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Repulsion of polarized particles from two-dimensional materials
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Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanome-
chanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical
scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong
repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene
is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation
of plasmon modes is allowed 0 < h̄ω < (5/3)μc, where μc is the chemical potential tunable electrically or by
chemical doping.
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I. INTRODUCTION

Since the confirmation that light carries momentum in the
early 20th century, the study of the mechanical force that light
exerts on matter has developed into important scientific and
technological applications [1,2]. A simple example of optical
force occurs when polarized particles are attracted to a nearby
surface: any material surface brought close to an oscillating
dipolar particle will experience oscillations of its constituent
charges, whose scattered fields then exert forces back on the
polarized particle. Under the quasistatic approximation, this is
typically explained by an effective image dipole induced in the
material [3]. This force can be very strong in the near field and
is usually attractive for conventional materials: its influence is
behind the unwanted adhesion and stiction in nanomechanical
devices [4,5]. Interestingly, recent works show that the surface
material’s optical properties can turn this attraction into repul-
sion, even if the particle is in free space [6,7]. The polarized
particle can be any source of dipolelike electromagnetic fields,
ranging from small illuminated nanoparticles, single atoms,
and quantum dot emitters, to radio-frequency dipole antennas.
This repulsion of polarized particles from surfaces could lead
to interesting novel applications, providing a simple route
for levitation of particles or atoms away from a neighboring
surface by relying on the optical properties of a surface, instead
of requiring structured illumination.

Previous works achieved repulsion of a particle from a sur-
face by using materials whose electric permittivity is near zero
[6]. These materials allow no electric field perpendicular to
their boundary, intuitively squeezing the electric field between
the dipole and the surface, resulting in repulsion [6]. This prop-
erty is available in natural materials only in narrow frequency
bands, and is difficult to synthetize artificially [8,9]. The use of
anisotropic materials in which only one of the components of
the permittivity tensor is near zero [7] can facilitate realization
while retaining the repulsive behavior, but it is still challenging,
as finely adjusted thicknesses of metal and dielectric layers are
needed to achieve the repulsion in a required spectral range.
Even then, the effect is inherently narrowband due to physical
constraints: any frequency at which the permittivity is zero
must be a point of high dispersion. A similar repulsion was

proposed via the use of magneto-optical materials, with a
limited bandwidth and requiring external magnets [10].

In this work, we present a simpler mechanism to achieve the
repulsion of polarized particles from surfaces. We consider
a dipole near a dielectric substrate: any low index dielectric
such as glass would work, even if it is nondispersive. The
force on a dipole is normally attractive towards such substrate.
However, we show that by placing a layer of a two-dimensional
(2D) material (such as graphene) on top of this substrate,
the force on the dipole becomes repulsive above a certain
threshold distance. This repulsive force occurs thanks to
the excitation of electromagnetic modes in the 2D layer, a
completely different physical effect to the permittivity-near-
zero repulsion described above. In addition, the repulsion
exists at all frequencies for which such modes exist, which
for instance in graphene occurs in a wide range of photon
energies lower than graphene’s chemical potential, resulting in
a huge bandwidth. Two-dimensional materials have been lately
shown to have truly remarkable properties, very different to
bulk materials, and several practical examples of 2D materials
such as graphene, transition metal dichalcogenides (TMDC),
and boron nitride are being widely used in nanophotonics
and optoelectronics [11]. The presented model also applies to
topological insulators, whose surface can be regarded as sheet
conductivity. The force acting on harmonically oscillating
dipoles is intimately related to fluctuation-induced forces on
small particles [12] caused by thermal and quantum fluctu-
ations (nonpolar Van der Waals and Casimir-Polder forces),
which are a natural extension of the results presented here.
The model could explain the experimentally observed unusual
wetting characteristics of graphene [13,14] and Van der Waals
forces on molecules near TMDCs [15,16].

