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Polarized excitons and optical activity in single-wall carbon nanotubes
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The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically
by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the
single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure.
The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be
derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized,
left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the
last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated
by exciton calculation. The calculated results are well comparable with the reported measurements. Built on
the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied.
Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic
field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular
polarizations and the helical band structure.
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I. INTRODUCTION

Single-wall carbon nanotubes (SWNTs) are quasi-one-
dimensional nanomaterials that are known for their unique
physical properties [1–5]. Particularly, a semiconducting
SWNT shows excitonic effect in the absorption and emission
spectra, where the resonance frequency and intensity depend
upon the corresponding geometry and physical environment
[6–17]. The unique properties make semiconducting SWNTs
promising materials for designing future nanoscale photode-
tectors and photoemitters.

The chiral index (n,m) characterizes the geometry and
symmetry of a SWNT. A carbon nanotube is classified as
zigzag if its chiral index is (n,0), armchair if its index is
(n,n), and chiral otherwise. A material is called chiral if the
material has an enantiomer, which is the mirror image of the
material that is not superposable on its mirror image. Chiral
materials, including chiral SWNTs, are optically active. It
means that the absorption intensities of left-handed circularly
polarized light and right-handed circularly polarized light
through the material are different, and circular dichroism
(CD) is a spectroscopy to measure the difference [18–21].
Today, thanks to the progress of experimental technologies,
high-purity single-chirality enantiomers of SWNTs have been
separated and chiral-specified CD spectra have been measured
[22–27]. It is now possible to use the CD spectra to benchmark
the theoretical studies. Challenging issues of optical activity
in SWNTs can be asked and answered.

An important issue of optical activity in SWNTs is to
identify different contributions of polarized excitons to the
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CD spectrum. It is known that the optical transitions of
SWNTs are known to be highly anisotropic [15,28,29]. The
electromagnetic-field interaction that polarized parallelly and
perpendicularly to the nanotube axis give distinct spectra.
From the point of view of band-to-band transition under
zone-folding approximation or effective-mass approximation,
the vertical transition between the N th valence band beneath
and the N th conduction band above the Fermi energy can be
assigned as the parallel-polarized transition, while the vertical
transitions between the N th valence band and the (N ± 1)th
conduction bands can be assigned as the cross-polarized (also
known as perpendicular-polarized) transitions [15,28,29]. For
semiconducting SWNTs, the lowest resonant energy of cross-
polarized transition (E12) is slightly higher than the middle
of the first (E11) and second (E22) lowest resonant energies
of parallel-polarized transitions [28–30]. Theoretical studies
have predicted that the cross-polarized transition is sensitive
to electron-electron interaction, electron-hole asymmetry, and
environmental interaction in SWNTs [31–33], thus becoming
a useful tool to analyze the electronic structures and excitonic
effects of SWNTs [34,35]. For CD spectrum, the resonant
energies of polarized excitons can still be interpreted by the
band-to-band polarized transitions [27], but the signs and
intensities in CD spectrum are less explicit to understand and
study. An alternative point of view might be wanted.

Another issue of optical activity in SWNTs is the magnetic-
field effects. Particularly, by applying a uniform magnetic field
parallel to the axial direction of an SWNT, the electronic states
change with varying magnetic flux due to Aharonov-Bohm
effect [36–40]. Although the band structure of a small-radius
SWNT can have a measurable change only by imposing
extremely high magnetic field, the Aharonov-Bohm effect can
be observed in optical spectra as the emerging dark-exciton
resonance transitions with an experimentally accessible
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magnetic field due to the inversion symmetry breaking. While
the emerging dark exciton has been studied extensively in
theoretical simulation [38–40] and experimental measurement
[41–45] of absorption spectrum and photoluminescence, the
Aharonov-Bohm effect is also expected to be observed in CD
spectrum. Therefore, a new question can be asked: What is the
optical activity of dark-exciton states in SWNTs. An answer
to the question may help us to advance the knowledge of the
Aharonov-Bohm effect in SWNTs.

Except the emerging dark exciton, Faraday rotation in
SWNTs has also been predicted to be observed under an axial
magnetic field in CD spectrum of cross-polarized exciton [46–
49] due to an interband Faraday effect [50–52]. In such cases,
the difference in right-handed and left-handed circularly-
polarized transitions can be attributed to the magnetic-field-
induced band structure distortion and handedness-selected
transitions, instead of the intrinsic chirality of the SWNT.
Therefore, the Faraday rotation dispersion can provide extra
information on the relationship between the optical activity
and the electronic structure. The handedness of cross-polarized
excitons can also be identified.

Some theoretical studies on optical activity and CD spec-
trum of SWNTs have been published [53–56]. However, the
excitonic effect on the CD spectrum has only been discussed
limitedly, and to describe the CD spectra of SWNTs accurately
is still difficult. In most theoretical studies, the band structures
and exciton spectra of chiral SWNTs are calculated under
translational symmetry with zone-folding approximation or
effective-mass approximation. Despite that the exciton binding
energy and the parallel-polarized transitions can be simulated
well [13,15], these methods ignore the intrinsic helical sym-
metry (also known as screw symmetry) of chiral SWNTs, thus
either oversimplifying the geometrical information to study
chirality-sensitive properties or complicating the mathematics
for simulating CD spectrum. In fact, if the helical symmetry
is used to analyze the geometry of a chiral SWNT, we can
find that a chiral SWNT can be seen as several interconnected
helical polyacetylenes. Helical polymers are one of the most
extensively studied optically-active materials since DNA and
polypeptide are sorted into this category [57], and most
theoretical studies take helical symmetry as a start to study the
optical spectra [58–62]. Therefore, it is reasonable to assume
that SWNTs can also be studied and analyzed with the same
methodology and interpretation. In some reports, the helical
symmetry has been applied to the study of band structures
[11,63–66] and optical spectra of SWNTs [11]. However, the
applications to cross-polarized transition and CD spectrum
have not been discussed. Without using helical symmetry, the
unit cell of a chiral SWNT normally contains too many atoms
to make the calculation of the exciton spectra efficiently and
accurately. It is a gap we intend to fill.

A helical symmetry can be realized as a finite distance of
translation accompanying with a finite angle of rotation. The
structure of a helical polymer which fulfills helical symmetry
can be described by the coordinate

R(r) = ρ0 cos (rφH)e1 + ρ0 sin (rφH)e2 + rzHe3, (1)

where e1, e2, e3 are the basis vectors of Cartesian coordinate,
ρ0 is the radius of the helix, φH and zH are the helical angle and
the displacement, which are the rotational part and translational

part of a helical transformation, and r is a parameter indicating
the position in the spiral. For a function of the position
vector f (R), by the Born-von-Karman boundary condition
R(r + N ) = R(r), the Fourier transform is given by

f̃κ = 1√
N

N−1∑
r=0

f (R(r)) exp (−iκr), (2)

where κ = 2πK/N (with K = 0,1, · · · ,N − 1) is called he-
lical momentum. Similar to the quasimomentum in solid-state
physics, helical momentum can be applied to the interpre-
tation of band structures and optical transitions of helical
polymers. By the Fourier transform, the selection rule of
parallel-polarized transition can be found as

�κ = 0, (3)

and the selection rule of cross-polarized transition can be found
as

�κ = ±φH. (4)

The first selection rule is known as the vertical transition in
energy band theory, which is well studied in the extended
system. The second selection rule, however, is less recognized
in the theoretical studies of the optical spectra of SWNTs,
since the rule is absent in conventional translational-symmetry
paradigm. In fact, the selection rule was proposed as early
as 1953 by Higgs [58], right after the helical structure of
polypeptide was found [57]. The selection rule has been
rediscovered and applied to the simulation of the CD spectra
of helical polymers [59–62]. The selection rule is not only
conveniently providing a useful method to calculate the cross-
polarized transition in exciton spectra, but also showing an
intriguing structure-property relationship of helical structure.
With the background, the helical symmetry and the selection
rules might be worth a review as a renewed concept in the
research of SWNTs.

