become electron-hole-symmetric;
i.e., E

(τ,n)
0 = −E

(τ,−n)
0 . Secondly, the bound-state energies

measured in units of EW have a universal dependence on
�0/(2EW ). Figure 2 shows pertinent results for the n = 1,
2, and 3 subband states. All energy levels are again twofold
degenerate in the flavor quantum number τ . The lowest-
subband state becomes evanescent [59] for �0/2 < −EW ,
indicating that the system is topological [53]. The fact that
the transition to the inverted regime in the quantum-ring
system occurs only for sufficiently negative values of the
2D-Dirac gap �0 provides another, particularly clean, exam-
ple for how size quantization generally competes with the
band inversion in topologically nontrivial systems [67,68].

n=1

n=3
n=2

FIG. 2. Spectrum of l = 0 bound-state energies for a hard-wall-
confined ring structure in the ordinary-Dirac limit [�(k) = �0 and
ε(k) = 0] as a function of the 2D-Dirac gap parameter �0 measured
in units of the size-quantization energy EW = γ /W . Red, blue,
and black curves correspond to subbands with n = 1, 2, and 3,
respectively. The dotted lines indicate E = |�0|/2, revealing the
evanescent character of the lowest-energy state for �0/2 < −EW .
All levels are twofold degenerate in the flavor quantum number τ .

B. Effective Hamiltonian for the azimuthal motion

Having derived the basis states applicable to a hard-wall
quantum-ring confinement, the form of the Hamiltonian matrix
(16a) can be analyzed in greater detail. The diagonal 2 × 2
sub-blocks (H(τ )

l )n,n essentially represent azimuthal dynamics
involving only the two subbands labeled by ±n for fixed n > 0.
In contrast, the off-diagonal 2 × 2 sub-blocks (H(τ )

l )n,n′ with
n 	= n′ embody the coupling between such pairs of subbands.
Here we discuss the particular form of both kinds of sub-blocks
for hard-wall-confined quantum rings.

A detailed consideration (see Appendix B) motivates the
parameterization of diagonal sub-blocks in Eq. (16a) for a hard-
wall ring confinement in the general form of a Hamiltonian
governing azimuthal motion. It can be written as the sum of
two parts, (

H(τ )
l

)
n,n

= (K(τ )
l

)
n,n

+ (L(τ )
l

)
n,n

, (21)

such that the part (K(τ )
l )n,n contains the most relevant leading

terms while corrections, e.g., due to electron-hole asymmetry,
are subsumed into (L(τ )

l )n,n. Making the leading dependences
on the ring aspect ratio W/R as well as on 2D-Dirac flavor τ

and electron-hole asymmetry ξ explicit, we write

(
K(τ )

l

)
n,n

= −EW

(
W

R

)2
K

(n)
0

2
τ l η0 + EW

W

R
K

(n)
1 l η1 + 1

2

[
E

(τ,n)
0 − E

(τ,−n)
0

]
η3 , (22a)

(
L(τ )

l

)
n,n

=
{

1

2

[
E

(τ,n)
0 + E

(τ,−n)
0

]+ EW

(
W

R

)2
[

ξ L
(n)
0A

k�W
l2 − L

(n)
0B

k�W
τ l

]}
η0 + EW

(
W

R

)2
{

L
(n)
3A

k�W
l2 − L

(n)
3B

2
τ l

}
η3. (22b)

Here ηj are Pauli matrices acting in the 2 × 2 subspace
where |�(τ,±n)

0 〉 are the basis states, i.e., these states correspond
to the eigenstates of η3 with eigenvalue ±1. The dimen-
sionless quantities K

(n)
j and L

(n)
j contain relevant parameter
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dependencies and are given most generally in terms of matrix
elements as

K
(n)
0 = −τ

〈σ2 W/r〉(τ )
n,n + 〈σ2 W/r〉(τ )

−n,−n

(W/R)2
, (23a)

K
(n)
1 = 〈σ2 W/r〉(τ )

n,−n

W/R
, (23b)

L
(n)
0A = 〈(σ3 + ξσ0)(W/r)2〉(τ )

n,n + 〈(σ3 + ξσ0)(W/r)2〉(τ )
−n,−n

2ξ (W/R)2
,

(23c)

L
(n)
0B = 〈(σ0 + ξσ3)(W/r)2〉(τ )

n,n + 〈(σ0 + ξσ3)(W/r)2〉(τ )
−n,−n

2(W/R)2
,

(23d)

L
(n)
3A = 〈(σ3 + ξσ0)(W/r)2〉(τ )

n,n − 〈(σ3 + ξσ0)(W/r)2〉(τ )
−n,−n

2(W/R)2
,

(23e)

L
(n)
3B = τ

〈σ2 W/r〉(τ )
−n,−n − 〈σ2 W/r〉(τ )

n,n

(W/R)2

+ 〈(σ0 + ξσ3)(W/r)2〉(τ )
n,n−〈(σ0 + ξσ3)(W/r)2〉(τ )

−n,−n

(W/R)2
.

(23f)

More explicit expressions for these are available [69] but, as
they are lengthy and unilluminating, we do not present them
here. One important feature is that all the functions given in
Eqs. (23a)–(23f) remain finite in the limit W/R → 0, i.e., the
explicit factors W/R in Eqs. (22a) and (22b) constitute the
leading behavior in the limit of narrow rings. The contribution
(L(τ )

l )n,n vanishes in the ordinary-Dirac case where �(k) →
�0, ε(k) → 0, i.e., k�W → ∞ and ξ → 0. In the same limit,
and assuming also a small ring aspect ratio W/R → 0, we
obtain

K
(n)
0 → 1 + �0/(2EW )[

E
(τ,n)
0 /EW

]2 + �0/(2EW )
, (24a)

K
(n)
1 → 1 . (24b)

The universal dependence of the quantity K
(n)
0 on system

parameters in this limit is plotted for the three lowest positive-
energy subbands in Fig. 3, revealing a qualitatively different
behavior of the n = 1 subband. In particular, K

(n)
0 for the

higher subbands (i.e., for n > 1) vanishes at the point �0/2 =
−EW where the transition between normal and topological
ring-subband structure occurs. The contrasting behavior of
K

(1)
0 is manifested in its opposite monotonicity and absence

of any sign change. Understanding the behavior of K
(n)
0 is

relevant because, as discussed in greater detail in Sec. IV,
this quantity determines the confinement-induced geometric
phase that features prominently in the quantum-interference
contribution to the Dirac-ring conductance.