II. RESULTS AND DISCUSSION

A. Optical force on dipoles above two-dimensional sheets

We consider a dipole source p = (px,py,pz) radiating
with a frequency ω at a position r0 = (0,0,h) above a two-
dimensional sheet conductivity σ2D which spans the plane
z = 0, sandwiched between a superstrate and substrate with
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FIG. 1. (a) Geometry of the problem: a dipole p radiating at
frequency ω (wavelength λ) located a distance h above a 2D material
surface on a substrate of relative permittivity ε3 (refractive index
n3 = √

ε3). The upper medium has relative permittivity ε1 = 1. (b,c)
Numerically calculated potential energy landscape of a horizontally
polarized dipole as a function of its distance above the surface,
for different values of surface conductivity equal to (b) the ideal
conductivity of graphene σ2D = e2/4h̄ (corresponding to label “A”
in Figs. 1–3), and (c) a two-dimensional conductivity with a high
imaginary part, indicating metallic character (corresponding to label
“B” in Figs. 1–3). The refractive index of the substrate is n3 = 1
for solid lines and n3 = 1.4 for the dashed lines The potential
energy is normalized to the power radiated by the dipole Prad =
|p|2ω4/(12πε0ε1(c3

0/n3
1)), where n1 = √

ε1.

respective relative permittivities ε1 and ε3 [Fig. 1(a)]. The
time-averaged optical force 〈F〉 acting on the dipole is given
by [17,18]:

〈F〉 =
∑

i=x,y,z

1

2
Re[p∗

i ∇Ei], (1)

where ∇ is the gradient with respect to r evaluated at r0,
and E = (Ex,Ey,Ez) is the electric field acting on the dipole
reflected back from the surface, which can be calculated
following the usual Green’s function approach [19,20] (see
Appendices A and B for the analytical expression of this
force, which depends on materials and geometry). For linearly
polarized dipoles, the optical force has no lateral components
[21–24] and acts exclusively along z (vertical force). The
vertical component 〈Fz(h)〉 is conservative, allowing us to

calculate the potential energy landscape U (h) = ∫ 〈Fz〉dz of
the dipole in the vicinity of the surface.

When the dipole is close to a dielectric substrate, the force
is attractive. However, a remarkable phenomenon arises when
a 2D sheet is placed on top of the substrate: for certain values
h � λ, there can be a strong near-field repulsive force acting
on the dipole, depending on σ2D. This is the main result of this
paper. When the imaginary part of σ2D is close to zero, the
potential landscape of the dipole is such that the dipole will be
strongly attracted to the surface [Fig. 1(b)]. However, when
the values of σ2D have a positive imaginary part, associated
with a metallic character of the 2D material enabling it to
support plasmon waves, the dipole is then strongly repelled
away from the surface if it is beyond a certain threshold
distance [Fig. 1(c)]. These values of σ2D are easily achieved
in experimental two-dimensional materials as shown below.
The repulsion effect is robust to variations in the substrate
[Fig. 1(c)], as long as its refractive index is moderately
low (e.g., glass). This makes the present system extremely
easy to fabricate: given the commercial availability of
two-dimensional materials, placing one, such as graphene, over
a glass substrate is simple. It is worth noting that if the refractive
index of the substrate becomes too high (see Appendix E) the
repulsion effect eventually disappears. Therefore the refractive
index can be used as a way to tune the repulsive force.

This behavior is very different to previous works on dipole
repulsion above semi-infinite materials. The phenomenon
observed in two-dimensional sheets can be interpreted as the
limiting case of a slab whose thickness is made progressively
smaller (see Appendix G). The force behaves differently from
the previously studied repulsion of dipoles above permittivity-
near-zero surfaces, where the force showed a simple h−4 decay
with distance under the quasistatic approximation [6,7]. In the
present case, the quasistatic limit predicts an attractive force
when h → 0 but, crucially; the force undergoes a change of
sign in the near field, switching to being repulsive above a
threshold distance, corresponding to the local energy maxima
in Fig. 1(c). This suggests the presence of competing near-
field phenomena. In Fig. 2(a), we plot the dependence of
the threshold distance of repulsion, i.e. the contour at which
〈Fz(z)〉 changes sign for different values of h, as a function of
the complex conductivity of the surface σ2D. These contours
enclose the regions of σ2D where repulsion occurs for various
distances. From a macroscopic optics point of view, ignoring
the atomic details, the only relevant optical parameter of a
two-dimensional sheet is its complex sheet conductivity σ2D

at a certain frequency. Fig. 2 provides a general recipe to
the existence of repulsion from two-dimensional sheets at any
given distance. Figure 2(b) plots the magnitude of the repulsive
force at a fixed distance h = 0.006λ, constituting a zoomed
cross-section of Fig. 2(a).