In the present study, the polarized excitons in absorption and
CD spectra of chiral SWNTs are simulated and studied by using
helical-rotational symmetry on the band structure calculation
under Hartree-Fock approximation and the exciton calculation
under singly-excited configuration interaction approximation.
We use the Pariser-Parr-Pople (PPP) Hamiltonian [32,67–69],
which is a pure π -electron model with both short-range and
long-range Coulomb interaction, to simulate the electronic
structures. At least 3600 two-atomic unit cells are used to
construct the helical band structures and the exciton wave
functions. Each helical band structure is characterized by a
helical momentum (κ) and a circumferential angular momen-
tum (λ). According to the selection rules derived, the optical
transitions can be assigned as the parallel-polarized transition
(�κ = 0, �λ = 0), left-handed circularly-polarized transition
(�κ = φH, �λ = 1), and right-handed circularly-polarized
transition (�κ = −φH, �λ = −1). The combination of the
two handed circularly-polarized transitions gives the cross-
polarized transition. By this scheme, the interplay of polarized
excitons, optical activity, and magnetic-field effects in SWNTs
is studied and discussed.

The paper is organized as follows. In Sec. II A, the Hamil-
tonian is written in second quantized form, and the way to
include the static magnetic field interaction is introduced.
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Then the light-matter interaction of the model and the formula
to calculate the absorption and CD spectra are introduced
in Sec. II B. In Sec. II C, we give the method to generate
the coordinate of each lattice point in a SWNT by using
helical-rotational construction. By using the coordinate, in
Sec. II D, the helical band structure of a SWNT with an axially
uniform magnetic field is solved analytically. In Sec. II E,
the dipole-moment and magnetic-moment matrix elements
of both the parallel-polarized and cross-polarized transitions
are derived. The selection rules are shown. In Sec. II F,
the formulations of Hartree-Fock equation and singly-excited
configuration interaction are given. In Sec. III, the calculated
results are presented. In Secs. III A and III B, the simulated
absorption and CD spectra are compared with the experimental
measurements. The Aharonov-Bohm effect of dark exciton
is discussed in Sec. III C, and the Faraday effect on the
cross-polarized transition is discussed in Sec. III D. Finally,
in Sec. IV, the present paper is concluded.

II. THEORY

A. Hamiltonian

The tight-binding Hamiltonian for π -electron systems with
orthogonal bases is also known as Hückel Hamiltonian and is
very useful in the study of the physical properties of conjugated
systems [69]. With the lattice basis, the Hamiltonian in the
presence of an external magnetic field can be written as

ĤTB =
∑

R1μ,R2ν

T̂R1μ,R2ν, (5)

T̂R1μ,R2ν = eie
∫ R1μ

R2ν
dr·A(r)

∑
α

hR1μ,R2ν â
†
R1μαâR2να, (6)

where â
†
R1μα/âR1μα is the Fermi creation/annihilation operator

of an electron at site μ of unit cell at position R1 with spin
index α = {↑,↓}, R1μ = R1 + dμ is the position vector, with
R the position vector of the unit cell and dμ the basis vector
inside the unit cell, A(r) is the vector potential, e is the charge,
and the hopping term

hR1μ,R2ν =

⎧⎪⎨
⎪⎩

−t, R1μ,R2ν nearest neighbor

−t ′, R1μ,R2ν next nearest neighbor

0, otherwise

with t and t ′ the nearest-neighbor and next-nearest-neighbor
hopping coupling. The exponential part is called the Peierls
phase factor [70]. The Fermi operators fulfill the anticommu-
tation relation {âR1μα,â

†
R2νβ

} = δR1R2δμνδαβ , which implies the
orthogonality of the basis. If the π -electron system interacts
with a uniform magnetic field, by using symmetric Coulomb
gauge, the vector potential is given by

A(r) = − 1
2 (r − R0) × B, (7)

with B and R0 being the uniform magnetic field and the
gauge origin, respectively. Set R0 = 0, the phase factor can
be rewritten as

ie

∫ R1μ

R2ν

dr · A(r) = −ie

2
(R1μ × R2ν) · B. (8)

The PPP Hamiltonian adds the Coulomb interaction to
the tight-binding Hamiltonian ĤPPP = ĤTB + V̂C, where the
Coulomb interaction is given by [32,69]

V̂C = U
∑
R,μ

(
n̂Rμ↑ − 1

2

)(
n̂Rμ↓ − 1

2

)

+ 1

2

∑
R1μ �=R2ν

e2Q̂R1μQ̂R2ν

εr

√
(e2/U )2 + |R1μ − R2ν |2

, (9)

where n̂Rμα = â
†
RμαâRμα is the site electron density, and

Q̂Rμ = ∑
α n̂Rμα − 1 is the site charge density. The parameter

U is on-site Coulomb coupling, εr is a dielectric constant
which parametrizes environmental interaction and σ -electron
polarization, and e2 = 14.397 eV Å is the coupling strength.

B. Optical absorption and circular dichroism

To calculate the optical absorption and CD of SWNTs, we
use standard multipole-moment expansion of light-matter in-
teraction to derive the (electric) dipole-moment and magnetic-
moment operators under tight-binding approximation and then
use the operators and sum-over-state formula to find the
transition intensities. The light-matter interaction adding to
the electronic Hamiltonian under tight-binding basis (Ĥ′ =
ĤPPP + V̂LM) can also be written as the Peierls phase factor
of the hopping interaction [71]. The light-matter interaction is
written

V̂LM =
∑

R1μ,R2ν

[eie
∫ R1μ

R2ν
dr·AL(r) − 1]T̂R1μ,R2ν, (10)

where AL(r) is the vector potential of light, given that the
Coulomb gauge is chosen. The vector potential can be written
as the plane-wave expansion

AL(r) =
∑

I

∫
d3k

(2π )3
eI ÃI

L(k)e−ik·(r−R0), (11)

where eI is polarization vector, and R0 is the gauge origin.
Although SWNTs are thought to be one-dimensional solids
and the electromagnetic field interaction should be nonlocal,
the wavelength of the characteristic electronic absorption is on
the scale of a few hundred nanometers and is long enough
that SWNTs shorter than the length can still be treated as
solids. Therefore, the long-wavelength approximation can still
be applied and the nonlocal effect can be ignored. By the
expansion of the exponential factor in Eq. (11),

e−ik·(r−R0) = 1 − ik · (r − R0) + · · · , (12)

and set R0 = 0, the light-matter interaction can be given by the
dipole-moment approximation,