The expression given in Eq. (22a) constitutes the minimal
complete model Hamiltonian governing azimuthal motion in
a Dirac-electron quantum-ring subband. It becomes accurate

n=2

n=1

n=3

FIG. 3. Universal system-parameter dependence of the quantity
K

(n)
0 for the ordinary-Dirac case [�(k) → �0, ε(k) → 0] in the

narrow-ring limit (W/R → 0) according to Eq. (24a). The red (blue,
black) curve shows the result for n = 1 (2, 3). Note the qualitatively
different behavior of the n = 1 subband in the inverted regime where
�0/2 < −EW . All curves forK (n)

0 withn > 1 cross at the point (−1,0)
and exhibit an associated sign change.

in the limit of small electron-hole asymmetry ξ , yielding the
approximate subband dispersions

E
(τ,±n)
l ≈ EW

{
−
(

W

R

)2
K

(n)
0

2
τ l

±

√√√√(E
(τ,n)
0

EW

)2

+
(

W

R

)2

K
(n)
1

2
l2

⎫⎪⎬
⎪⎭. (25)

The terms ∝η1 and ∝η3 from Eq. (22a) are the most familiar
[28–30,33], as they constitute the expected one-dimensional
Dirac form. In particular, the ring confinement induces an
effective-gap contribution ∝η3 that is generally the largest
term, even if the 2D material that hosts the Dirac-ring structure
has a vanishing band gap (as is the case, e.g., for graphene).
The only possible exception is the lowest (n = 1) subband
deep in the inverted regime when �0/2 � −EW , as then
E

(τ,1)
0 − E

(τ,−1)
0 → 0. See Figs. 1 and 2 for an illustration.

The fact that the size-quantization energy appears like a mass
gap in the ring subband energies was implicit in thorough
treatments of graphene rings [31,32] but has sometimes been
overlooked in simplified models [28–30,33]. The contribution
∝η0 embodies the breaking of flavor symmetry due to the ring
confinement. For the case of graphene, where the flavor degree
of freedom corresponds to electrons from the different valleys
τK, this was discussed in Refs. [32,34]. Note that, although the
term ∝η0 is nominally higher order in W/R than the term ∝η1,
both terms contribute at the same order (quadratic in W/R) to
the energy dispersions [cf. Eq. (25)] for finite E

(τ,n)
0 − E

(τ,−n)
0 .

The contributions collected in (L(τ )
l )n,n [cf. Eq. (22b)] are

subleading in the sense that they are proportional to the
electron-hole asymmetry ξ or suppressed by the typically small
factor 1/(k�W ). However, in particular in systems with sizable
electron-hole asymmetry as, e.g., HgTe quantum wells, these
contributions can become important enough to necessitate their
inclusion. In contrast, the coupling between subspaces with
different |n| turns out to only marginally affect the low-lying
subband dispersions for realistic sets of materials parameters.
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FIG. 4. Comparison of energy dispersions for subbands with
n = ±1, ± 2 and τ = + derived from effective Hamiltonians Eq. (21)
for individual subbands (dashed blue curves) and the exact spectrum
obtained by diagonalizing the full Hamiltonian matrix Eq. (16a) (solid
red curves). Results shown were calculated for a ring structure satis-
fying k�W = 26.6 and W/R = 0.1, using band-structure parameters
for a 7-nm HgTe quantum well given in Ref. [65].

Figure 4 illustrates the high level of accuracy typically obtained
by using only the effective Hamiltonian of Eq. (21) to describe
the azimuthal motion of Dirac electrons in the ring structure.
Exact and approximate dispersions pertaining to the lowest pair
of subbands are seen to be virtually indistinguishable, while
deviations become visible for the higher ring subbands.

IV. CONDUCTANCE AND GEOMETRIC PHASE FOR
DIRAC-ELECTRON RINGS

To describe electric transport through a quantum ring
conductor realized using a 2D-Dirac material, we consider
a situation depicted schematically in Fig. 5. Electrons are
transmitted from a source lead 1 into a drain lead 2 via the
Dirac-ring eigenstates. The coupling of lead modes ν to the
eigenmodes of electrons in the ring occurs at the T junctions.
To keep the discussion simple, we assume in the following
that only the ring subband with label n contributes to transport
[70]. The linear electric conductance G is determined by the

FIG. 5. Electronic transport through a quantum-ring conductor.
Leads are connected to the ring at two T junctions from which charge
carriers are incoming (outgoing) with amplitude ajν (a′

jν) in lead
mode ν. Propagation in the ring occurs via confined-Dirac-electron
modes having fixed subband index n and flavor τ = ±. We assume
a clean ring, i.e., no scattering to occur between modes except at the
junctions.

transmission functions Tν2←ν1 (E) between source-lead and
drain-lead modes via [71]

G = G0

∑
ν1,ν2

Tν2←ν1 (EL) . (26)

Here G0 ≡ g e2/(2πh̄) is the universal quantum of conduc-
tance multiplied by a positive integer g counting the degen-
eracy associated with degrees of freedom that do not affect
charge-carrier dynamics and are therefore not included in the
model Hamiltonian Eq. (1a) [72], and EL is the chemical
potential in the leads.

The transmission function depends sensitively on details of
the device structure, especially on how the leads are coupled
to the ring. Two basic physical scenarios can be distinguished
according to whether the ring is (i) attached to leads that
are made of the same material as the ring, or (ii) attached
to a different material (generally via tunneling). Case (i) is
more typical nowadays, as it is common to fabricate an entire
mesoscopic-conductor system out of a host material using one
of many available lithography techniques [73]. In that case, the
same two-flavor 2D-Dirac dynamics governs charge-carrier
motion in the leads as well as the ring. On the other hand,
contact can also be made to a mesoscopic ring structure using
scanning-probe tips or other nanoelectronic connections, in
which case the charge-carrier dynamics in the leads can be
very different from that in the ring. Such case-(ii) scenarios
can also be described straightforwardly using the scattering
approach to quantum transport. However, as case (ii) is rather
uncommon for quantum-ring samples, we consider here only
case (i). In particular, given that the general goal in experiments
is to make good contacts between the ring and the leads, we
assume junctions between the ring and the attached leads to be
sufficiently adiabatic so that the flavor (τ ) degree of freedom is
conserved. This general situation also lends itself to exploring
opportunities for flavortronics, i.e., quantum-transport effects
that capitalize on τ -dependent charge-carrier dynamics. In the
context of 2D atomic crystals where τ corresponds to the valley
degree of freedom, this concept is generally referred to as
valleytronics [48].

In our formalism, we allow for the possibility of asymmetric
ring structures where the two T junctions with external leads are
not identical and/or are not placed diametrically opposite from
each other. The ring segments connecting them are assumed
to be sufficiently clean so that scattering of charge carriers
only occurs at the T junctions. This is a physically realistic
assumption as recently fabricated mesoscopic structures of 2D-
Dirac materials are ballistic [40,45].

We proceed by presenting the derivation of the transmission
functions in Sec. IV A. Our results can be applied to identify
features in the conductance that provide direct measures for
the peculiar electronic properties of Dirac-electron rings. This
is illustrated in greater detail in Sec. IV B, together with
implications for using quantum ring conductors as flavor-
filtering devices.