B. Optical forces on dipoles above graphene

As a practical example of the ideas above, we will consider
the behavior of graphene. We would like to stress that all
the above results are general and apply to any 2D material,
and we only choose graphene as an example due to its well-
characterized optical properties. The simplest ideal model
for graphene is given by the conductivity σ2D = e2/4h̄ ≈

205401-2



REPULSION OF POLARIZED PARTICLES FROM TWO- … PHYSICAL REVIEW B 97, 205401 (2018)

0

h/λ
0.006
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0 0.5-0.5
-0.2

0.8

0.2

0.4

0.6

(a)

0
10–5

10–3

–10–3

–10–5

10–4

–10–4

[N/W]

AB

A

B

(b)

h = 0.006λ

0 0.03-0.03
-0.03

0.05

0

2 eV
1 eV

0.5 eV
μc

FIG. 2. (a) Contour plot in the complex plane of graphene conductivity σ2D enclosing the region of conductivity for which a repulsive force
takes place, for different dipole heights. (b) Time-averaged vertical force acting on the dipole plotted in the complex plane of σ2D [zoom-in from
(a)] for a fixed height h = 0.006λ. (Dashed red lines) parametric plot of the conductivity of graphene as the frequency is varied, for graphene
with different chemical potentials obtained from the Kubo formula. The conductivity of ideal graphene is labelled “A,” which coincides with
the limit of Kubo formula at high frequencies h̄ω 	 μc. The conductivity for graphene with a chemical potential μc at a certain frequency,
arbitrarily chosen for strong repulsion in a region of metallic character, is labelled as “B.” The conductivity of graphene for different values of
μc crosses point “B” at different frequencies (e.g., for μc = 2 eV, it happens at h̄ω = 1.65 eV). The plots correspond to a horizontally polarized
dipole p = px x̂ over a free standing 2D material (taking ε1 = ε3 = 1).
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FIG. 3. [(a) and (b)] Parametric map of the optical force acting on a horizontally polarized dipole over graphene as a function of two
parameters: the dipole frequency h̄ω and the height of the dipole over the surface h. The chemical potential of graphene is set to [(a), (c), and
(e)] μc = 0 eV (labelled “A” in Figs. 1 and 2) and [(b), (d), and (f)] μc = 2 eV (labelled “B” in Figs. 1 and 2). [(c) and (d)] Field plots (z-directed
electric field Ez) in the cases “A” and “B,” corresponding to attraction and repulsion, respectively, for a dipole height h = 0.006λ and a dipole
frequency h̄ω = 1.65 eV. [(e) and (f)] Associated time-averaged Pointing vector [zoom-in from (c) and (d)] showing the flux of energy from
the dipole into the surface. The fields were calculated by direct integration of the Green functions for the electric and magnetic fields [29].
An exact match of the fields and forces to those from frequency-domain numerical simulations in CST Microwave Studio was confirmed (see
Appendix F).
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0.023cε0. This has zero imaginary part (and, therefore, no
repulsion), and is labelled as case “A” in Figs. 1–3. How-
ever, graphene exhibits much richer optical phenomena than
predicted by this ideal conductivity. The chemical potential
μc is a well-known characteristic of graphene which can be
tuned by chemical doping or by applying an electric bias.
When μc = 0 eV, graphene’s conductivity is given by its
idealized value σ2D = e2/4h̄. However, by increasing μc, the
optical response of graphene can be drastically modified, for
instance, allowing the propagation of plasmon modes [25].
Indeed, graphene’s conductivity acquires a positive imaginary
part at photon energies h̄ω < (5/3)μc, responsible for its
metallic character, and enabling repulsion. The conductivity of
graphene σ2D(ω) can be modelled by the widely used Kubo for-
mula known to give good agreement with experiments [25–27]
(see Appendix D). The wavelength-dependent conductivity of
graphene with different chemical potentials μc is shown as red
dashed lines on Fig. 2, from which the existence of conductivity
values well inside the repulsion region appears clearly. We
label an arbitrarily chosen point of the dashed line in this
region as case “B” in Figs. 1 –3. This means that the chemical
potential of graphene can be used to control and switch the
repulsive force that it exerts on a nearby radiating dipole. The
frequency-dependent force for a dipole above a graphene layer
with chemical potential of μc = 0 eV and 2 eV is shown in
Figs. 3(a) and 3(b). We see that the repulsion has a very broad
bandwidth in the frequency region 0 < h̄ω < (5/3)μc. This
observation is confirmed for other values of μc, as shown in
Appendix E. Figure 3 also shows the associated electric field
of the dipole near the graphene layer [Figs. 3(c) and 3(d)] and
the time-averaged Poynting vector [Figs. 3(e) and 3(f)]. We can
see that the metallic character of graphene (right side of Fig. 3)
allows plasmon waves to be excited [28]. We hypothesize that
when the dipole energy couples into the surface waves, there
is a downward-directed flow of electromagnetic momentum,
which must be accompanied by an upwards recoil mechanical
force responsible for the repulsion, similar to the mechanism
of propulsion in classical mechanics. When the dipole further
approaches the surface, repulsion changes into attraction. This
is seen in the potential energy landscape from Fig. 1(c) and in
the force plot in Fig. 3(b).