V̂LM � −μ̂ · EL − m̂ · BL + · · · , (13)

whereEL = −dAL/dt is the transverse electric field andBL =
∇ × AL is the magnetic field. The dipole-moment operator is
[72,73] (also see the Supplemental Material [74])

μ̂ = e
∑
Rμ

∑
α

Rμâ
†
RμαâRμα, (14)
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and the magnetic-moment operator is

m̂ = ie

2

∑
R1μ,R2ν

(R1μ × R2ν)T̂R1μ,R2ν . (15)

The magnetic-moment operator can also be found by m̂i =
−∂ĤTB/∂Bi , except that the magnetic-moment operator is
induced by static field instead of light. The magnetic-moment
operator derived from static-field interaction and light-matter
interaction share the same formula, but the difference should
be noticed. It is also needed to note that the magnetic-moment
approximation is no longer gauge invariant. With different
gauge origin R0, the calculated spectra would be different.
However, it is a reasonable approximation to define R0 at a
point on the axis of an SWNT, since the magnetic moment
can be seen as the inductive magnetic field generated by the
electric current flowing spirally as an electric coil along the
SWNT. The effect of gauge dependence is weak and can be
ignored in this paper.

Under the light-matter interaction, the first-order variations
of the polarization (μ̃ ≡ 〈μ̂〉) with respect to the electromag-
netic field is [18–21]

μ̃I (ω) =
∑

J

αIJ (−ω; ω)EJ
L (ω)

+ iω
∑

J

GIJ (−ω; ω)BJ
L (ω) + · · · , (16)

where αIJ (−ω; ω) is the electric polarizability, GIJ (−ω; ω)
is the electric-magnetic polarizability, and I,J = {1,2,3} indi-
cates the basis of the Cartesian coordinate. By time-dependent
perturbation theory, the linear polarizability is given by the
sum-over-state expression [71]

αIJ (−ω; ω) =
∑
M

(
μI

0MμJ
M0

ωM0 − ω
+ μJ

0MμI
M0

ω∗
M0 + ω

)
, (17)

where μI
0M = 〈�0| μ̂I |�M〉, ωM0 = EM − E0 − iη, with EM

the eigenenergy of the Mth excited state, E0 the ground
state energy, and η the line-broadening factor. The electric-
magnetic polarizability can also be given by the sum-over-state
expression [18,21]

GIJ (−ω; ω) =
∑
M

1

ωM0

[
Im

(
μI

0MmJ
M0

)
ωM0 − ω

− Im
(
mJ

0MμI
M0

)
ω∗

M0 + ω

]
,

(18)

where mI
0M = 〈�0| m̂I |�M〉 = −mI

M0. By using Eq. (16) and
Maxwell’s equation, the dependence of reflection index with
the two polarizabilities can be found, and then the absorption
intensity and the rotatory power can be related to them.

Suppose that a SWNT is aligned vertically alone with the
e3 direction. The parallel-polarized transition in the absorption
spectrum is given by

εPP(ω) = ν0ω Im α33(−ω; ω), (19)

with ω � 0, where ν0 = 1.085 × 1011 × 8065.544 × 10−16 is
a factor to scale the absorption intensity by the unit of oscillator
strength density, within the formula the unit of energy being
eV, the unit of length being Å, and the charge |e| = 1 being

presumed [69]. The cross-polarized transition in the absorption
spectrum is given by

εCP(ω) = ν0ω Im[α11(−ω; ω) + α22(−ω; ω)]. (20)

The parallel-polarized transition in CD spectrum is given by
[18,19,21]

�εPP(ω) = ν0ω
2

c0
Im G33(−ω; ω), (21)

where c0 is the velocity of light and is approximated by
c0 � 137. With the formula, the CD spectrum is measured
by rotational strength density. On the other hand, the cross-
polarized transition in CD spectrum can be separated into
two major contributions �εCP(ω) = �εCP,1(ω) + �εCP,2(ω),
where (see the Supplemental Material [74])

�εCP,1(ω) = ν0ω
2

c0
Im[G11(−ω; ω) + G22(−ω; ω)], (22)

�εCP,2(ω) = ν0ωRe[α12(−ω; ω) − α21(−ω; ω)]. (23)

The second contribution is normally known as the Faraday
effect. In the contribution, �εCP,2(ω) can be measured only
if both the polarization vectors have components on the
surface spanned by e1 and e2, and there exist magnetic
fields or other time-reversal-symmetry-breaking interactions
[48,50–52]. While the rotational strength of CD spectrum is
only contributed from Eq. (22) in zero magnetic field, the
contribution from Eq. (23) usually becomes dominant for most
materials with increasing finite magnetic field due to the factor
of c0 difference between the two formulas.

C. Symmetry and geometry of SWNTs

The chiral vector of an SWNT with chiral number (n,m) is
defined as Ch = na1 + ma2, where a1 and a2 are the lattice vec-
tors. The length of the chiral vector |Ch| = a0

√
n2 + m2 + nm

is also the circumference of the SWNT. The translational
vector is given by T = t1a1 + t2a2, with t1 = (2m + n)/dR and
t2 = −(2n + m)/dR , where dR is the greatest common divisor
(GCD) of (2n + m,2m + n) [1]. Although the translational
vector and the chiral vector can be used to generate the
coordinates of all lattice points and to construct the band
structures, it is much simpler and computationally less costly
to work within the helical-rotational construction [63–65].
The basis of the helical-rotational construction consists of the
helical vector H and the rotational vector given by C [63]

τ 1 = H = h1a1 + h2a2, (24)

τ 2 = C = n

d
a1 + m

d
a2, (25)

where d is the GCD of the chiral number (n,m). The helical
index (h1,h2) is chosen to be the minimum integer numbers
to fulfill |h1m − h2n| = d with h1,h2 � 0. In the following
paragraphs of this section, we will give details of how to
generate the lattice points by using the helical-rotational
construction, and in Sec. II D we will use these symmetry
operations to construct the band structure. In Fig. 1, the vectors
of a (6,4)-SWMT are shown. The dash-line indicates the route
that a lattice point will pass in the direction along the helical
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FIG. 1. Symmetry and geometry of unrolled (up) and rolled-up
(down) (6,4)−SWNT.

vector. The dash-dot line partitions the unrolled SWNT into
two equivalent cells which can be transformed to each other
by the twofold rotational symmetry operation.

In order to describe the geometry and derive the dipole-
moment/magnetic-moment matrix elements of SWNTs, we
need to know the position vector Rμ of each lattice point.
To do so, we first turn to find the position vector Rμ of
each lattice point in an unrolled SWNT, which is actually a
plane graphene sheet as shown in Fig. 1. After finding each
Rμ, we can use the coordinate chart of cylindrical surface to
find the one-to-one map of the lattice points on the unrolled
SWNT to the lattice points on the rolled-up SWNT, and then
we can generate the position vector Rμ.