A. General transmission function for τ -conserving
ballistic ring structures

The procedure for determining the transmission func-
tions Tν2←ν1 (E) through a ring conductor is based on two
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fundamental ingredients [5,6]. Firstly, the coupling between
lead states and ring states at fixed energy E is embodied by the
S matrix [71] of each T junction [74,75]. Secondly, because we
assume no scattering to occur in the ring segments connecting
the leads, the quantum amplitudes of ring states at different
junctions are related simply by the dynamical phases corre-
sponding to propagation of the ring eigenstates between them.
These relationships enable the algebraic elimination of ring-
state amplitudes, yielding an expression for the outgoing lead-2
amplitudes a′

2ν2
in terms of incoming lead-1 amplitudes a1ν1

and thus the transmission functions Tν2←ν1 (E) ≡ |a′
2ν2

/a1ν1 |2.
In our situation of interest, charge carriers having different

flavor τ are transmitted through the combined leads-and-ring
structure completely in parallel. Scattering at the T junctions
then occurs only between modes with the same τ ,⎛

⎜⎝
a′

jτ

b′
jτ

c′
jτ

⎞
⎟⎠ = Sjτ

⎛
⎝ajτ

bjτ

cjτ

⎞
⎠ , (27)

and we adopt the most general form for the S matrices,

Sjτ =

⎛
⎜⎝

−√1 − 2εjτ eiψjτ
√

εjτ
√

εjτ√
εjτ κjτ e−iψjτ λjτ e−iψjτ

√
εjτ λjτ e−iψjτ κjτ e−iψjτ

⎞
⎟⎠.

(28)

Here the parameters εjτ with 0 � εjτ � 1/2 are a measure for
how strongly lead j is coupled to the ring via mode τ , with
εjτ = 1/2 (εjτ = 0) describing the extremal situation of a fully
transparent junction (a completely isolated ring). Scattering of
τ -flavor electrons between the ring segments at junction j is
described by reflection amplitudes

κjτ = |κjτ | ei(φjτ +�jτ ) (29a)

and transmission amplitudes

λjτ = |λjτ | ei(φjτ −�jτ ) . (29b)

The real but otherwise arbitrary phases ψjτ are associated with
back reflection into the leads. The canonical expression for Sjτ

given in Eq. (28) covers previously considered special cases of
purely real [6,74] or symmetric-beam-splitter [76] T-junction
S matrices, as well as the general form given in Ref. [77].
Unitarity of Sjτ imposes the relations

1 = |κjτ |2 + |λjτ |2 + εjτ , (30a)

�jτ = sjτ

2
arccos

( −εjτ

2|κjτ | |λjτ |
)

, (30b)

φjτ = arctan

[∣∣∣∣ |λjτ | − |κjτ |
|λjτ | + |κjτ |

∣∣∣∣ tan �jτ

]
, (30c)

with

sjτ =
{

sgn(|λjτ | − |κjτ |) if |κjτ | 	= |λjτ | ,
±1 otherwise .

(30d)

The relation between quantum amplitudes of ring states at
different junctions can be found from the general form of a
ring state |jτ ; ϕ〉 in mode τ emanating from junction j , which

is a superposition of counterclockwise-moving and clockwise-
moving Dirac-ring eigenstates |jτ ; ϕ〉±,

|jτ ; ϕ〉 = |jτ ; ϕ〉+ + |jτ ; ϕ〉− , (31a)

|jτ ; ϕ〉+ = c′
jτ eil

(τ )
+ (ϕ−ϕj ) Uτ (ϕ − ϕj )√

2πr

∣∣�(τ,n)

l
(τ )
+

〉
, (31b)

|jτ ; ϕ〉− = −b′
jτ eil

(τ )
− (ϕ−ϕj −2π) Uτ (ϕ − ϕj )√

2πr

∣∣�(τ,n)

l
(τ )
−

〉
.

(31c)

Here ϕj denotes the location of lead j , with the conven-
tions −π � ϕj < π and ϕ > ϕj . As shown in Fig. 5, the
counterclockwise (clockwise) outgoing mode at junction j

propagating in channel τ has amplitude c′
jτ (b′

jτ ). Due to the
ring geometry, the azimuthal angle ϕ for clockwise-moving
partial waves acquires a phase shift 2π with respect to that for
counterclockwise-moving partial waves. We used the relation
Uτ (ϕ − ϕj − 2π ) = −Uτ (ϕ − ϕj ) in Eq. (31c). Given E, the
azimuthal quantum numbers l

(τ )
+ and l

(τ )
− are determined from

the relation E = E
(τ,n)

l
(τ )
±

and, by definition, dE
(τ,n)
l /dl|l=l

(τ )
±

≷ 0.

For the 2D-Dirac-material ring conductors considered here,
we have l

(τ )
+ 	= −l

(τ )
− in general, but time-reversal symmetry

mandates [32]

l
(τ )
± = −l

(−τ )
∓ . (32)

Assuming no scattering to occur within the ring segments
between the junctions and considering the situation with ϕ2 >

ϕ1, the form of |1τ ; ϕ2〉 (|2τ ; ϕ1 + 2π〉) determines how the
incoming amplitudes at junction 2 (1) depend on the outgoing
amplitudes of junction 1 (2) on the same segment. Using a
compact transfer-matrix notation, we can write(

c2τ

c′
2τ

)
= ei(θτ −θ̄τ −π)

(
e−i(χ−χ̄ ) 0

0 ei(χ−χ̄ )

)(
b′

1τ

b1τ

)
,

(33a)(
c1τ

c′
1τ

)
= e−i(θτ +θ̄τ )

(
ei(χ+χ̄ ) 0

0 e−i(χ+χ̄ )

)(
b′

2τ

b2τ

)
,

(33b)

in terms of phases

θτ = 1
2 [l(τ )

+ + l
(τ )
− ](ϕ2 − ϕ1 − π ) , (34a)

χ = 1
2 [l(τ )

+ − l
(τ )
− ](ϕ2 − ϕ1 − π ) (34b)

that depend on the T-junction locations, and the purely
electronic-structure-determined phases

θ̄τ = π

2
[l(τ )

+ + l
(τ )
− ] , (35a)

χ̄ = π

2
[l(τ )

+ − l
(τ )
− ] (35b)

that are intrinsic measures of interference in the Dirac ring. By
construction, θτ and χ vanish for a symmetric ring structure
where ϕ2 − ϕ1 ≡ π , and Eq. (32) implies that χ and χ̄ do not
depend on τ whereas θ̄τ ≡ τ θ̄+.