C. Forces on illuminated polarizable particles near
two-dimensional materials

We now simulate a possible experiment. In the optical
regime, a dipolar source is easily realized by the scattering of a
small illuminated polarizable particle or molecule. In this case,
in addition to the force caused by the dipole scattering itself, the
illuminating light will also exert a gradient and scattering force
on the particle. This situation can be analyzed as follows:
the particle gets polarized by all the fields incident on it,
according to p = α(Epw(r0) + Er

s(r0)), where α is the isotropic
polarizability, Epw(r) is the superposition of any incident,
reflected and transmitted plane waves acting on the scatterer,
and Er

s (r) is the back-scattering of the dipole fields reflected
from the sheet, which depend on p and are calculated with
the usual Green’s function approach. By solving this equation
self-consistently for p, we can compute the total time-averaged
optical force acting on the particle following Eq. (1) as
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FIG. 4. (a) Point-dipole-like particle near a graphene sheet illu-
minated under normal incidence from the substrate n3 = 1.4 (through
the graphene sheet). (b) Potential energy landscape of a polarizable
particle with polarizability α = (1 + i)(10−33) m3 near graphene with
chemical potential μc = 0 and 2 eV illuminated with light of fre-
quency h̄ω = 1.65 eV (λ = 750 nm).

〈F〉 = (1/2)
∑

i=x,y,z Re{p∗
i ∇(Epw,i + Er

s,i)}. In this case, the
source of energy is the plane wave, and the particle is just
a passive scatterer. This removes the infinities that appeared
when the dipole was approaching the surface h → 0. Figure 4
shows the potential energy landscape for a polarizable particle
near a graphene layer on a glass substrate corresponding to
cases “A” (μc = 0 eV) and “B” (μc = 2 eV), when light is
illuminated at normal incidence from below. It clearly shows
the switch from attraction to repulsion enabled by the graphene
layer. Any other value of nonzero chemical potential can be
used for repulsion, as long as the illumination wavelength is
chosen in the wide range in which graphene supports plasmons.

III. CONCLUSION

We have shown an extremely simple mechanism for the
repulsion of dipoles from a dielectric substrate by the simple
addition of conductive two-dimensional sheets. Although we
present specific examples for the levitation of polarizable
particles over graphene layers with an appropriate chemical
potential, the model used in this paper is widely applicable
for nano-objects of various sorts, atoms, molecules, particles,
emitters, etc., and the results are important in quantum tech-
nology, atom optics, microfluidics, and optomechanics.

Our argument relies on the solution of a classical optics
scattering problem assuming an ideal dipolar particle and a ho-
mogeneous conductivity model for two-dimensional materials,
therefore ignoring complexities such as higher-order multipole
effects that may arise due to coupling with the surface, as well
as the surface atomic arrangements, electronic band structures,
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and quantum effects. The fact that such a robust, strong and
broadband repulsion arises from this simplest possible model
suggests that the result is of fundamental nature, and we expect
it to persist in more refined analysis. This is analogous to how
repulsion studies for dipoles [6,7] were later found to be exten-
sible to much more complex cases, such as finite-size antennas
[30], and even optical repulsion of dielectric waveguides [31].