The position vectors of lattice points in an unrolled SWNT
Rμ, with μ = {A,B} indicating the two atoms in a unit cell,
are given by RA = R + b0 and RB = R, where R is the
position vector of a unit cell and b0 is the basis vector linking
the two carbon atoms in the unit cell. The position vector can be
defined by using lattice-vector construction R(p,q) = pa1 +
qa2 or using helical-rotational construction R(r,s) = rτ 1 +
sτ 2. By a direct substitution, the position vector in lattice-
vector construction can be transformed to the one in helical-
rotational construction by

R(r,s) = p(r,s)a1 + q(r,s)a2

=
(
rh1 + sn

d

)
a1 +

(
rh2 + sm

d

)
a2. (26)

The reversed transformation is

R(p,q) = r(p,q)τ 1 + s(p,q)τ 2

= pm − qn

D
τ 1 + d(h1q − h2p)

D
τ 2, (27)

where D = h1m − h2n. We can find D = ±d for different
SWNTs and chosen helical indices.

By using the coordinate chart of the cylindrical surface, the
position vectors of the lattice points in a rolled-up SWNT can
be parametrized by the lattice-vector construction as

R(p,q) = ρ0 cos(pφ1 + qφ2)e1 + ρ0 sin(pφ1 + qφ2)e2

+ (pz1 + qz2)e3, (28)

where ρ0 = |Ch|/2π is the radius of the tube, φσ =
2πa0 cos �σ/|Ch| and zσ = a0 sin �σ , with �1 and �2 being
chiral angles and given by cos �σ = Ch · aσ /(|Ch||aσ |). By
using the transformation in Eq. (26), the position vector of the
lattice point parametrized by the helical-rotational construction
can be found as

R(r,s) = ρ0 cos (R · φ)e1 + ρ0 sin (R · φ)e2 + rzHe3,

(29)

where

φ = φH

2π
g1 + φR

2π
g2, (30)

and

φH = π
h1(2n + m) + h2(2m + n)

n2 + m2 + nm
, (31)

zH =
√

3a0D

2
√

n2 + m2 + nm
, (32)

φR = 2π

d
(33)

are helical angle, displacement, and rotational angle, respec-
tively. The reciprocal-lattice vectors gj are defined by [65]

τ i · gj = 2πδij , (34)

such that R · φ = rφH + sφR. The formula of position vector
in Eq. (29) is a very simple method to generate the coordinates
of all the lattice points of RB(r,s) with r = 0,1, . . . ,N − 1
and s = 0,1, . . . ,d − 1. To generate the coordinate of each
RA, we can use b0 = −(a1 + a2)/3 and write RA(p,q) =
R(p − 1/3,q − 1/3). By using the reversed transformation
in Eq. (27), the position vector RA(r,s) = R(r − (m −
n)/(3D),s − d(h1 − h2)/(3D)) is then found. Finally, we map
RA(r,s) to RA(r,s) by Eq. (29), and then the coordinate of each
lattice point is found.

D. Helical band structure

Since the unrolled coordinate R and the rolled-up coor-
dinate R have one-to-one correspondence, the tight-binding
Hamiltonian for an SWNT with the uniform magnetic-field
interaction can be rewritten in the unrolled coordinate as

ĤTB = −t
∑
Rα

∑
σ={0,1,2}

exp (iχσ )â†
R+bσ −b0,AαâRBα

− t ′
∑
Rμα

∑
ς={1,2,3}

exp(iχ ′
ς )â†

R+aς ,μαâRμα

+ H.c., (35)

where χσ and χ ′
ς are the Peierls phase factors, b0 = −(a1 +

a2)/3, b1 = b0 + a1, b2 = b0 + a2 are the vectors pointing to
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the three nearest-neighbor sites, and ±a1, ±a2, ±a3 = ±(a1 −
a2) are the vectors pointing to the six next-nearest-neighbor
sites. By the coordinate transformation in Eq. (27), the lattice
vectors based on helical-rotational construction are

a1 = m

D
τ 1 − dh2

D
τ 2, a2 = − n

D
τ 1 + dh1

D
τ 2. (36)

On the derivation of the Peierls phase factor under an axial
magnetic field, we can take advantage of that

e3 · (R1μ × R2ν) = −ρ2
0 sin[(R1μ − R2ν) · φ]. (37)

With the axial magnetic field B = Be3, the phase
factors become χσ = (eρ2

0B/2) sin (bσ · φ), and χ ′
ς =

(eρ2
0B/2) sin (aς · φ). While the phase factors are independent

of R, which contains the local geometrical information, the
axial magnetic field only contributes a global phase shift
which is proportional to the cross section of the nanotube πρ2

0
to the hopping couplings. It is a feature of Aharonov-Bohm
effect that the phase shift is nonlocal [36].

With the periodic boundary conditions R(r + N,s) =
R(r,s) and R(r,s + d) = R(r,s), the Fermi operator can be
transformed into the reciprocal space of the lattice vectors
based on the helical-rotational construction by the discrete
Fourier transform

âRμα = 1√
N

∑
k

eik·Rμ âkμα, (38)

â
†
Rμα = 1√

N
∑

k

e−ik·Rμ â
†
kμα, (39)

where the wave vector is given by

k = κ

2π
g1 + λ

d
g2, (40)

with κ = 2πK/N with K = 0,1, . . . ,N − 1 the helical mo-
mentum and λ = 0, . . . ,d − 1 the circumferential angular
momentum, and N = Nd is the total number of lattice points.
Then the tight-binding Hamiltonian can be rewritten as

ĤTB =
∑
μν,α

∑
k

hk,μν â
†
kμαâkνα, (41)

where hk,μν is the single-particle Hamiltonian matrix in k space
and the matrix elements are

hk,AA = hk,BB = −2t ′
∑

ς={1,2,3}
cos(k · aς − χ ′

ς ), (42)

hk,AB = h∗
k,BA = −t

∑
σ={0,1,2}

exp (−ik · bσ + iχσ ). (43)

It is found that the next-nearest-neighbor hopping coupling
contributes equivalently to the diagonal term of the Hamilto-
nian matrix. This term can be seen as a sinusoidal function
added to the band structure, and it breaks the electron-hole
symmetry.

By an unitary transformation of the creation and annihila-
tion operators into crystal-orbital basis,

âkμα =
∑

i

uki,μĉkiα, â
†
kμα =

∑
i

u∗
ki,μĉ

†
kiα, (44)

where uki,μ is called crystal-orbital coefficient, the tight-
binding Hamiltonian in the basis becomes

ĤTB =
∑
iα

∑
k

εki ĉ
†
kiαĉkiα. (45)

The energy band εki and the transformation parameter uμi(k)
can be obtained by solving the secular equation

hkuki = εkiuki , (46)

where the underline indicates that the symbol is a matrix or
column vector. The band energy is given by

εk± = hk,AA ± t
√

3 + 2(cos θk1 + cos θk2) + 2 cos(θk1 − θk2),

(47)

where θk1 = (κm − 2πλh2)/D − χ1 + χ0 and θk2 = −(κn −
2πλh1)/D − χ2 + χ0. The condition of the zero band gap is
θk1 = −θk2 = ±2π/3. The condition can be fulfilled only if
the circumferential angular momentum is given by

λ = ±n − m

3
+ n(χ1 − χ0) − m(χ2 − χ0)

2π
. (48)

Since λ is an integer, the metallicity condition that |n − m| is
divided by three can be found without the axial magnetic field.
The axial magnetic field might play the role to open or shrink
the band gap of a SWNT.