The transmission function for the situation where scat-
tering at the junctions conserves τ can be written as
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Tν2←ν1 ≡ Tτ δν1τ δν2τ , with Tτ = |a′
2τ /a1τ |2. A straightforward calculation yields the fully general result

Tτ

(
χ,χ̃τ ,θ

(τ )
AA

) = 4ε1τ ε2τ

[
cos2 χ sin2 χ̃τ cos2

(
θ

(τ )
AA/2

)+ sin2 χ cos2 χ̃τ sin2
(
θ

(τ )
AA/2

)]
∣∣|κ1τ ||κ2τ |ei(�1τ +�2τ ) cos(2χ ) + |λ1τ ||λ2τ |e−i(�1τ +�2τ ) cos θ

(τ )
AA − Fτ (ω1τ + ω2τ ,φ1τ + φ2τ ,2χ̃τ )

∣∣2 , (36)

where

Fτ (ω,φ,2χ̃ ) = 1

2
[eiω +

√
(1 − 2ε1τ )(1 − 2ε2τ ) e−iφ] cos(2χ̃ ) − i

2
[eiω −

√
(1 − 2ε1τ )(1 − 2ε2τ ) e−iφ] sin(2χ̃), (37a)

and

θ
(τ )
AA ≡ 2θ̄τ + π (37b)

is the generalized Berry [2], or Aharonov-Anandan [3], phase
for an individual τ -conserving transport channel in the Dirac
ring. We also used the abbreviations

χ̃τ = χ̄ − 1
2 (ψ1τ + ψ2τ − φ1τ − φ2τ − ω1τ − ω2τ ) ,

(37c)

ωjτ = arg(λjτ − κjτ ) − φjτ , (37d)

≡ arctan

[∣∣∣∣ |λjτ | + |κjτ |
|λjτ | − |κjτ |

∣∣∣∣ tan �jτ

]
. (37e)

Among the interesting insights that can be gleaned from
Eq. (36) are, firstly, that the phase θτ does not appear at all in the
expression for Tτ and, secondly, that nonuniversal scattering
phases due to the coupling to leads only enter via χ̃τ . In the
limit χ = 0 and �jτ = π/2, our result Eq. (36) has the form
found previously in Ref. [6] for the transmission through a
symmetric quantum-ring geometry with real S matrices used to
describe the T junctions, and the dependence on χ is consistent
with previously considered cases [78,79] of quantum rings with
arbitrary location of lead-attachment points.

B. Dirac-ring conductance and τ filtering

For our case of interest where the τ degree of freedom is
conserved, we can construct two transport-related quantities of
interest. One is the total electric conductance,

G = G0

∑
τ=±

Tτ , (38)

and the other is the τ polarization of the conductance,

Pτ = Tτ − T−τ

Tτ + T−τ

. (39)

In principle, the fully general Eq. (36) for the transmission
function Tτ contains all possible τ -dependent effects arising
from the coupling to the leads via T junctions, as well as
those due to the special features of the Dirac-ring subband
structure. In the following, we will focus on discussing the
latter and therefore assume that the T-junction parameters are
the same for both τ = ±. To further simplify the discussion,
we will consider the case of leads being attached exactly
opposite each other (ϕ2 − ϕ1 = π ), i.e., χ ≡ 0. Thus the only
remaining τ -dependent quantity is the phase θ̄τ , and we set
χ̃τ ≡ χ̃ from now on. It is then instructive to apply the
approximate expression Eq. (25) for the nth ring-subband
dispersion to determine l

(τ )
± and, via Eqs. (35a) and (35b),

the phases θ̄τ and χ̄ . Considering the case of a narrow ring
(W/R � 1) and EL − E

(τ,n)
0 � E

(τ,n)
0 , we find

θ̄τ = τ
π

2

E
(τ,n)
0

EW

K
(n)
0(

K
(n)
1

)2 , (40a)

χ̄ = π

K
(n)
1

√
2E

(τ,n)
0

EW

√
EL − E

(τ,n)
0

EW (W/R)2
. (40b)

Interestingly, θ̄τ ≡ τ θ̄+ turns out to be determined solely
by the Dirac-ring subband structure. As an illustration, Fig. 6
shows a plot of 2θ̄+ that has been calculated from Eq. (40a)
for the three lowest subbands in the ordinary 2D-Dirac limit
where �(k) = �0 and ε(k) = 0. The properties of the curves
representing individual subbands can be traced back directly to
the behavior of the quantities E

(τ,n)
0 and K

(n)
0 for these subbands

that are shown in Figs. 2 and 3, respectively. For example,
the confinement-induced geometric phase θ̄τ vanishes for
all subbands with n > 1 when �0/2 = −EW whereas the
contribution of the lowest (n = 1) remains finite. Furthermore,
while the higher subbands recover the ordinary-Schrödinger-
electron limit |2θ+| ≈ π when |�0|  EW both in the normal
and topological (i.e., inverted-band) regimes, the geometric
phase of the lowest subband approaches the massless-2D-Dirac
limit 2θ+ = 0 deep in the topological regime.

n=1

n=3

n=2

FIG. 6. Electronic-structure-related contribution 2θ̄+ to a Dirac
ring’s intrinsic Aharonov-Anandan phase that is associated with the
τ = + transport channel. The figure shows this phase for the subband
with n = 1 (2, 3) as the red (blue, black) curve for a narrow-ring
structure in the ordinary-Dirac limit where �(k) = �0 and ε(k) = 0
(corresponding, e.g., to single-layer graphene). Note the qualitatively
different behavior of the n = 1 subband for which 2θ̄+ ≈ 0 deep in the
inverted regime, whereas |2θ̄+| ≈ π when |�0|  EW for the higher
subbands.
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In contrast to θ̄τ , χ̄ (and thus also χ̃τ ≡ χ̃ here) has a
strong dependence on the chemical potential EL in the leads.
Given that χ̃ is renormalized by nonuniversal phase shifts
associated with scattering at the T junctions [see Eq. (37c)],
features exhibited in the energy dependence of the transmission
function will generally be quite sample specific—even if
the T-junction S-matrix parameters vary only weakly in the
experimentally relevant range of energy.

In addition to adjusting the chemical potential in the leads,
application of a perpendicular magnetic field B can also be used
as an experimentally accessible knob to manipulate transport
through a ring conductor via Aharonov-Bohm interference [4–
6,32]. Formally, the effect of finite B ≡ ∇ × A in a sufficiently
narrow ring can be modeled by introducing an infinitesimally
thin tube of magnetic flux ψ piercing the ring plane at
its origin via the vector potential A = [ψ/(2πr)] ϕ̂. Mak-
ing the required substitutions H(±)(k) → H(±)(k + 2πA/ψ0)
in Eq. (1a), with ψ0 denoting the magnetic flux quantum,
translates into the changes kϕ → kϕ + ψ/(ψ0r) andV (τ )

l (r) →
V (τ )

l+ψ/ψ0
(r). Thus the effect of the magnetic flux is to rigidly

shift the quantum-ring dispersions in l by the amount ψ/ψ0,
with the only ramification for the transmission function
Eq. (36) being that the Aharonov-Anandan phase becomes flux
dependent,

θ
(τ )
AA ≡ θ

(τ )
AA(ψ) = 2θ̄τ + 2π

(
1

2
− ψ

ψ0

)
, (41)

resulting in a ψ0-periodic modulation of the conductance
as a function of flux ψ [5,6]. As θ̄τ is robust with respect
to changes in the leads’ chemical potential and details of
the ring-lead junction morphology, it will be possible to
measure its magnitude via the magnetic-field dependence of
the conductance. In particular, it will be interesting to map
the transition from the nonrelativistic, Schrödinger-like regime
�0  EW (where 2θ̄+ ≈ π ) to the ultrarelativistic, Dirac-like
regime −�0  EW (where 2θ̄+ ≈ 0) exhibited by the n = 1
subband (cf. Fig. 6). In contrast, the higher subbands show
nonrelativistic behavior whenever |�0|  EW , regardless of
the existence of band inversion.