We did not consider here other sources of forces on the
particle, such as electrostatic charging, and fluctuation-induced
forces (Casimir-Polder/van der Waals) caused by thermal and
quantum fluctuations, which are known to dominate at small
distances. In fluctuation electrodynamics, the computation of
Casimir interactions can be reduced to solving the classical
scattering problem, exactly as performed here, but integrating it
over the frequency fluctuations [12]. This leads to an interesting
possibility: since the classical scattering repulsion studied
in this work exists on a wide frequency range, we expect
that fluctuation-induced forces will also be greatly affected.
Therefore two-dimensional sheets could have potential for
applications in low friction devices [32] by exhibiting reduced
attractive or perhaps even repulsive fluctuation-induced forces.
This effect could be related with the experimentally observed
unusual wetting characteristics of graphene on varying chem-
ical potentials [13,14].
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APPENDIX A: OPTICAL RESPONSE
OF A TWO-DIMENSIONAL SHEET

The Fresnel coefficients of a two-dimensional sheet with
sheet conductivity σ2D can be obtained by solving the elec-
tromagnetic boundary conditions n̂ × (E1 − E3) = 0 and
n̂ × (H1 − H3) = Js , where n̂ is a unit vector perpendicular
to the interface (in this case n̂ = ẑ), E1, H1, E3, H3 are the
electric and magnetic fields in the upper and lower media,
respectively, and Js = σ2DEt is the surface current density
induced in the sheet, proportional to the tangential electric field
Et = E1 − E1 · n̂. Alternatively, two-dimensional sheets with
a sheet conductivity σ2D can also be modelled as shown in
Fig. 5, by considering a slab with a small thickness � � λ,

FIG. 5. A two-dimensional sheet with conductivity σ2D can be
modeled as a thin slab of thickness � with thickness-dependent
permittivity εeff (�) = 1 + iσ2D/(ωε0�), whose Fresnel coefficients
converge in the limit � → 0.

made up of a material with a thickness-dependent effective
relative permittivity εeff (�) = 1 + iσ2D/(ωε0�). The optical
response of such a thin slab converges, in the limit � → 0,
to the behavior of the ideal two-dimensional material with
conductivity σ2D [7,25]. Both procedures lead to the complex
field transmission and reflection Fresnel coefficients of a two-
dimensional sheet sandwiched between materials with relative
permittivities ε1 and ε3 given by

rp(kt) = (ε3 + kz3rσnorm)kz1r − ε1kz3r

(ε3 + kz3rσnorm)kz1r + ε1kz3r

,

tp(kt) = 2(ε1ε3)
1
2 kz1r

ε3kz1r + ε1kz3r + kz1rkz3rσnorm
,

(A1)
rs(kt) = kz1r − (kz3r + σnorm)

kz1r + (kz3r + σnorm)
,

t s(kt) = 2kz1r

kz1r + kz3r + σnorm
,

where ktr = kt/k0 = (k2
x + k2

y)/k0 is the normalized wave-
vector component in the plane parallel to the surface (con-
served at the interfaces), kzir = kzi/k0 = (εi − k2

tr)
1/2 is the

normalized wave-vector component in the direction perpen-
dicular to the sheet at the ith medium, and σnorm = σ2D/(cε0)
is a dimensionless way to express the two-dimensional sheet
conductivity. The normalization of conductivity and wave-
vectors allows Eq. (A1) to be written compactly, and all the
quantities involved are dimensionless. The expressions are
simplified even further if the substrate and superstrate are
equal (ε1 = ε3): for example, t

p
ε1=ε3 = 2ε1/(2ε1 + kzrσnorm).

Equations (A1) are valid for both propagating (|kt | < k1) and
evanescent (|kt | � k1) components, and, therefore, can be used
to calculate the fields resulting from any incident field with
known spatial Fourier decomposition Ep/s(kx,ky), including
the fields of a dipole source.