Similar helical band structures of SWNTs under an axial
magnetic field had been derived by Lu [37]. However, there
is a subtle difference between Lu’s formula and Eq. (47).
In Lu’s derivation, the integration in Peierls phase factor is
calculated by pure geometrical argument, instead of using
designated atomic position as in the present paper. Even though
the two derivations have the difference, the qualitative results
are basically the same.

Figures 2(a), 2(b), and 2(c) are the three examples of
helical band structures and their corresponding density of
state. Different to conventional band structures of SWNTs, the
helical band structures are indexed by the helical momentum κ ,
and the circumferential-angular momentum λ can be identified
as shown in the figure. One thing worth noting is that the λ = 0
band of (6,4)−SWNT is completely identical to theλ = 0 band
of (9,6)−SWNT under tight-binding approximation. Actually,
it is not difficult to show by Eq. (47) that the SWNTs whose
chiral indices have the same factor-number pair, in our case
(3,2) for (6,4) and (9,6), have at least one identical helical
band. Therefore, it also can be shown that the λ = 0 band in
both SWNTs is identical to the helical band of (3,2)−SWNT.
Under an extremely large axial magnetic field of 3000 Tesla,
as shown as the dot lines in Fig. 2, the helical band struc-
tures show helical-momentum dependent and circumferential-
angular-momentum dependent variations, which cause band
gap opening or closing. The clear dependence makes the
helical band structure a good tool to analyze the single-electron
properties of SWNTs.

E. Matrix elements and selection rules

To simplify the derivation, we transform the coordinate
system by the Jones vectors

e+ = e1 + ie2, e− = e1 − ie2, (49)
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FIG. 2. Helical band structure and density of state of (a)
(6,5)−SWNT with φH/(2π ) = −0.18, (b) (6,4)−SWNT with
φH/(2π ) = 0.30, and (c) (9,6)−SWNT with φH/(2π ) = 0.20 calcu-
lated by the tight-binding approximation with the hopping couplings
are t = 2 eV and t ′ = 0 eV without (solid line) and with (dash line)
an axial magnetic field of 3000 Tesla.

which correspond to the right-handed and left-handed circular
polarization vectors, with e3 remaining a basis. The position
vector is then separated as axial part (R‖) and circumferential
part (R±) as

R = R+e+ + R−e− + R‖e3, (50)

R‖(r,s) = rzH, R±(r,s) = ρ0

2
e∓iR·φ . (51)

The electric dipole-moment operator and magnetic-moment
operator can also be decomposed by a linear combination of
the axial part (μ̂‖, m̂‖) and circumferential part (μ̂±, m̂±). The
axial dipole-moment operator can be expressed as

μ̂‖ = e

N
∑
Rμ,α

∑
kq

(e−iq·RμR‖
μ)â†

kμαâk−q,μα

= e
∑
kμ,α

â
†
kμα(i∇‖

k)âkνα

= e
∑
ij,α

∑
k

[ξ ‖
kij ĉ

†
kiαĉkjα + δij ĉ

†
kiα(i∇‖

k)ĉkiα], (52)

where ξ
‖
kij = iu†

ki∇‖
kukj is the axial dipole-moment matrix

element, and ∇‖
k = zH(∂/∂κ). In the derivation of the second

line in Eq. (52), we have used i∇‖
q(e−iq·Rμ ) = e−iq·RμR‖

μ

and (1/N )
∑

R e−iq·Rμ = δq0. In the continuous limit with
the summation replaced by integration,

∑
q → ∫ dq

2π
, and the

Kronecker’s delta by the Dirac delta, δq0 → 2πδ(q), we can
obtain∑

q

(∇‖
qδq0)â†

kμαâk−q,μα → −
∫

dqδ(q)â†
kμα∇‖

q âk−q,μα

=
∫

dqδ(q)â†
kμα∇‖

k âk−q,μα

= â
†
kμα∇‖

k âkμα (53)

by the integration by parts. The second line of the derivation
is merely a change of variable. These techniques are applied
repeatedly in the derivations of matrix elements. The first term
in the last line in Eq. (52) corresponds to the electron-hole
excitation, while the second term stands for the electron or
hole transport. Note that, for standard linear spectra, only the
first term contributes to the transition amplitude. The selection
rule for the parallel-polarized transition is thus given by

�κ = �λ = 0, (54)

which is also the selection rule of vertical transition. It is also
straightforward to derive the circumferential dipole-moment
operator

μ̂± = e

N
∑
Rμ,α

∑
kq

(e−iq·RμR±
μ )â†

kμαâk−q,μα

= e
∑
ij,α

∑
k

ξ±
kij ĉ

†
k∓φ,iαĉkjα, (55)

where ξ±
kij = (ρ0/2)u†

k∓φ,iukj is the circumferential dipole-
moment matrix element. The corresponding selection rules for
the cross-polarized transition are found

�κ = ±φH, �λ = ± d

2π
φR = ±1. (56)

The selection rules reflect the intrinsic helical-rotational sym-
metry of the SWNTs and the momentum transfer of the
optical transitions. Based on the coordinate system, the se-
lection rules with two opposite signs can be assigned as left-
handed circularly-polarized transition (�κ = φH, �λ = 1)
and right-handed circularly-polarized transition (�κ = −φH,
�λ = −1).

The axial magnetic-moment operator can be found by using
Eq. (15) and Eq. (37) as

m̂‖ = i
etρ2

0

2
e3

∑
kα,σ

sin (bσ · φ)e−ik·bσ +iχσ â
†
kAαâkBα

− i
et ′ρ2

0

2
e3

∑
kμα,ς

sin(aς · φ)e−ik·aς +iχ ′
ς â

†
kμαâkμα + H.c.

= e
∑
ij,α

∑
k

l
‖
kij ĉ

†
kiαĉkjα, (57)

where l
‖
kij = (ρ2

0/4)u†
ki(hk+φ − hk−φ)ukj is the magnetic-

moment matrix element. Finally, after some straightforward
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algebra, the circumferential magnetic-moment operator is
derived as

m̂± = e
∑
ij,α

∑
k

l±kij ĉ
†
k∓φ,iαĉkjα

+ e
∑
ij,α

∑
k

[
π±

kij

(∇‖
k∓φ ĉ

†
k∓φ,iα

)
ĉkjα

+ π̃±
kij ĉ

†
k∓φ,iα(∇‖

k ĉk,jα)
]
, (58)

where

l±kij = ∓i
ρ0

4

[(∇‖
k∓φu

†
k∓φ,i

)
hk∓φukj

+u
†
k∓φ,ihk

(∇‖
kukj

)]
, (59)

π±
kij = ∓i

ρ0

4
u
†
k∓φ,ihk∓φukj , (60)

π̃±
kij = ∓i

ρ0

4
u
†
k∓φ,ihkukj . (61)

Again, as in the case of axial dipole-moment operator, only
the first term of the circumferential magnetic-moment operator
contributes to linear spectra. Examining these operators, it is
apparent that the selection rules of the polarized transitions in
the CD spectrum are the same as the ones in the absorption
spectrum.