To illustrate more directly how these distinctive ring-
subband properties are manifested in the two-terminal con-
ductance, we consider the situation with fully transparent T
junctions, which is realized for εjτ ≡ 1/2. As concomitantly
�jτ = ±π/2, φjτ = 0, ωjτ = ±π/2, and keeping with the
current assumption of a symmetric ring structure where χ = 0
and also χ̃jτ ≡ χ̃ , Eq. (36) specializes to

T (tr)
τ

(
χ̃ ,θ

(τ )
AA

)
= 2 sin2 χ̃

(
1 + cos θ

(τ )
AA

)
(

1
2

[
1 + cos θ

(τ )
AA

]− cos(2χ̃ )
)2 + sin2(2χ̃)

. (42)

For the purpose of the present discussion, we fix sin2 χ̃ = 1 for
simplicity. Figure 7 shows a density plot of the two-terminal
conductance through an ordinary-2D-Dirac ring that could be
realized, e.g., in graphene, as a function of applied magnetic
flux and the quantity �0/(2EW ). Results are shown for two
cases corresponding to situations where transport occurs via
states in the lowest (n = 1) and first excited (n = 2) ring
subband, respectively. The characteristic dependence of the

FIG. 7. Two-terminal conductance G through a ring realized in
a material where charge-carrier dynamics mimics that of ordinary
2D-Dirac electrons [�(k) = �0, ε(k) = 0] contacted to leads via
fully transparent T junctions. The density plots show G in units of
G0 ≡ g e2/(2πh̄) as a function of magnetic flux ψ in units of the
flux quantum ψ0 ≡ 2πh̄/e and the parameter combination �0/(2EW )
characterizing the ring confinement. Results in panel (a) [(b)] were
calculated using Eq. (42) for the situation where transport occurs
through the n = 1 [n = 2] subband and assuming sin2 χ̃ = 1.

geometric phase on ring-structure parameters is clearly exhib-
ited in the interference-fringe pattern of the conductance. In
particular, massless-Dirac (ordinary-Schrödinger) behavior is
manifested here by conductance minima occurring for integer
(half-integer) values of ψ/ψ0. The pattern seen for the n = 1
subband shows very clearly a transition between these two
limiting regimes. In contrast, the n = 2 subband (like all other
higher-|n| subbands) exhibits an interference pattern indicative
of massless-Dirac behavior only in a narrow region around
the point where �0/2 = −EW , which is a direct consequence
of the vanishing K

(n)
0 for n > 1 at this special point where

the transition between normal and topological ring-subband
structures occurs (cf. Fig. 3). For the subband n = 1 and
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FIG. 8. Dependence of the conductance G/(2G0) (black solid
curves) and τ polarization P+ (red dashed curves) on magnetic
flux ψ for a symmetric ring structure where T-junction S matrices
are assumed to be real as, e.g., in Ref. [6]. Here ψ0 denotes the
quantum of magnetic flux. Other parameters used in the calculation
are sin2 χ̃± = 1, sj± = 1 (j = 1,2), and εj± = 0.5 [0.2, 0.5, 0.2],
2θ̄+ = 0.4 π [0.4 π , 0.7 π , 0.7 π ] for panel (a) [(b), (c), (d)].

�0 = 0, the oscillations of the ring conductance calculated
here as a function of magnetic flux agree with numerical results
presented in Ref. [34] for graphene rings in the one-mode
regime.

Before concluding, we explore the dependence of Dirac-
ring interference and flavor filtering on the transparency of the
T junctions connecting the ring to external leads. Two special
cases are considered according to whether T junctions are
described by real S matrices as in Ref. [6] or beam-splitter-type
S matrices as in Ref. [76].

Real S matrices describing the ring-lead coupling are
obtained from the general expression Eq. (28) by setting
�jτ = π/2 and ψjτ = 0 or π . With the additional assumptions
χ = 0 and εjτ ≡ ε for a symmetric ring structure, as well
as sin2 χ̃τ = 1 for simplicity, the transmission function from
Eq. (36) specializes to

T (re)
τ

(
θ

(τ )
AA

) = 2ε2
(
1 + cos θ

(τ )
AA

)
[ (

√
1−2ε+1)2

4

(
1 + cos θ

(τ )
AA

)+ (
√

1−2ε−1)2

2

]2 .

(43)

The magnetic-flux dependence of the total Dirac-ring conduc-
tance G as well as the flavor (τ ) polarization P+ ≡ −P− for
this situation is illustrated in Fig. 8 for particular parameter
values, including examples for fully transparent T junctions
(ε = 0.5) and more weakly coupled leads (ε = 0.2). In this
case, interference-related minima in G generally coincide with
maxima of |P+|. The flux values at which these features occur
can be shifted by tuning the confinement-related Aharonov-
Anandan angle θ̄+. Reduced transparency of the contacts
with leads results in a precipitous narrowing of their flux-
dependence line shape into resonances that are indicative of
the isolated-ring bound-state energies [6].

A T junction acting as a beam splitter is described by an
S matrix of the form given in Eq. (28) where |κjτ | = |λjτ | ≡√

(1 − εjτ )/2. Assuming again χ = 0, εjτ ≡ ε, and sin2 χ̃τ =

P +
G

/(2
G

  ) 0

P+
εj± = 0.5,
2θ  = 0.4π+
−

G

P +
G

/(2
G

  ) 0

P+

εj± = 0.2,
2θ  = 0.4π+
−

G

P +
G

/(2
G

  ) 0

P+
εj± = 0.5,
2θ  = 0.7π+
−

G

P +
G

/(2
G

  ) 0

P+

εj± = 0.2,
2θ  = 0.7π+
−

G

FIG. 9. Dependence of the conductance G/(2G0) (black solid
curves) and τ polarization P+ (red dashed curves) on magnetic flux ψ

(measured in units of the magnetic flux quantum ψ0) for a symmetric
ring structure with beam-splitter-type T-junction S matrices as given,
e.g., in Ref. [76]. Other parameters used in the calculation are
sin2 χ̃± = 1, sj± = 1 (j = 1,2), and εj± = 0.5 [0.2, 0.5, 0.2], 2θ̄+ =
0.4 π [0.4 π , 0.7 π , 0.7 π ] for panel (a) [(b), (c), (d)].