APPENDIX B: TIME-AVERAGED FORCE
ON A DIPOLE NEAR A SURFACE

The time-averaged force vector acting on a dipole near a
surface as described in the main text is given by [17,18]

〈F〉 =
∑

i=x,y,z

1

2
Re{p∗

i ∇Ei},

where ∇ is the gradient with respect to r evaluated at the
location of the dipole r0, and E = (Ex,Ey,Ez) is the electric
field acting on the dipole (reflected by the surface). To obtain
the value of this reflected electric field, we can follow the usual
dyadic Green’s function approach, in which the field is given

by E(r) =
↔
G(r,r0)p. The dyadic Green’s function

↔
G can be

written as a 3 × 3 matrix which, when multiplied by the dipole
vector p, gives us the reflected electric field of a dipole above an
arbitrary surface. This Green’s function is well-known [19,20]
and can be written as a function of the Fresnel reflection
coefficients of the surface. Substituting E(r) =

↔
G(r,r0)p into

205401-5
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the expression of the force, we arrive at

〈F〉 =
∑

i,j=x,y,z

1

2
Re{p∗

i pj∇Gij }

=
∑

i,j=x,y,z

1

2
Re

{
p∗

i pj

(
∂Gij

∂x
x̂ + ∂Gij

∂y
ŷ + ∂Gij

∂z
ẑ
)}

.

The summation is done over nine terms, corresponding to
the nine elements of each tensor, most of which are zero.
Although a lateral force (directed along x̂ or ŷ) may exist
for circularly polarized dipoles [21–24], corresponding to the
terms ∇Gij with i �= j , here we are interested on the vertical
force component only, which is given by the terms ∂Gij /∂z

〈Fz〉 = 〈F〉 · ẑ =
∑

i,j=x,y,z

1

2
Re

{
p∗

i pj

∂Gij

∂z

}
.

After substitution of the Green’s function gradient (see Ap-
pendix C), we arrive at the final equation for the vertical force
[6,7]:

〈Fz〉 = 1

2
Re

{ −1

8πε0ε1

∫ ∞

0
kt

[
(|px |2 + |py |2)

(
k2

1r
s − k2

z1r
p
)

+ |pz|2
(
2k2

t r
p
)]

eikz12hdkt

}
, (B1)

where k1 = k0n1 = 2πn1/λ0 is the wave vector in the upper
medium with refractive index n1 and kt is the transverse wave
vector. The Fresnel reflection coefficients rp(kt ) and rs(kt )
of the two-dimensional sheet Eq. (A1) can be substituted
into Eq. (B1), which can then be numerically integrated to
compute the force. This equation constitutes an exact solution
to Maxwell’s equations and was used throughout the text for
the calculation of the force. The correctness of this expression
for the force was carefully confirmed through electromagnetic
simulations (see Appendix F and Fig. 8).

APPENDIX C: GREEN FUNCTION’S GRADIENT

The fields reflected by a dipole located at r0 near a surface
defined by z = 0 are given in terms of the Green function as

E(r,ω) =
↔
G(r,r0,ω)p. The reflected field Green function for a

surface with arbitrary reflection coefficients rp(kt ) and rs(kt )
can be written using Weyl’s identity [19,20] as

↔
G(r,r0,ω) = i

8π2ε0ε1

∫∫
dkxdkye

i(kx (x−x0)+ky (y−y0)+kz1(z+z0))

× [rp
↔
Mp + rs

↔
Ms], (C1)

where the integral is performed over kx,ky ∈ [−∞,∞] and
↔
Mp and

↔
Ms represent the p- and s-polarized components of

the dipole, given by [19]

↔
Mp =

⎛
⎜⎝

−kz1k
2
x/k2

t −kz1kxky/k2
t −kx

−kz1kxky/k2
t −kz1k

2
y/k2

t −ky

kx ky k2
t /kz1

⎞
⎟⎠,

↔
Ms = k2

1

kz1k
2
t

⎛
⎜⎝

k2
y −kxky 0

−kxky k2
y 0

0 0 0

⎞
⎟⎠

with k1 = n1k0 = n1ω/c. The gradient of the Green function
with respect to r = (x,y,z) is given by

∇↔
G = ∂

↔
G

∂x
x̂ + ∂

↔
G

∂y
ŷ + ∂

↔
G

∂z
ẑ,

where the spatial derivatives can be directly obtained from
Eq. (C1) as

∂
↔
G

∂x
(r,r0,ω) = − 1

8π2ε0ε1

∫∫
kxdkxdky

×ei(kx (x−x0)+ky (y−y0)+kz1(z+z0))[rpMp + rsMs],

∂
↔
G

∂y
(r,r0,ω) = − 1

8π2ε0ε1

∫∫
kydkxdky

× ei(kx (x−x0)+ky (y−y0)+kz1(z+z0))[rpMp + rsMs],

∂
↔
G

∂z
(r,r0,ω) = − 1

8π2ε0ε1

∫∫
kz1dkxdky

× ei(kx (x−x0)+ky (y−y0)+kz1(z+z0))[rpMp + rsMs].