F. Coulomb interaction and exciton calculation

In the presence of the Coulomb interaction among electrons,
the band energies and crystal orbital coefficients are altered. In
the present paper, the ground-state wave function is approxi-
mated by the Hartree-Fock configuration |�HF〉, and the band
energies and the crystal orbital coefficients are solved by the
Hartree-Fock equation [75]

F kuki = εkiuki . (62)

The Fock matrix is written by

Fk,μν = hk,μν − 1

N
∑

q

pk−q,μνVq,μν

+ δμν

(
wμ + 2

N
∑

q

∑
λ

V0,μλpk−q,λλ

)
, (63)

with wμ = −U/2 − ∑
ν V0,μν , and the Coulomb-integral ma-

trix is

Vq,μν = δμνU +
∑

R1μ−R2ν ( �=0)

e−iq·(R1μ−R2ν)

× e2

εr

√
(e2/U )2 + |R1μ − R2ν |2

. (64)

The single-particle density matrix is given by p
k

= ukvu
†
kv ,

with v indicating valence band. As convention, a self-
consistent field calculation is supposed to be designed to solve
the Hartree-Fock equation.

The excited state is approximated by a superposition of the
singly-excited configuration state functions [76],

|�M〉 =
∑
kq

Ckcv,M (q)
1√
2

[
ĉ
†
k+q,c↑ĉkv↑ + ĉ

†
k+q,c↓ĉkv↓

] |�HF〉 ,

(65)

where subscripts c and v denote conduction and valence bands,
respectively. The excitation energy can be calculated by the
eigenvalue problem,

�(q)CM (q) = ωM (q)CM (q), (66)

where ωM (q) is the Mth excitation energy. The excitation
matrix is given by

�kcv;k′cv(q) = δkk′(εk+q,c − εkv) + 1

N Kkcv;k′cv(q), (67)

where the kernel matrix is

Kkij ;k′i ′j ′(q) =
∑
μν

[
2u∗

k+qi,μukj,μuk′+qi ′,νu
∗
k′j ′,νVq,μν

−u∗
k+qi,μuk′+qi ′,μukj,νu

∗
k′j ′,νVk−k′,μν

]
.

(68)

The first term of the kernel matrix is known as exchange
interaction and the second term is known as direct Coulomb
interaction. With the selection rules given in Sec. II E, we only
need to diagonalize the excitation matrix with q = 0,±φ.

To simulate the optical spectra, we need to know how
to solve the axial dipole-moment matrix element ξ

‖
kij and

circumferential magnetic-moment matrix element l±kij under
Hartree-Fock approximation. The computation involves the
derivative of the crystal orbital coefficient ∇‖

kukj . With the
Hartree-Fock self-consistent field potential, the derivative of
the crystal orbital coefficient is supposed to be solved by
coupled-perturbed Hartree-Fock equations [75] (also see the
Supplemental Material [74]).

A numerical issue needs to be addressed. Since the single-
particle Hamiltonian matrix gives the periodic conditions
hk+g1

= ei2π(m−n)/(3d)hk andhk+g2
= ei2π(h1−h2)/3hk, the Fock

matrix, Coulomb-integral matrix, and the crystal-orbital co-
efficient should have the same periodicity with respect to
the helical momentum and the quasiangular momentum. In
numerical calculation, the phase term could be cumbersome to
deal. An alternative formulation which can eliminate the phase
term is to replace the discrete Fourier transform in Eq. (38)
by âRμα = (1/

√
N )

∑
k eik·Râkμα . Note the Rμ in Eq. (38)

is replaced by R. By the formulation, the matrix elements
are needed to rewrite as more complicated forms, but the
implementation is more straightforward.

III. RESULTS AND DISCUSSIONS

In the present paper, we have performed the simulations
on the optical absorption and the CD of chiral SWNTs
with different chiral indices by the PPP Hamiltonian. The
parameters t = 2.0 eV, t ′ = 0.4 eV, U = 11.0 eV, and εr = 2.8
are chosen, except in Fig. 4 that the next-nearest-neighbor
hopping coupling t ′ is varied to discuss its effect. N = 3600
unit cells are used to generate the discrete k space for each
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TABLE I. d0: diameter (Å); Eb: exciton binding energy (eV); E11

and E22: the transition energies (eV) of the first and second bright-
exciton states; f11: oscillator strength per atom of the first exciton
state.

index d0 Ecal
b Ecal

11 f cal
11 Ecal

22 E
exp
b E

exp
11 f

exp
11 E

exp
22

(6,4) 6.83 0.50 1.33 0.069 2.27 1.42b 0.027c 2.13b

(6,5) 7.47 0.46 1.23 0.063 2.15 0.43a 1.27b 0.029c 2.19b

(7,5) 8.17 0.43 1.14 0.058 1.96 0.39a 1.21b 0.016c 1.93b

(8,4) 8.29 0.41 1.12 0.058 2.00 1.11b 2.11b

(9,6) 10.24 0.54 2.36 0.080 4.13 2.24d

aFrom Ref. [9].
bFrom Ref. [6].
cFrom Ref. [10].
dFrom Ref. [8].

calculation, except N = 6000 unit cells are used in Fig. 7 for
ensuring convergence. The spectral line shape in each figure is
described by Lorentz’s function and the integration over each
Lorentz’s function gives the corresponding oscillator/rotation
strength per atom of the transition. The strengths of CD spectra
given by Eq. (22) are rescaled by multiplying a factor of c0 for
comparison.

Table I shows the calculated exciton binding energies,
transition energies, oscillator strengths of the first parallel-
polarized exciton (E11) and the transition energies of the
second parallel-polarized exciton (E22), and the corresponding
experimental values from the literatures. As can be seen in the
table, the optical properties except the oscillator strength of
the SWNTs with different chiral indices can be described well
with the present model and parameters. The large discrepancy
in oscillator strength, however, is expected [69] since we
use the singly-excited configuration interaction method as the
variational exciton wave function. This method is known to
overestimate the oscillator strength up to two- to threefold
due to lack of including the effect of multiexciton excitation.
In some molecular scale simulations, an inclusion of doubly-
excited configuration interaction wave function can circumvent
the discrepancy largely. Besides, ignoring the contribution of
σ -electron polarization to optical transition by PPP Hamil-
tonian is also a reason of overestimating oscillator strength
[69]. In the present study, we will not go further to discuss
the discrepancy and the correction since they are beyond the
scope. As a ad hoc approach, the discrepancy can always be
reduced by empirically scaling the charge coupling strength
|e|2 by a factor, only that we are not doing here.

A. Exciton spectra of (6,5)−SWNT

While we apply both the exciton calculation and helical-
rotational symmetry to the study of polarized excitons and
optical activity in SWNTs, a detailed comparison of the
calculated spectra with the experimental ones might be helpful
to realize the utility and limitation of the present formalism. In
this section, we focus on the exciton spectra of (6,5)−SWNT,
since (6,5)−SWNT is a commonly used model isomer in
both theoretical and experimental studies. In the next section,
calculated results of several SWNTs with different chiral
indices are provided.

FIG. 3. Calculated parallel-polarized (PP) and cross-polarized
(CP) transitions in (a) absorption and (b) CD spectra of (6,5)−SWNT.
In (c), the CD spectra of (6,5)−SWNT and the corresponding enan-
tiomer (11,−5)−SWNT with the combination of parallel-polarized
and cross-polarized transitions are displayed and compared. The
linewidth is 0.05 eV.