1, Eq. (36) yields

T (bs)
τ

(
θ

(τ )
AA

)
= 2ε2

(
1 + cos θ

(τ )
AA

)
ε2
{

1
2

[
1 + cos θ

(τ )
AA

]+ 1
}2 + 1−2ε

4

[
1 − cos θ

(τ )
AA

]2 .

(44)

Figure 9 shows the magnetic-flux dependence of G and P+
for this case, using the same values for other parameters as
we did for the case of real T-junction S matrices in Fig. 8.
Note that, for fully transparent T junctions (εjτ = 1/2), the
cases of real and beam-splitter-type S matrices yield identical
results, as is visible from the direct comparison of Figs. 8(a)
and 8(c) with Figs. 9(a) and 9(c), respectively. In contrast, for a
ring that is weakly connected to leads, the different T-junction
types are associated with very different behavior. Unlike the
situation with real S matrices, the magnitude of the flavor (τ )
polarization of the current is close to unity over a significant
range of values for the magnetic flux ψ in the configuration
with beam-splitter T junctions. Also in contrast to the real-S-
matrix case, the range of flux values for maximum valley polar-
izations coincides with sizable values of total conductance G.
The general location of valley-polarization maxima remains
tunable overall by adjusting θ̄+, but their flux dependence does
not exhibit a narrow resonancelike line shape. Quantum-ring
structures where T junctions are of beam-splitter type thus
lend themselves for use as very effective Dirac-electron-flavor
filters.

V. CONCLUSIONS

We have developed a general framework for describing
theoretically both the radial quantum confinement and the
azimuthal motion of 2D-Dirac-like charge carriers in ring
conductors. The formalism applies to a wide range of 2D
materials, including narrow-gap semiconductor quantum wells
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as well as few-atom-thick crystals, and also covers situations
with band inversion. We present a generally valid effective
model for the azimuthal motion that illuminates a number of
interesting features of the Dirac-quantum-ring subband struc-
ture and also yields quantitative expressions for corresponding
magnitudes. One such interesting feature is the dependence of
subband dispersions on the flavor degree of freedom carried
by 2D-Dirac-like charge carriers. Another is the competition
between size quantization and band inversion that shifts the
topological regime for the quantum-ring system to values of
the 2D-Dirac gap �0 that need to satisfy �0/2 < −γ /W

in terms of the ring width W and 2D-Dirac-electron Fermi
velocity γ /h̄. A massless-Dirac-like dispersion can occur
for ring-confined charge carriers from the lowest pair of
conduction and valence subbands in the limit of large negative
2D-Dirac gap, i.e., when �0 < 0 and |�0|  2γ /W . More
generically, size-quantization effects ensure that the subband
dispersions are gapped, even for the lowest subband, and
even when the 2D-Dirac gap vanishes as is the case, e.g., in
graphene.

We have used the insight gained from calculated Dirac-ring
subband dispersions and eigenstates to investigate quantum-
interference effects in the two-terminal conductance. Our anal-
ysis is based on the scattering-matrix approach and carefully
incorporates effects arising from the coupling to external leads.
We obtain a fully general expression for the transmission
function [Eq. (36)] for the case where T junctions with the
leads conserve the charge carriers’ flavor degree of freedom
and motion in the ring segments between the leads is ballistic.
Our consideration of this situation is motivated by the recent
realization of ballistic ring structures in 2D-Dirac materials
[40,45]. Properties of the Dirac-ring subband structure turn out
to uniquely influence the flavor-dependent geometric (Berry,
Aharonov-Anandan) phase θ

(τ )
AA, which is also dependent on

magnetic flux ψ [as per Eq. (41)] but otherwise entirely
robust against nonuniversal, hard-to-determine experimen-
tally, details such as shifts in quantum phases associated
with the T junctions and the Fermi energy in the leads.
Distinctive interference patterns emerge in the two-terminal
conductance that manifest unique properties of quantum-ring
subbands, including the transition between massless-Dirac and
Schrödinger-like behavior for the lowest one. In addition, the
dependence of interference effects on the charge carriers’
flavor degree of freedom enables use of quantum rings as
tunable flavor-filter devices. As one of the most relevant
possible sources of nonuniversal effects in experiments, we
considered variations in the design of T junctions between the
ring and external leads, including their reduced transparency.
Such insight is particularly useful to inform proper analysis of
features associated with the crossover between Dirac-like and
Schrödinger-like behavior expected for the lowest (n = ±1)
ring subbands.

Results presented here could be further applied, or suitably
generalized, to study transport through Dirac-ring conductors
that are tunnel coupled to leads and therefore do not conserve
the charge carriers’ flavor degree of freedom. The effect of
disorder scattering in ring segments connecting the leads could
similarly be investigated. As the recently noted [80] remarkable

robustness of persistent currents in Dirac rings against disorder
was attributed to special properties of the lowest ring subband,
we expect our two-terminal transport results to be similarly
robust.

The formalism employed in our paper provides a tool for
investigating more broadly the effect of quantum confinement
on particles whose dynamics is governed by a Dirac equa-
tion. It could be usefully applied to related effective-model
descriptions of charge carriers in semimetallic systems such
as Weyl [81] and nodal-line [82] semimetals, opening up
possibilities to explore quantum-transport effects in these, and
similar, topological materials. Another interesting avenue for
future studies expanding on our approach is Dirac-electron
physics in hybrid structures. Situations of this type have been
considered before in tight-binding transport calculations for
graphene rings with superconducting leads [83] or subject to
electrostatic potentials [84].
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APPENDIX A: DETERMINATION OF
HARD-WALL-CONFINED QUANTUM-RING BOUND

STATES WITH l = 0

To simplify the notation, we introduce the dimensionless
quantities k̃ = k/k�, Ẽ ≡ E/(γ k�), and �̃0 = �0/(γ k�).
The energy eigenvalues and corresponding (non-normalized)
eigenstates of the Hamiltonian H(τ )

1D can then be expressed
as

Ẽk± = ξ k̃2 ±
√

k̃4 + (�̃0 + 1)k̃2 + �̃2
0

4
, (A1a)

�
(τ )
k±(r) =

(
1

±τ sgn(k) γk±

)
eikr , (A1b)

with the abbreviation

γk± =
√

Ẽk± − (�̃0/2) − (1 + ξ )k̃2

Ẽk± + (�̃0/2) + (1 − ξ )k̃2
. (A1c)

Solutions of the confinement problem (13) with a hard-wall
potential (20) are found by forming a general superposition
of the possible eigenstates of H(τ )