The gradient needs to be calculated at the location of the dipole,
therefore, we take the limit r → r0 and assume r0 = (0,0,h),
which simplifies the expressions to

∂
↔
G

∂x
(r0,r0,ω) = − 1

8π2ε0ε1

∫∫
kxdkxdkye

i2kz1h

× [rpMp + rsMs],

∂
↔
G

∂y
(r0,r0,ω) = − 1

8π2ε0ε1

∫∫
kydkxdkye

i2kz1h

× [rpMp + rsMs],

∂
↔
G

∂z
(r0,r0,ω) = − 1

8π2ε0ε1

∫∫
kz1dkxdkye

i2kz1h

× [rpMp + rsMs].

We can now write the transverse wave vectors in cylindrical
coordinates kx = kt cos α and ky = kt sin α and, with some
algebra, perform the angular integration in α ∈ [0,2π ] leaving
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FIG. 6. Map of the vertical force for a vertical dipole over a graphene sheet with different chemical potentials and for different substrate
permittivities. The observed behavior is qualitatively identical to a horizontally polarized dipole considered in the main text. The upper frequency
limit of the repulsion can be seen to be (5/3)μc.

only a single integration over kt ∈ [0,∞]:

∂
↔
G

∂x
(r0,r0,ω) = 1

8πε0ε1

∫
dkte

i2kz1hk3
t r

p

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠,

∂
↔
G

∂y
(r0,r0,ω) = 1

8πε0ε1

∫
dkte

i2kz1hk3
t r

p

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠,

∂
↔
G

∂z
(r0,r0,ω) = 1

8πε0ε1

∫
dkte

i2kz1hkt

×

⎛
⎜⎝

k2
z1r

p−k2
1r

s 0 0

0 k2
z1r

p−k2
1r

s 0

0 0 −2k2
t r

p

⎞
⎟⎠.

These tensors can be substituted in the expression of the force
to obtain the final expression for the vertical force given in
Eq. (B1). Notice that if the dipole is linearly polarized, we
have p∗

i pj = p∗
j pi , and the lateral components of the force

exactly cancel out.

APPENDIX D: KUBO FORMULA FOR THE
CONDUCTIVITY OF GRAPHENE

In this work we used the Kubo formula [25–27] to model
the conductivity of graphene, which is known to fit well
with experimental results. The temperature was taken as T =
293 K, the energy gap as 0 eV, and the scattering rate was set
at 
 = 1.29 meV, which is the highest amongst Refs. [25–27].
The results do not depend strongly on the scattering rate.

APPENDIX E: EFFECT OF DIPOLE POLARIZATION
AND PRESENCE OF A SUBSTRATE

Figure 6 shows the frequency dependent vertical force act-
ing on a vertical dipole above graphene for different chemical
potentials, comparing free standing graphene (ε3 = 1) with the
case of a substrate with ε3 = 2. By comparison with the figures
in the main text, it is clearly seen that the behavior discussed
in the main text is robust to changes in dipole polarization and
presence of substrate.

Additionally, Fig. 7 shows the same potential energy land-
scape as the main text Fig. 1(c) but including a whole range of
varying refractive index of the substrate between n3 = 1 and
2.5. From both Figs. 6 and 7, we see that as the substrate’s
refractive index increases, the repulsive region will get smaller
and eventually disappear, but the repulsion effects persists for
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FIG. 7. Numerically calculated potential energy landscape of a
horizontally polarized dipole as a function of its distance above the
surface, for a two-dimensional conductivity with a high imaginary part
and varying refractive index of the substrate. All the other parameters
are the same as in Fig. 1(c).
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FIG. 8. Logarithmic plot of the distance dependence of the verti-
cal force for a horizontal dipole over a graphene sheet, correspond-
ing to case “B” (frequency h̄ω = 1.65 eV and graphene chemical
potential μc = 2 eV). Red and blue curves correspond to repulsive
and attractive forces, respectively. Comparison between the forces
calculated using the numerical integration of Eq. (1) in the main text
for graphene modelled as an infinitely thin layer (analytical limit) and
as a 0.5-nm-thick layer, and using simulations with CST Microwave
Studio in which graphene is modelled as a 0.5-nm-thick layer. In the
simulations, the force was obtained from the fields by integration of
Maxwell’s stress tensor. The force was checked to be independent
of the size of the integration volume around the dipole, showing
robustness of the result. Numerical noise was relatively large in the
last data point due to the very low value of the force.