In Figs. 3(a) and 3(b), the calculated parallel-polarized
and cross-polarized transitions in absorption and CD spectra
of (6,5)−SWNT are shown. As shown in the figure, the
parallel-polarized transitions in the absorption spectrum show
apparent excitonic characters and well matching with the
reported experimental spectrum [26,27]. For the first four
excitonic transitions, assigned as E11 to E44, the positions of
the peaks and the relative order in oscillator strengths are well
described except that the excitation energies of the third and
forth excitonic transitions are overestimated about 0.25 eV.
The result is acceptable since both the model Hamiltonian
and the methodology are quite simple. Besides the absorption
spectrum, the calculated CD is also well comparable, while the
basic features of the excitonic transitions match roughly with
the assigned transitions from the reports [26,27].

For the cross-polarized transitions in Fig. 3(a), the calcu-
lated absorption spectrum shows unfamiliar feature for the
regime that the frequency is higher than the second exci-
tonic transition. Spectral peaks which are not observed or
obscure in the experimental spectra show strong oscillator
strengths [26,27]. The obscurity of the strong transition in
the experimental spectra can be explained by depolarization
effect. As proposed by Ajiki [36], Ando and Uryu [31], the
cross-polarized excitons are susceptible to the depolarization
effect, which is induced by a depolarization field between plus
and minus charges generated by the light electric field polarized
perpendicularly to the tube axis. This effect causes two results.
First, the Tamm-Dancoff-type approximation, which is the
singly-excited configuration interaction in the present case,
is no longer enough to describe cross-polarized excitons. A
self-consistent-field calculation to include the depolarization
field is supposed to be applied [34]. Second, the cross-polarized
excitons might be sensitive to the surrounding materials such
as surfactants and solvents. A more sophisticated dielectric
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FIG. 4. Calculated cross-polarized transitions in absorption (up)
and CD (down) spectra of (6,5)−SWNT with different next-nearest-
neighbor hopping couplings. The linewidth is 0.02 eV.

screening function might be needed to be designed [35]. While
the present study does not fully consider the two factors, the
overestimation of the strengths of cross-polarized transitions
is unavoidable.

Because the strengths of the low-energy cross-polarized
transitions are weak in comparison with the whole spectrum
in Fig. 3, a rescaled diagram for the low-energy transitions
with narrower spectral linewidth are drawn as the dot-line in
Fig. 4. The calculated lowest two cross-polarized transitions
are at 1.63 eV with barely observable strength and at 2.00 eV
with observable strength. Although normally the lowest-
energy peak is assigned as the experimentally reported E

exp
12 =

1.90 eV transition [30], we suspect that the second one might
be more suitable to be assigned as the observed transition. The
relative strength between the two transitions is one reason.
Another reason can be referred to the corresponding rotatory
transitions in the CD spectrum in Fig. 4, where the rotational
strength of the 2.02 eV transition has an opposite sign with
the second parallel-polarized transition, and this character is
also shown in the experimental spectrum [26,27]. However,
since the depolarization effect is not included in the paper, it
is difficult to assert which assignment is correct.

In Fig. 4, the cross-polarized transitions in absorption
and CD spectra with different next-nearest-neighbor hopping
couplings are simulated and shown. The parallel-polarized
transitions are not shown here since the variation of the next-
nearest-neighbor hopping coupling does not affect the char-
acters. The result is expected. As mentioned in Sec. II D, the
next-nearest-neighbor hopping coupling introduces electron-
hole asymmetry into the band structure by equivalently adding
a sinusoidal function of k to the conduction and valence
band structures. Given the excitation matrix in Eq. (67), the
parallel-polarized exciton, which is given by the selection
rule k = 0, is thus not modified with the asymmetry, and the
cross-polarized exciton, which is given by the selection rule
k = ±φ, is modified. It is interesting to note that, with each
other without the next-nearest-neighbor hopping coupling,
opposite-sign rotatory transitions around 2.02 eV in the CD
are canceled. But within a range of the next-nearest-neighbor
hopping coupling, the transitions are splitting and the rotational
dispersion can be observed.

FIG. 5. Calculated absorption (left) and CD (right) spectra of
SWNTs with different chiral indices. The solid lines are the parallel-
polarized (PP) transitions and the dash lines are the cross-polarized
(CP) transitions. The linewidth is 0.05 eV.

Additionally, we also simulate the CD of (11,−5)−SWNT,
which is conventionally assigned as an enantiomer of
(6,5)−SWNT, and the result is shown in Fig. 3(c). As can be
seen in the figure, the two spectra are similar in characteristic
peaks with opposite signs but are not identical. It is because
the two structures are actually not the exact mirror image of
each other in the present coordinate construction. A small
geometry distortion of (11,−5)−SWNT away from the mirror
image of (6,5)−SWNT exists due to the definition of the basis
vector b0 in the beginning of geometry construction and the
chirality-induced inequivalent length among the three vectors
pointing to three nearest-neighbor sites on a rolled-up SWNT.
As introduced in Sec. II C, the basis vectors of both SWNTs
are assumed to be b0 = −(a1 + a2)/3. However, since the
chiral number “m” of (11,−5)−SWNT is a negative number,
the basis vector of (11,−5)−SWNT has to be changed to
b0 = (−a1 + 2a2)/3 such that the geometry could be ensured
to be the mirror image of the (6,5)−SWNT with the original
definition of b0. Because of the chirality-induced geometry
distortion, the mirror symmetry of two structures is broken. In
Fig. 3(c), the difference of the two spectra is mainly on the
cross-polarized transition around 2.8 eV, and it might imply
that the corresponding exciton is susceptive to small geometry
distortion.

B. Exciton spectra of different SWNTs

In the section, the exciton spectra of four additional SWNTs
with different chiral indices are studied. In Fig. 5, the calculated
absorption and CD spectra of SWNTs with different chiral
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indices including three semiconducting (6,4), (7,5), (8,4)
and one quasimetallic (9,6) SWNTs are shown. As in the
case of (6,5)−SWNT, the parallel-polarized transitions in the
absorption spectra have good comparison with the experi-
ments, and the unexpected strong absorption of cross-polarized
excitons are observed [26,27]. However, the CD spectra are
not all described so well. Particularly, the signs of the third and
forth excitonic transitions of (6,4)−SWNT in the CD spectrum
are incorrectly predicted. By a noninteracting limit calculation,
we have found that the incorrectness of the sign prediction
already exists. While density-functional theory calculations
had been reported to predict the signs correctly [25,55], the dis-
crepancy can only be attributed to the roughness of the present
model and method on the band structure calculation. Effects
which are not considered in the present work, such as third-
nearest-neighbor hopping coupling, σ -π mixing, and electron
correlation, might result in the reversed sign prediction. For
other spectra, the simulations are roughly corresponding to
the reports [26,27]. The signs of the CD spectra of type-
I (mod(|n − m|,3) = 1) and type-II (mod(|n − m|,3) = 2)
semiconducting SWNTs are opposite to each other [56]. While
the characters of the spectra with the same polarization and
the same type are similar, the difference in relative positions
of the parallel-polarized and cross-polarized transitions decide
the variation of each spectrum.