1D with given energy Ẽ and
imposing hard-wall boundary conditions. Focusing initially on
|Ẽ| � |�̃0|/2, four wave numbers are obtained as roots of the
equation Ẽk± = Ẽ. Two of them are real and given by ±k̃, the
other two are imaginary and given by ±iq̃. We find the explicit
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expressions [85]

k̃ =
⎡
⎣
√

(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)
(
4Ẽ2 − �̃2

0

)− (1 + �̃0 + 2ξ Ẽ)

2(1 − ξ 2)

⎤
⎦

1
2

, (A2a)

q̃ =
⎡
⎣
√

(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)
(
4Ẽ2 − �̃2

0

)+ 1 + �̃0 + 2ξ Ẽ

2(1 − ξ 2)

⎤
⎦

1
2

. (A2b)

The full Ansatz for the bound-state wave function is

�
(τ,n)
0 (r) = c

(τ,n)
1k

(
1

τ γk

)
eikr + c

(τ,n)
2k

(
1

−τ γk

)
e−ikr + c

(τ,n)
1q

(
γ̄q

−iτ

)
e−qr + c

(τ,n)
2q

(
γ̄q

iτ

)
eqr , (A3)

with the parameters

γk = sgn(Ẽ)

√
1 + ξ

1 − ξ

⎡
⎣2Ẽ + ξ �̃0 −

√
(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)

(
4Ẽ2 − �̃2

0

)+ 1

2Ẽ + ξ �̃0 +
√

(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)
(
4Ẽ2 − �̃2

0

)− 1

⎤
⎦

1
2

, (A4a)

γ̄q =
√

1 − ξ

1 + ξ

⎡
⎣
√

(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)
(
4Ẽ2 − �̃2

0

)+ 1 − 2Ẽ − ξ �̃0√
(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)

(
4Ẽ2 − �̃2

0

)+ 1 + 2Ẽ + ξ �̃0

⎤
⎦

1
2

. (A4b)

The secular equation obtained from imposing hard-wall bound-
ary conditions �

(τ,n)
0 (R ± W/2) = 0 at the inner and outer ring

radii is similar to those found in related bound-state problems
[21,38]. It can be written in the concise form

γk γ̄q =
{

tanh(qW/2) cot(kW/2) case a,
− coth(qW/2) tan(kW/2) case b,

(A5)

where case ν = a (ν = b) yields solutions with even (odd)
parity associated with eigenvalues E

(τ,nν )
0 . The corresponding

eigenstates can be written as

�
(τ,nν )
0 (r) = �

(τ,nν )
D (r) + �

(τ,nν )
B (r) , (A6)

where the contribution labeled D has the form of a standing-
wave state for a Dirac particle [60], and the part labeled B
is an evanescent correction that incorporates the remote-band
contributions [21]. More explicitly, we find

�
(τ,na)
D (r) = Nna

(
cos
[
kna (r − R)

]
τ γkna

i sin
[
kna (r − R)

]
)

, (A7a)

�
(τ,na)
B (r) = −Nna γkna

sin
(
knaW/2

)
sinh

(
qna W/2

)
×
(

γ̄qna
cosh

[
qna (r − R)

]
τ i sinh

[
qna (r − R)

]
)

, (A7b)

�
(τ,nb)
D (r) = Nnb

(
sin
[
knb (r − R)

]
−τ γknb

i cos
[
knb (r − R)

]
)

, (A7c)

�
(τ,nb)
B (r) = Nnb γknb

cos
(
knbW/2

)
cosh

(
qnbW/2

)
×
(

γ̄qnb
cosh

[
qnb (r − R)

]
τ i sinh

[
qnb (r − R)

]
)

, (A7d)

where the Nnν
denote normalization factors.

Previous results [21,57–60] for Dirac particles with hard-
wall mass confinement are reproduced in the limit �(k) →
�0 and ε(k) → 0, which is achieved by taking k� →
∞ and ξ → 0 in all relevant expressions [86]. In the
process, we have q → ∞, k →

√
4E2 − �2

0/(2γ ), γk →
sgn(E)

√
(2E − �0)/(2E + �0), and γ̄q → 1. As a result, the

secular equation (A5) simplifies to [21]

γk =
{

cot(kW/2) case a,

− tan(kW/2) case b,
(A8)

eigenstates are purely of the Dirac-standing-wave form
�

(τ,nν )
0 (r) → �

(τ,nν )
D (r), and the normalization factors are given

by

Nnν
= 1√

W

[
E

(τ,nν )
0

(
2E

(τ,nν )
0 + �0

)
2
(
E

(τ,nν )
0

)2 + EW �0

] 1
2

, (A9)

where EW ≡ γ /W is the energy scale associated with size
quantization for the confined Dirac particles.

So far, we have considered bound states of ring-confined
Dirac particles that are typical standing waves, i.e., are ex-
tended in radial direction across the ring. However, it is well
known that the presence of a band inversion (signified within
our model by �0 < 0) gives rise to topologically protected
states localized at the system boundaries [22,66,87,88], which
should also appear in our situation of interest [38]. In fact,
our Ansatz (A3) applies to energies |Ẽ| < |�̃0|/2 if the
replacements

k ≡ ik̄ and γk ≡ i γ̄k̄ (A10)
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are made, with the real quantities [89]

˜̄k =
⎡
⎣1 + �̃0 + 2ξ Ẽ −

√
(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)

(
4Ẽ2 − �̃2

0

)
2(1 − ξ 2)

⎤
⎦

1
2

, (A11a)

γ̄k̄ = sgn(�̃0)

√
1 + ξ

1 − ξ

⎡
⎣
√

(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)
(
4Ẽ2 − �̃2

0

)− 1 − 2Ẽ − ξ �̃0√
(1 + �̃0 + 2ξ Ẽ)2 + (1 − ξ 2)

(
4Ẽ2 − �̃2

0

)− 1 + 2Ẽ + ξ �̃0

⎤
⎦

1
2

. (A11b)

The secular equation for |Ẽ| < |�̃0|/2 then reads [66]

−γ̄k̄ γ̄q =
{

tanh(qW/2) coth(k̄W/2) case a,

coth(qW/2) tanh(k̄W/2) case b.
(A12)

Corresponding eigenstates for the in-gap bound states are
obtained by using the expressions from Eq. (A10) in the wave
functions shown in Eqs. (A7a)–(A7d). Because of the positivity
of its RHS, solutions of Eq. (A12) exist only for �0 < 0,
and there can be at most one solution for each case a and
b. Figure 10 illustrates the regimes for which two, one, or no
bound states have energies within the gap, assuming materials
parameters for a 7-nm HgTe quantum well. The boundaries
between these regimes in parameter space can be associated