low index substrates. Interestingly, when n3 > 1, we see that
the near field force as a function of distance has two sign
changes for a given frequency. This implies a stable point
of equilibrium in the potential energy landscape given by a
local energy minimum. The equilibrium height depends on the
frequency, which suggests interesting applications for particle
sorting and manipulation.

APPENDIX F: NUMERICAL SIMULATIONS

The results of the analytical description above were con-
firmed through the direct solution of full three-dimensional
electrodynamic Maxwell’s equations for a dipole above a

conductive layer, using a commercial electromagnetic simu-
lation software.

Figure 8 shows the comparison between the forces calcu-
lated analytically using Eq. (1) and numerically by integrating
Maxwell’s stress tensor using the commercial software CST
Microwave Studio. This simulation requires great care to
obtain reliable results, and its details were given in similar
simulations performed in Ref. [6].

In the numerical simulations, infinitely thin two-
dimensional sheets cannot be modelled. Instead, we modeled
graphene as a very thin film of thickness � = 0.5 nm with
corresponding permittivity εeff (�) as detailed in Fig. 5. In the
figure, we also show the analytical calculation of the force for
the case of that same thin sheet, seen to give results very close
to the infinitely thin sheet. The theory and simulations are in
excellent agreement.

APPENDIX G: IMPORTANCE OF THE THICKNESS
OF THE MATERIAL

It is a natural question to ask whether the presented effect
in 2D materials with a metallic character would also work for
slabs of metal with an arbitrary thickness, which also support
propagating surface plasmons. In this section, we show that
the requirement of such a slab to be thin is fundamental to
achieve the broad bandwidth and generality of the repulsion
effect: with the 2D material constituting a limiting case.

In a previous study (Ref. [6]), we calculated the force on
a dipole above a solid semi-infinite substrate. Repulsion of
the dipole is found for those values of the permittivity of the
substrate that fulfil the inequality |ε| < 1. This corresponds
with an exotic epsilon-near-zero (ENZ) material property,
which occurs in metamaterials or in natural materials in very
narrow bandwidths. Notice that typical metals are modeled as
a negative permittivity (Drude model) at optical frequencies,
supporting surface plasmons when ε < −1; even if a metal
interface supports surface plasmons for all that range of values
of negative permittivity, it does not result in repulsion of
dipoles except at its resonance ε = −1, if the losses are
low.

However, if one considers a dipole placed above a thin
slab of material, then if the material is metallic (ε < −1),
we find that the range of values of permittivity for which
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FIG. 9. Vertical force acting on a horizontally polarized dipole placed a distance of 0.1λ above a material slab, as a function of slab thickness
and relative permittivity of the slab. The imaginary part of the permittivity was kept constant at 0.1 to add losses.
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repulsion exists increases as the thickness of the slab is
decreased. This is clearly observed in Fig. 9, calculated using
the same equation for the force Eq. (B1) but with the reflection
coefficients of a finite slab. The vertical force is plotted as
a function of two parameters: the relative permittivity of the
slab and the thickness of the slab. For thick slabs (t > 0.1λ),
the behavior quickly tends to the behavior of a solid semi-
infinite substrate: only the exotic ENZ values |ε| < 1 result in
repulsion. However, there is clearly a limiting case in which,
when the thickness of the slab tends to zero (t � λ), the range

of permittivities for which repulsion exists varies greatly and
in fact increases so as to cover the whole range of permittivities
associated with a surface plasmons ε < −1. This suggests the
use of the ultimate thin material: a 2D material that behaves as
an infinitely thin metal. Indeed, as shown through this work,
the 2D material shows repulsion whenever it shows a metallic
character. It seems clear from this result that the thickness of the
material is fundamental for this effect, and a 2D material is the
perfect platform to experimentally achieve ultrathin metal-like
layers.
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