In a short summary for the last two sections, even though
there are some minor inconsistencies in the simulation, the
present exciton calculations assisted still provide a quantita-
tively good match with experimental spectra. It is important
to note that either the model or the theoretical method in the
present paper is extremely simplified in comparing with the
real situation. Therefore, it is impossible to use a single set
of parameters to predict every physical quantity accurately.
We have pointed out the possible reasons to cause the dis-
crepancies, and we expect it could be helpful if there will be
any followup work to improve the present formalism. Built
on the finite success, different properties of SWNTs related to
optical activity can be studied and predicted. In the following
two sections, the magnetic optical activity of (6,5)−SWNT is
studied as an example.

C. Aharonov-Bohm effect and dark exciton

In this section, the exciton spectra of (6,5)−SWNT in a
uniformly axial magnetic field are studied, and the Aharonov-
Bohm effect is discussed. In Fig. 6, the absorption and CD spec-
tra of (6,5)−SWNT are simulated under different magnitude
of axial magnetic fields. For the parallel-polarized transitions,
as can be seen in Fig. 6(a), the Aharonov-Bohm effect is
observed in the absorption spectra as the emerging dark-
exciton transitions and splittings of the resonance peaks. As
the usual explanation, the emerging dark exciton is attributed
to the time-reversal symmetry breaking and the splitting is
attributed to the magnetic-flux-induced band-energy shifts
[38–40]. However, in the reported spectra, the peak position
of the second dark-exciton transition is supposed to be higher
in resonance energy than the second bright-exciton transition
[44,45]. It is contrary to the present calculation that the peak
position is lower. It indicates that the present calculation is
not able to find correct order of the second dark/bright exciton

FIG. 6. Calculated absorption and CD spectra of (6,5)−SWNT
without and with an axial magnetic field. (a) parallel-polarized
transitions in absorption spectrum; (b) cross-polarized transitions
in absorption spectrum; (c) parallel-polarized transitions in CD
spectrum; (d) cross-polarized transitions in CD spectrum given by
Eq. (22). The linewidth is 0.02 eV.

pair. While it is known that the order of the dark/bright exciton
is related to the relative strengths of short-range Coulomb
interactions [39], the discrepancy might be attributed to some
electron correlation effects that we do not include, such as
dielectric screening effect and σ -electron polarization.

On the other hand, in Fig. 6(b), the Aharonov-Bohm effect
in the CD spectrum appears with similar characters with one
in the absorption spectra. It implies that the dark excitons
share the same optical activity with the associate bright
excitons. For the cross-polarized transitions, the CD spectrum
is given by Eq. (22) and the Faraday-effect contribution is not
considered in order to focus on the discussion of dark-bright
exciton splitting. As shown in Figs. 6(c) and 6(d), the dark-
bright exciton splitting of the lowest few transitions are barely
observed, while the splitting of the higher-energy transitions
near 2.4 eV are still obvious. The scarcely-splitting cross-
polarized transitions might be assigned as the transitions from
the valence-band valley to the conduction-band valley with the
same direction of increasing or decreasing the band energies
under an axial magnetic field. The equivalent in the direction
of band-energy shifts results in a weaker excitation-energy
shift, and thus the dark-bright exciton splitting becomes barely
observed.

D. Faraday effect and circular polarization

Although we have given the CD spectrum of cross-polarized
exciton in an axial magnetic field in Fig. 6(d), the magnetic-
field effect is actually difficult to be observed because the
rotational strength under a strong magnetic field is mainly
given by the nondiagonal term of polarizability tensor in
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FIG. 7. Up: calculated cross-polarized transitions in CD spectra
of (6,5)−SWNT with an axial magnetic field of B = 25 Tesla by
Eq. (23) or Eq. (69). The dash line is the contribution of right-handed
circular polarization (RHCP) and dot line is the contribution of
left-handed circular polarization (LHCP), and the solid line is their
combination. Down: the degree of rotation of cross-polarized exciton
with different magnitudes of axial magnetic fields. The linewidth is
0.02 eV.

Eq. (23). If the dipole-moment operator is rewritten by μ̂ =
μ̂+e+ + μ̂−e− + μ̂‖e3 and then the polarizability tensor can
be transformed into the frame spanned by the Jones vectors,
Eq. (23) can be rewritten as

�εCP,2(ω) = 2ν0ωIm[α+−(−ω; ω) − α−+(−ω; ω)]

= εLHCP(ω) − εRHCP(ω), (69)

which is the difference of the absorption spectra of left-
handed circularly-polarized exciton (εLHCP) and right-handed
circularly-polarized exciton (εRHCP). A degree of rotation is
defined as

�θ (ω) = εRHCP(ω) − εLHCP(ω)

εRHCP(ω) + εRHCL(ω)
= −�εCP,2(ω)

εCP(ω)
. (70)

In the up panel of Fig. 7, the contribution of the two
handedness-selected cross-polarized excitons to the CD spec-
trum of (6,5)−SWNT under an axial magnetic field of 25
Tesla is shown. In the down panel of Fig. 7, the degrees of
rotation are shown with different magnitudes of the magnetic
field. As shown in the figure, without the magnetic field, the
absorption spectra of right-handed and left-handed excitons
are identical, resulting in the complete cancellation of the

rotational strengths in CD spectrum and the zero degree of
rotation for the whole frequency range. On the other hand,
with a finite magnetic field, the cancellation becomes incom-
plete and the rotational dispersion emerges. The incomplete
cancellation can be explained by the opposite momentum
transfer for the selection rules of handed excitons in Eq. (56)
and the asymmetrically distorted helical band structure under
the magnetic field. It is known as interband Faraday effect
[48,50–52].

Different to the magnetic-field effect mentioned in
Sec. III C, which is about the dark-bright-exciton splitting
under an axial magnetic field, the interband Faraday effect
is a bright-bright-exciton splitting of two handedness. It is
needed to note that the magnitude of rotational strength in
the up panel of Fig. 7 is measured by �ε, which is different
to others with a c0 factor and thus is about two orders of
magnitude larger in strength with the same digital number.
It is shown that, even with much weaker magnetic field, the
rotational strength given by Eq. (23) is much larger than the one
given by Eq. (22). Only for extremely weak magnetic field the
contribution from Eq. (22) will win, where with the magnetic
field the dark-bright-exciton splitting would be smaller than
the linewidth of the absorption peak and be unobservable. It
ensures interband Faraday effect to be the major contribution
to optical activity in SWNTs for a wide range of the magnetic
field.

IV. CONCLUSION

In conclusion, we have used the helical-rotational symmetry
to solve the helical band structures and derive the matrix
elements of SWNTs under the tight-binding approximation.
While the Coulomb interaction is considered, the band struc-
ture is solved by Hartree-Fock approximation and the exci-
ton state is given by singly-excited configuration interaction
method. By using those techniques, the simulated exciton spec-
tra including optical absorption and CD are found good corre-
spondence with experimental reports. The effects of electron-
hole asymmetry and axial magnetic-field interaction on the
spectra can be analyzed based on the helical band structures and
the selection rules. However, the present model and method still
have some insufficiencies to accurately describe the spectra
due to lack of considering such as electron correlation on band
structures, σ -π mixing, and depolarization effect.
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