Wc+ < W Wc+W =

c−W Wc+< W < Wc−W <

LHS Eq. (A12), (A5)
RHS Eq. (A12), (A5), case a
RHS Eq. (A12), (A5), case b

FIG. 10. Ring-confined Dirac-particle states with l = 0 related
to quantum-spin-Hall edge states. (a) Two bound states with energy
inside the gap exist for sufficiently large widths Wc+ < W . (b) When
W = Wc+, one of these states is pushed through the top of the gap.
(c) For Wc− < W < Wc+, only one bound-state energy is still within
the gap. (d) No bound states exist within the gap for W < Wc−. In all
panels (a) to (d), the LHS expression of the secular equation (A12)
[(A5)] is represented by the green curve in the region |Ẽ| < |�̃0|/2
[|Ẽ| > |�̃0|/2], while the RHS for case a (case b) is plotted as the
orange (blue) curve. Parameters used are �̃0 = −0.412, ξ = 0.746
(corresponding to a 7-nm HgTe quantum well [65]), and k�W = 20,
13.4, 8, 2.3.

with critical ring widths Wc±. We find analytical expressions
in the typical situation where qW  1;

Wc± = lim
E→∓ �0

2

{
2

k̄
arcoth([γ̄k̄ γ̄q]±1)

}
, (A13a)

≡ 2

|�̃0|
[

1 ∓ ξ

(1 ± ξ )[1 + (1 ± ξ )�̃0]

] 1
2

k−1
� . (A13b)

The critical ring widths arise due to the fact that the size-
quantization energy reduces the magnitude of the negative
(topological) gap parameter, thereby driving a transition from
the topological into the normal regime for the ring band
structure that is analogous to similar transitions in higher-
dimensional systems [23,67,68]. Note also that, in the limit
W → ∞, the secular equations (A12) read γ̄k̄ γ̄q = −1, which
has the solution [66,90] Ẽ = −ξ �̃0/2.

APPENDIX B: DERIVATION OF THE EFFECTIVE
DIRAC-RING HAMILTONIAN IN THE

l = 0-BOUND-STATE BASIS

The azimuthal motion of ring-confined Dirac particles is
described by Eq. (16a). Here we analyze the structure of its
2 × 2 sub-block matrices (16b).

The diagonal blocks having n = n′ are Hermitian matrices
and can therefore be written as a superposition of Pauli matrices
ηj that are acting in the 2 × 2 subspace spanned by l = 0
eigenstates |�(τ,±n)

0 〉,

(
H(τ )

l

)
n,n

=
3∑

j=0

�
(τ,n)
j (l) ηj . (B1)

The most general expression for the coefficients �
(τ,n)
lj are

�
(τ,n)
0 (l) = 1

2

(
E

(τ,n)
0 +E

(τ,−n)
0 +〈V (τ )

l (r)
〉(τ )
n,n

+ 〈V (τ )
l (r)

〉(τ )
−n,−n

)
,

(B2a)

�
(τ,n)
1 (l) = �e

{〈
V (τ )

l (r)
〉(τ )
n,−n

}
, (B2b)

�
(τ,n)
2 (l) = −�m

{〈
V (τ )

l (r)
〉(τ )
n,−n

}
, (B2c)

�
(τ,n)
3 (l) = 1

2

(
E

(τ,n)
0 −E

(τ,−n)
0 +〈V (τ )

l (r)
〉(τ )
n,n

− 〈V (τ )
l (r)

〉(τ )
−n,−n

)
.

(B2d)
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These expressions simplify considerably in the electron-hole-
symmetric situation ξ = 0;

�
(τ,n)
0,ξ=0(l) = γ l

[〈σ2/r〉(τ )
n,n − τ 〈σ0/(k�r2)〉(τ )

n,n

]
, (B3a)

�
(τ,n)
1,ξ=0(l) = γ l

[〈σ0/r〉(τ )
n,n − τ 〈σ2/(k�r2)〉(τ )

n,n

]
, (B3b)

�
(τ,n)
2,ξ=0(l) = γ l2 〈σ1/(k�r2)〉(τ )

n,n , (B3c)

�
(τ,n)
3,ξ=0(l) = E

(τ,n)
0,ξ=0 + γ l2 〈σ3/(k�r2)〉(τ )

n,n. (B3d)

Treating the electron-hole-asymmetry contribution ∝ξ in
V (τ )

l (r) perturbatively, one can approximate �
(τ,n)
j (l) ≈

�
(τ,n)
j,ξ=0(l) + δ�

(τ,n)
j (l), with corrections given to first order in

small ξ by

δ�
(τ,n)
0 (l) = ξ

(
∂E

(τ,n)
0 /∂ξ

)
ξ=0 + ξ γ l2 〈σ0/(k�r2)〉(τ )

n,n,

(B4a)

δ�
(τ,n)
1 (l) = ξ γ l2 〈σ2/(k�r2)〉(τ )

n,n , (B4b)

δ�
(τ,n)
2 (l) = ξ γ (−τ ) l 〈σ1/(k�r2)〉(τ )

n,n , (B4c)

δ�
(τ,n)
3 (l) = ξ γ (−τ ) l 〈σ3/(k�r2)〉(τ )

n,n . (B4d)

Further analysis is facilitated by substituting the eigenstates
for a hard-wall mass confinement from Eqs. (A7) as the states
between which matrix elements in Eqs. (B3a)–(B3d) and
(B4a)–(B4d) are calculated. It is then useful to define the

quantities

�
(τ,n)
jm (W/R) = 〈σj (W/r)m〉(τ )

n,n , (B5)

as these are functions of the ring aspect ratio W/R. The natural
energy scale of the �

(τ,n)
j (l) is then EW , and terms quadratic in

l are suppressed by a factor 1/(k�W ) � 1 typically. From the
particular form and r dependence of the spinors in Eqs. (A7),
it can be deduced that the leading-order behavior in W/R

is �
(τ,n)
jm (W/R) ∼ (W/R)m for j = 0 and j = 3 (i.e., the

matrix elements involving diagonal Pauli matrices) whereas
�

(τ,n)
jm (W/R) ∼ (W/R)m+1 for j = 1 and j = 2. Also, the

functions�
(τ,n)
jm with j = 0 and 3 (j = 1 and 2) are independent

of (proportional to) τ . Finally, �
(τ,n)
1m (W/R) ≡ 0 identically

because the upper (lower) entry in the eigenspinors given by
Eqs. (A7) is always real (imaginary). Based on these insights,
we parametrize the effective Hamiltonian for azimuthal motion
within subbands with labels ±n in the form given in Eqs. (21),
(22a), and (22b).

Taking the limit W/2 → R in our model yields results that
are directly applicable to mass-confined 2D-Dirac electrons
in circular quantum dots [91]. However, as W/R is not small
in that situation, no hierarchy of magnitudes between matrix
elements (H(τ )

l )n,n′ in Eq. (16a) can be established. Hence,
unlike in the case of quantum rings, we cannot obtain a simple
effective Hamiltonian that accurately describes the azimuthal
motion of 2D-Dirac electrons in a quantum dot.
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